blob: 0e27405132ccd7c50dfbffc3fccb933c01084d13 [file] [log] [blame]
// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "uassert.h"
#include "unicode/numberformatter.h"
#include "number_decimalquantity.h"
#include "number_formatimpl.h"
#include "umutex.h"
#include "number_asformat.h"
#include "number_utils.h"
#include "number_utypes.h"
#include "number_mapper.h"
#include "util.h"
#include "fphdlimp.h"
using namespace icu;
using namespace icu::number;
using namespace icu::number::impl;
#if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER)
// Ignore MSVC warning 4661. This is generated for NumberFormatterSettings<>::toSkeleton() as this method
// is defined elsewhere (in number_skeletons.cpp). The compiler is warning that the explicit template instantiation
// inside this single translation unit (CPP file) is incomplete, and thus it isn't sure if the template class is
// fully defined. However, since each translation unit explicitly instantiates all the necessary template classes,
// they will all be passed to the linker, and the linker will still find and export all the class members.
#pragma warning(push)
#pragma warning(disable: 4661)
#endif
template<typename Derived>
Derived NumberFormatterSettings<Derived>::notation(const Notation& notation) const& {
Derived copy(*this);
// NOTE: Slicing is OK.
copy.fMacros.notation = notation;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::notation(const Notation& notation)&& {
Derived move(std::move(*this));
// NOTE: Slicing is OK.
move.fMacros.notation = notation;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unit(const icu::MeasureUnit& unit) const& {
Derived copy(*this);
// NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit.
// TimeUnit may be affected, but TimeUnit is not as relevant to number formatting.
copy.fMacros.unit = unit;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unit(const icu::MeasureUnit& unit)&& {
Derived move(std::move(*this));
// See comments above about slicing.
move.fMacros.unit = unit;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptUnit(icu::MeasureUnit* unit) const& {
Derived copy(*this);
// Just move the unit into the MacroProps by value, and delete it since we have ownership.
// NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit.
// TimeUnit may be affected, but TimeUnit is not as relevant to number formatting.
if (unit != nullptr) {
// TODO: On nullptr, reset to default value?
copy.fMacros.unit = std::move(*unit);
delete unit;
}
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptUnit(icu::MeasureUnit* unit)&& {
Derived move(std::move(*this));
// See comments above about slicing and ownership.
if (unit != nullptr) {
// TODO: On nullptr, reset to default value?
move.fMacros.unit = std::move(*unit);
delete unit;
}
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::perUnit(const icu::MeasureUnit& perUnit) const& {
Derived copy(*this);
// See comments above about slicing.
copy.fMacros.perUnit = perUnit;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::perUnit(const icu::MeasureUnit& perUnit)&& {
Derived move(std::move(*this));
// See comments above about slicing.
move.fMacros.perUnit = perUnit;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptPerUnit(icu::MeasureUnit* perUnit) const& {
Derived copy(*this);
// See comments above about slicing and ownership.
if (perUnit != nullptr) {
// TODO: On nullptr, reset to default value?
copy.fMacros.perUnit = std::move(*perUnit);
delete perUnit;
}
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptPerUnit(icu::MeasureUnit* perUnit)&& {
Derived move(std::move(*this));
// See comments above about slicing and ownership.
if (perUnit != nullptr) {
// TODO: On nullptr, reset to default value?
move.fMacros.perUnit = std::move(*perUnit);
delete perUnit;
}
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::precision(const Precision& precision) const& {
Derived copy(*this);
// NOTE: Slicing is OK.
copy.fMacros.precision = precision;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::precision(const Precision& precision)&& {
Derived move(std::move(*this));
// NOTE: Slicing is OK.
move.fMacros.precision = precision;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::roundingMode(UNumberFormatRoundingMode roundingMode) const& {
Derived copy(*this);
copy.fMacros.roundingMode = roundingMode;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::roundingMode(UNumberFormatRoundingMode roundingMode)&& {
Derived move(std::move(*this));
move.fMacros.roundingMode = roundingMode;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::grouping(UNumberGroupingStrategy strategy) const& {
Derived copy(*this);
// NOTE: This is slightly different than how the setting is stored in Java
// because we want to put it on the stack.
copy.fMacros.grouper = Grouper::forStrategy(strategy);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::grouping(UNumberGroupingStrategy strategy)&& {
Derived move(std::move(*this));
move.fMacros.grouper = Grouper::forStrategy(strategy);
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::integerWidth(const IntegerWidth& style) const& {
Derived copy(*this);
copy.fMacros.integerWidth = style;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::integerWidth(const IntegerWidth& style)&& {
Derived move(std::move(*this));
move.fMacros.integerWidth = style;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::symbols(const DecimalFormatSymbols& symbols) const& {
Derived copy(*this);
copy.fMacros.symbols.setTo(symbols);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::symbols(const DecimalFormatSymbols& symbols)&& {
Derived move(std::move(*this));
move.fMacros.symbols.setTo(symbols);
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptSymbols(NumberingSystem* ns) const& {
Derived copy(*this);
copy.fMacros.symbols.setTo(ns);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptSymbols(NumberingSystem* ns)&& {
Derived move(std::move(*this));
move.fMacros.symbols.setTo(ns);
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unitWidth(UNumberUnitWidth width) const& {
Derived copy(*this);
copy.fMacros.unitWidth = width;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unitWidth(UNumberUnitWidth width)&& {
Derived move(std::move(*this));
move.fMacros.unitWidth = width;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::sign(UNumberSignDisplay style) const& {
Derived copy(*this);
copy.fMacros.sign = style;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::sign(UNumberSignDisplay style)&& {
Derived move(std::move(*this));
move.fMacros.sign = style;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::decimal(UNumberDecimalSeparatorDisplay style) const& {
Derived copy(*this);
copy.fMacros.decimal = style;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::decimal(UNumberDecimalSeparatorDisplay style)&& {
Derived move(std::move(*this));
move.fMacros.decimal = style;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::scale(const Scale& scale) const& {
Derived copy(*this);
copy.fMacros.scale = scale;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::scale(const Scale& scale)&& {
Derived move(std::move(*this));
move.fMacros.scale = scale;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::usage(const StringPiece usage) const& {
Derived copy(*this);
copy.fMacros.usage.set(usage);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::usage(const StringPiece usage)&& {
Derived move(std::move(*this));
move.fMacros.usage.set(usage);
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unitDisplayCase(const StringPiece unitDisplayCase) const& {
Derived copy(*this);
copy.fMacros.unitDisplayCase.set(unitDisplayCase);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unitDisplayCase(const StringPiece unitDisplayCase)&& {
Derived move(std::move(*this));
move.fMacros.unitDisplayCase.set(unitDisplayCase);
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::padding(const Padder& padder) const& {
Derived copy(*this);
copy.fMacros.padder = padder;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::padding(const Padder& padder)&& {
Derived move(std::move(*this));
move.fMacros.padder = padder;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::threshold(int32_t threshold) const& {
Derived copy(*this);
copy.fMacros.threshold = threshold;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::threshold(int32_t threshold)&& {
Derived move(std::move(*this));
move.fMacros.threshold = threshold;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::macros(const impl::MacroProps& macros) const& {
Derived copy(*this);
copy.fMacros = macros;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::macros(const impl::MacroProps& macros)&& {
Derived move(std::move(*this));
move.fMacros = macros;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::macros(impl::MacroProps&& macros) const& {
Derived copy(*this);
copy.fMacros = std::move(macros);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::macros(impl::MacroProps&& macros)&& {
Derived move(std::move(*this));
move.fMacros = std::move(macros);
return move;
}
// Note: toSkeleton defined in number_skeletons.cpp
template<typename Derived>
LocalPointer<Derived> NumberFormatterSettings<Derived>::clone() const & {
return LocalPointer<Derived>(new Derived(*this));
}
template<typename Derived>
LocalPointer<Derived> NumberFormatterSettings<Derived>::clone() && {
return LocalPointer<Derived>(new Derived(std::move(*this)));
}
// Declare all classes that implement NumberFormatterSettings
// See https://stackoverflow.com/a/495056/1407170
template
class icu::number::NumberFormatterSettings<icu::number::UnlocalizedNumberFormatter>;
template
class icu::number::NumberFormatterSettings<icu::number::LocalizedNumberFormatter>;
UnlocalizedNumberFormatter NumberFormatter::with() {
UnlocalizedNumberFormatter result;
return result;
}
LocalizedNumberFormatter NumberFormatter::withLocale(const Locale& locale) {
return with().locale(locale);
}
// Note: forSkeleton defined in number_skeletons.cpp
template<typename T> using NFS = NumberFormatterSettings<T>;
using LNF = LocalizedNumberFormatter;
using UNF = UnlocalizedNumberFormatter;
UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(const UNF& other)
: UNF(static_cast<const NFS<UNF>&>(other)) {}
UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(const NFS<UNF>& other)
: NFS<UNF>(other) {
// No additional fields to assign
}
// Make default copy constructor call the NumberFormatterSettings copy constructor.
UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(UNF&& src) U_NOEXCEPT
: UNF(static_cast<NFS<UNF>&&>(src)) {}
UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(NFS<UNF>&& src) U_NOEXCEPT
: NFS<UNF>(std::move(src)) {
// No additional fields to assign
}
UnlocalizedNumberFormatter& UnlocalizedNumberFormatter::operator=(const UNF& other) {
NFS<UNF>::operator=(static_cast<const NFS<UNF>&>(other));
// No additional fields to assign
return *this;
}
UnlocalizedNumberFormatter& UnlocalizedNumberFormatter::operator=(UNF&& src) U_NOEXCEPT {
NFS<UNF>::operator=(static_cast<NFS<UNF>&&>(src));
// No additional fields to assign
return *this;
}
// Make default copy constructor call the NumberFormatterSettings copy constructor.
LocalizedNumberFormatter::LocalizedNumberFormatter(const LNF& other)
: LNF(static_cast<const NFS<LNF>&>(other)) {}
LocalizedNumberFormatter::LocalizedNumberFormatter(const NFS<LNF>& other)
: NFS<LNF>(other) {
UErrorCode localStatus = U_ZERO_ERROR; // Can't bubble up the error
lnfCopyHelper(static_cast<const LNF&>(other), localStatus);
}
LocalizedNumberFormatter::LocalizedNumberFormatter(LocalizedNumberFormatter&& src) U_NOEXCEPT
: LNF(static_cast<NFS<LNF>&&>(src)) {}
LocalizedNumberFormatter::LocalizedNumberFormatter(NFS<LNF>&& src) U_NOEXCEPT
: NFS<LNF>(std::move(src)) {
lnfMoveHelper(std::move(static_cast<LNF&&>(src)));
}
LocalizedNumberFormatter& LocalizedNumberFormatter::operator=(const LNF& other) {
NFS<LNF>::operator=(static_cast<const NFS<LNF>&>(other));
UErrorCode localStatus = U_ZERO_ERROR; // Can't bubble up the error
lnfCopyHelper(other, localStatus);
return *this;
}
LocalizedNumberFormatter& LocalizedNumberFormatter::operator=(LNF&& src) U_NOEXCEPT {
NFS<LNF>::operator=(static_cast<NFS<LNF>&&>(src));
lnfMoveHelper(std::move(src));
return *this;
}
void LocalizedNumberFormatter::resetCompiled() {
auto* callCount = reinterpret_cast<u_atomic_int32_t*>(fUnsafeCallCount);
umtx_storeRelease(*callCount, 0);
fCompiled = nullptr;
}
void LocalizedNumberFormatter::lnfMoveHelper(LNF&& src) {
// Copy over the compiled formatter and set call count to INT32_MIN as in computeCompiled().
// Don't copy the call count directly because doing so requires a loadAcquire/storeRelease.
// The bits themselves appear to be platform-dependent, so copying them might not be safe.
delete fCompiled;
if (src.fCompiled != nullptr) {
auto* callCount = reinterpret_cast<u_atomic_int32_t*>(fUnsafeCallCount);
umtx_storeRelease(*callCount, INT32_MIN);
fCompiled = src.fCompiled;
// Reset the source object to leave it in a safe state.
src.resetCompiled();
} else {
resetCompiled();
}
// Unconditionally move the warehouse
delete fWarehouse;
fWarehouse = src.fWarehouse;
src.fWarehouse = nullptr;
}
void LocalizedNumberFormatter::lnfCopyHelper(const LNF&, UErrorCode& status) {
// When copying, always reset the compiled formatter.
delete fCompiled;
resetCompiled();
// If MacroProps has a reference to AffixPatternProvider, we need to copy it.
// If MacroProps has a reference to PluralRules, copy that one, too.
delete fWarehouse;
if (fMacros.affixProvider || fMacros.rules) {
LocalPointer<DecimalFormatWarehouse> warehouse(new DecimalFormatWarehouse(), status);
if (U_FAILURE(status)) {
fWarehouse = nullptr;
return;
}
if (fMacros.affixProvider) {
warehouse->affixProvider.setTo(fMacros.affixProvider, status);
fMacros.affixProvider = &warehouse->affixProvider.get();
}
if (fMacros.rules) {
warehouse->rules.adoptInsteadAndCheckErrorCode(
new PluralRules(*fMacros.rules), status);
fMacros.rules = warehouse->rules.getAlias();
}
fWarehouse = warehouse.orphan();
} else {
fWarehouse = nullptr;
}
}
LocalizedNumberFormatter::~LocalizedNumberFormatter() {
delete fCompiled;
delete fWarehouse;
}
LocalizedNumberFormatter::LocalizedNumberFormatter(const MacroProps& macros, const Locale& locale) {
fMacros = macros;
fMacros.locale = locale;
}
LocalizedNumberFormatter::LocalizedNumberFormatter(MacroProps&& macros, const Locale& locale) {
fMacros = std::move(macros);
fMacros.locale = locale;
}
LocalizedNumberFormatter UnlocalizedNumberFormatter::locale(const Locale& locale) const& {
return LocalizedNumberFormatter(fMacros, locale);
}
LocalizedNumberFormatter UnlocalizedNumberFormatter::locale(const Locale& locale)&& {
return LocalizedNumberFormatter(std::move(fMacros), locale);
}
FormattedNumber LocalizedNumberFormatter::formatInt(int64_t value, UErrorCode& status) const {
if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); }
auto results = new UFormattedNumberData();
if (results == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return FormattedNumber(status);
}
results->quantity.setToLong(value);
formatImpl(results, status);
// Do not save the results object if we encountered a failure.
if (U_SUCCESS(status)) {
return FormattedNumber(results);
} else {
delete results;
return FormattedNumber(status);
}
}
FormattedNumber LocalizedNumberFormatter::formatDouble(double value, UErrorCode& status) const {
if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); }
auto results = new UFormattedNumberData();
if (results == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return FormattedNumber(status);
}
results->quantity.setToDouble(value);
formatImpl(results, status);
// Do not save the results object if we encountered a failure.
if (U_SUCCESS(status)) {
return FormattedNumber(results);
} else {
delete results;
return FormattedNumber(status);
}
}
FormattedNumber LocalizedNumberFormatter::formatDecimal(StringPiece value, UErrorCode& status) const {
if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); }
auto results = new UFormattedNumberData();
if (results == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return FormattedNumber(status);
}
results->quantity.setToDecNumber(value, status);
formatImpl(results, status);
// Do not save the results object if we encountered a failure.
if (U_SUCCESS(status)) {
return FormattedNumber(results);
} else {
delete results;
return FormattedNumber(status);
}
}
FormattedNumber
LocalizedNumberFormatter::formatDecimalQuantity(const DecimalQuantity& dq, UErrorCode& status) const {
if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); }
auto results = new UFormattedNumberData();
if (results == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return FormattedNumber(status);
}
results->quantity = dq;
formatImpl(results, status);
// Do not save the results object if we encountered a failure.
if (U_SUCCESS(status)) {
return FormattedNumber(results);
} else {
delete results;
return FormattedNumber(status);
}
}
void LocalizedNumberFormatter::formatImpl(impl::UFormattedNumberData* results, UErrorCode& status) const {
if (computeCompiled(status)) {
fCompiled->format(results, status);
} else {
NumberFormatterImpl::formatStatic(fMacros, results, status);
}
if (U_FAILURE(status)) {
return;
}
results->getStringRef().writeTerminator(status);
}
void LocalizedNumberFormatter::getAffixImpl(bool isPrefix, bool isNegative, UnicodeString& result,
UErrorCode& status) const {
FormattedStringBuilder string;
auto signum = static_cast<Signum>(isNegative ? SIGNUM_NEG : SIGNUM_POS);
// Always return affixes for plural form OTHER.
static const StandardPlural::Form plural = StandardPlural::OTHER;
int32_t prefixLength;
if (computeCompiled(status)) {
prefixLength = fCompiled->getPrefixSuffix(signum, plural, string, status);
} else {
prefixLength = NumberFormatterImpl::getPrefixSuffixStatic(fMacros, signum, plural, string, status);
}
result.remove();
if (isPrefix) {
result.append(string.toTempUnicodeString().tempSubStringBetween(0, prefixLength));
} else {
result.append(string.toTempUnicodeString().tempSubStringBetween(prefixLength, string.length()));
}
}
bool LocalizedNumberFormatter::computeCompiled(UErrorCode& status) const {
// fUnsafeCallCount contains memory to be interpreted as an atomic int, most commonly
// std::atomic<int32_t>. Since the type of atomic int is platform-dependent, we cast the
// bytes in fUnsafeCallCount to u_atomic_int32_t, a typedef for the platform-dependent
// atomic int type defined in umutex.h.
static_assert(
sizeof(u_atomic_int32_t) <= sizeof(fUnsafeCallCount),
"Atomic integer size on this platform exceeds the size allocated by fUnsafeCallCount");
auto* callCount = reinterpret_cast<u_atomic_int32_t*>(
const_cast<LocalizedNumberFormatter*>(this)->fUnsafeCallCount);
// A positive value in the atomic int indicates that the data structure is not yet ready;
// a negative value indicates that it is ready. If, after the increment, the atomic int
// is exactly threshold, then it is the current thread's job to build the data structure.
// Note: We set the callCount to INT32_MIN so that if another thread proceeds to increment
// the atomic int, the value remains below zero.
int32_t currentCount = umtx_loadAcquire(*callCount);
if (0 <= currentCount && currentCount <= fMacros.threshold && fMacros.threshold > 0) {
currentCount = umtx_atomic_inc(callCount);
}
if (currentCount == fMacros.threshold && fMacros.threshold > 0) {
// Build the data structure and then use it (slow to fast path).
const NumberFormatterImpl* compiled = new NumberFormatterImpl(fMacros, status);
if (compiled == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return false;
}
U_ASSERT(fCompiled == nullptr);
const_cast<LocalizedNumberFormatter*>(this)->fCompiled = compiled;
umtx_storeRelease(*callCount, INT32_MIN);
return true;
} else if (currentCount < 0) {
// The data structure is already built; use it (fast path).
U_ASSERT(fCompiled != nullptr);
return true;
} else {
// Format the number without building the data structure (slow path).
return false;
}
}
const impl::NumberFormatterImpl* LocalizedNumberFormatter::getCompiled() const {
return fCompiled;
}
int32_t LocalizedNumberFormatter::getCallCount() const {
auto* callCount = reinterpret_cast<u_atomic_int32_t*>(
const_cast<LocalizedNumberFormatter*>(this)->fUnsafeCallCount);
return umtx_loadAcquire(*callCount);
}
// Note: toFormat defined in number_asformat.cpp
#if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER)
// Warning 4661.
#pragma warning(pop)
#endif
#endif /* #if !UCONFIG_NO_FORMATTING */