blob: 06bf90baf2e23b7907cd8666900c4e587bef0c9e [file] [log] [blame]
// © 2020 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
// Extra functions for MeasureUnit not needed for all clients.
// Separate .o file so that it can be removed for modularity.
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
// Allow implicit conversion from char16_t* to UnicodeString for this file:
// Helpful in toString methods and elsewhere.
#define UNISTR_FROM_STRING_EXPLICIT
#include "charstr.h"
#include "cmemory.h"
#include "cstring.h"
#include "measunit_impl.h"
#include "resource.h"
#include "uarrsort.h"
#include "uassert.h"
#include "ucln_in.h"
#include "umutex.h"
#include "unicode/bytestrie.h"
#include "unicode/bytestriebuilder.h"
#include "unicode/localpointer.h"
#include "unicode/measunit.h"
#include "unicode/stringpiece.h"
#include "unicode/stringtriebuilder.h"
#include "unicode/ures.h"
#include "unicode/ustringtrie.h"
#include "uresimp.h"
#include "util.h"
#include <cstdlib>
U_NAMESPACE_BEGIN
namespace {
// TODO: Propose a new error code for this?
constexpr UErrorCode kUnitIdentifierSyntaxError = U_ILLEGAL_ARGUMENT_ERROR;
// Trie value offset for SI or binary prefixes. This is big enough to ensure we only
// insert positive integers into the trie.
constexpr int32_t kPrefixOffset = 64;
static_assert(kPrefixOffset + UMEASURE_PREFIX_INTERNAL_MIN_BIN > 0,
"kPrefixOffset is too small for minimum UMeasurePrefix value");
static_assert(kPrefixOffset + UMEASURE_PREFIX_INTERNAL_MIN_SI > 0,
"kPrefixOffset is too small for minimum UMeasurePrefix value");
// Trie value offset for compound parts, e.g. "-per-", "-", "-and-".
constexpr int32_t kCompoundPartOffset = 128;
static_assert(kCompoundPartOffset > kPrefixOffset + UMEASURE_PREFIX_INTERNAL_MAX_BIN,
"Ambiguous token values: prefix tokens are overlapping with CompoundPart tokens");
static_assert(kCompoundPartOffset > kPrefixOffset + UMEASURE_PREFIX_INTERNAL_MAX_SI,
"Ambiguous token values: prefix tokens are overlapping with CompoundPart tokens");
enum CompoundPart {
// Represents "-per-"
COMPOUND_PART_PER = kCompoundPartOffset,
// Represents "-"
COMPOUND_PART_TIMES,
// Represents "-and-"
COMPOUND_PART_AND,
};
// Trie value offset for "per-".
constexpr int32_t kInitialCompoundPartOffset = 192;
enum InitialCompoundPart {
// Represents "per-", the only compound part that can appear at the start of
// an identifier.
INITIAL_COMPOUND_PART_PER = kInitialCompoundPartOffset,
};
// Trie value offset for powers like "square-", "cubic-", "pow2-" etc.
constexpr int32_t kPowerPartOffset = 256;
enum PowerPart {
POWER_PART_P2 = kPowerPartOffset + 2,
POWER_PART_P3,
POWER_PART_P4,
POWER_PART_P5,
POWER_PART_P6,
POWER_PART_P7,
POWER_PART_P8,
POWER_PART_P9,
POWER_PART_P10,
POWER_PART_P11,
POWER_PART_P12,
POWER_PART_P13,
POWER_PART_P14,
POWER_PART_P15,
};
// Trie value offset for simple units, e.g. "gram", "nautical-mile",
// "fluid-ounce-imperial".
constexpr int32_t kSimpleUnitOffset = 512;
const struct UnitPrefixStrings {
const char* const string;
UMeasurePrefix value;
} gUnitPrefixStrings[] = {
// SI prefixes
{ "yotta", UMEASURE_PREFIX_YOTTA },
{ "zetta", UMEASURE_PREFIX_ZETTA },
{ "exa", UMEASURE_PREFIX_EXA },
{ "peta", UMEASURE_PREFIX_PETA },
{ "tera", UMEASURE_PREFIX_TERA },
{ "giga", UMEASURE_PREFIX_GIGA },
{ "mega", UMEASURE_PREFIX_MEGA },
{ "kilo", UMEASURE_PREFIX_KILO },
{ "hecto", UMEASURE_PREFIX_HECTO },
{ "deka", UMEASURE_PREFIX_DEKA },
{ "deci", UMEASURE_PREFIX_DECI },
{ "centi", UMEASURE_PREFIX_CENTI },
{ "milli", UMEASURE_PREFIX_MILLI },
{ "micro", UMEASURE_PREFIX_MICRO },
{ "nano", UMEASURE_PREFIX_NANO },
{ "pico", UMEASURE_PREFIX_PICO },
{ "femto", UMEASURE_PREFIX_FEMTO },
{ "atto", UMEASURE_PREFIX_ATTO },
{ "zepto", UMEASURE_PREFIX_ZEPTO },
{ "yocto", UMEASURE_PREFIX_YOCTO },
// Binary prefixes
{ "yobi", UMEASURE_PREFIX_YOBI },
{ "zebi", UMEASURE_PREFIX_ZEBI },
{ "exbi", UMEASURE_PREFIX_EXBI },
{ "pebi", UMEASURE_PREFIX_PEBI },
{ "tebi", UMEASURE_PREFIX_TEBI },
{ "gibi", UMEASURE_PREFIX_GIBI },
{ "mebi", UMEASURE_PREFIX_MEBI },
{ "kibi", UMEASURE_PREFIX_KIBI },
};
/**
* A ResourceSink that collects simple unit identifiers from the keys of the
* convertUnits table into an array, and adds these values to a TrieBuilder,
* with associated values being their index into this array plus a specified
* offset.
*
* Example code:
*
* UErrorCode status = U_ZERO_ERROR;
* BytesTrieBuilder b(status);
* int32_t ARR_SIZE = 200;
* const char *unitIdentifiers[ARR_SIZE];
* int32_t *unitCategories[ARR_SIZE];
* SimpleUnitIdentifiersSink identifierSink(gSerializedUnitCategoriesTrie, unitIdentifiers,
* unitCategories, ARR_SIZE, b, kTrieValueOffset);
* LocalUResourceBundlePointer unitsBundle(ures_openDirect(NULL, "units", &status));
* ures_getAllItemsWithFallback(unitsBundle.getAlias(), "convertUnits", identifierSink, status);
*/
class SimpleUnitIdentifiersSink : public icu::ResourceSink {
public:
/**
* Constructor.
* @param quantitiesTrieData The data for constructing a quantitiesTrie,
* which maps from a simple unit identifier to an index into the
* gCategories array.
* @param out Array of char* to which pointers to the simple unit
* identifiers will be saved. (Does not take ownership.)
* @param outCategories Array of int32_t to which category indexes will be
* saved: this corresponds to simple unit IDs saved to `out`, mapping
* from the ID to the value produced by the quantitiesTrie (which is an
* index into the gCategories array).
* @param outSize The size of `out` and `outCategories`.
* @param trieBuilder The trie builder to which the simple unit identifier
* should be added. The trie builder must outlive this resource sink.
* @param trieValueOffset This is added to the index of the identifier in
* the `out` array, before adding to `trieBuilder` as the value
* associated with the identifier.
*/
explicit SimpleUnitIdentifiersSink(StringPiece quantitiesTrieData, const char **out,
int32_t *outCategories, int32_t outSize,
BytesTrieBuilder &trieBuilder, int32_t trieValueOffset)
: outArray(out), outCategories(outCategories), outSize(outSize), trieBuilder(trieBuilder),
trieValueOffset(trieValueOffset), quantitiesTrieData(quantitiesTrieData), outIndex(0) {}
/**
* Adds the table keys found in value to the output vector.
* @param key The key of the resource passed to `value`: the second
* parameter of the ures_getAllItemsWithFallback() call.
* @param value Should be a ResourceTable value, if
* ures_getAllItemsWithFallback() was called correctly for this sink.
* @param noFallback Ignored.
* @param status The standard ICU error code output parameter.
*/
void put(const char * /*key*/, ResourceValue &value, UBool /*noFallback*/, UErrorCode &status) {
ResourceTable table = value.getTable(status);
if (U_FAILURE(status)) return;
if (outIndex + table.getSize() > outSize) {
status = U_INDEX_OUTOFBOUNDS_ERROR;
return;
}
BytesTrie quantitiesTrie(quantitiesTrieData.data());
// Collect keys from the table resource.
const char *simpleUnitID;
for (int32_t i = 0; table.getKeyAndValue(i, simpleUnitID, value); ++i) {
U_ASSERT(i < table.getSize());
U_ASSERT(outIndex < outSize);
if (uprv_strcmp(simpleUnitID, "kilogram") == 0) {
// For parsing, we use "gram", the prefixless metric mass unit. We
// thus ignore the SI Base Unit of Mass: it exists due to being the
// mass conversion target unit, but not needed for MeasureUnit
// parsing.
continue;
}
outArray[outIndex] = simpleUnitID;
trieBuilder.add(simpleUnitID, trieValueOffset + outIndex, status);
// Find the base target unit for this simple unit
ResourceTable table = value.getTable(status);
if (U_FAILURE(status)) { return; }
if (!table.findValue("target", value)) {
status = U_INVALID_FORMAT_ERROR;
break;
}
int32_t len;
const UChar* uTarget = value.getString(len, status);
CharString target;
target.appendInvariantChars(uTarget, len, status);
if (U_FAILURE(status)) { return; }
quantitiesTrie.reset();
UStringTrieResult result = quantitiesTrie.next(target.data(), target.length());
if (!USTRINGTRIE_HAS_VALUE(result)) {
status = U_INVALID_FORMAT_ERROR;
break;
}
outCategories[outIndex] = quantitiesTrie.getValue();
outIndex++;
}
}
private:
const char **outArray;
int32_t *outCategories;
int32_t outSize;
BytesTrieBuilder &trieBuilder;
int32_t trieValueOffset;
StringPiece quantitiesTrieData;
int32_t outIndex;
};
/**
* A ResourceSink that collects information from `unitQuantities` in the `units`
* resource to provide key->value lookups from base unit to category, as well as
* preserving ordering information for these categories. See `units.txt`.
*
* For example: "kilogram" -> "mass", "meter-per-second" -> "speed".
*
* In C++ unitQuantity values are collected in order into a UChar* array, while
* unitQuantity keys are added added to a TrieBuilder, with associated values
* being the index into the aforementioned UChar* array.
*/
class CategoriesSink : public icu::ResourceSink {
public:
/**
* Constructor.
* @param out Array of UChar* to which unitQuantity values will be saved.
* The pointers returned not owned: they point directly at the resource
* strings in static memory.
* @param outSize The size of the `out` array.
* @param trieBuilder The trie builder to which the keys (base units) of
* each unitQuantity will be added, each with value being the offset
* into `out`.
*/
explicit CategoriesSink(const UChar **out, int32_t &outSize, BytesTrieBuilder &trieBuilder)
: outQuantitiesArray(out), outSize(outSize), trieBuilder(trieBuilder), outIndex(0) {}
void put(const char * /*key*/, ResourceValue &value, UBool /*noFallback*/, UErrorCode &status) {
ResourceArray array = value.getArray(status);
if (U_FAILURE(status)) {
return;
}
if (outIndex + array.getSize() > outSize) {
status = U_INDEX_OUTOFBOUNDS_ERROR;
return;
}
for (int32_t i = 0; array.getValue(i, value); ++i) {
U_ASSERT(outIndex < outSize);
ResourceTable table = value.getTable(status);
if (U_FAILURE(status)) {
return;
}
if (table.getSize() != 1) {
status = U_INVALID_FORMAT_ERROR;
return;
}
const char *key;
table.getKeyAndValue(0, key, value);
int32_t uTmpLen;
outQuantitiesArray[outIndex] = value.getString(uTmpLen, status);
trieBuilder.add(key, outIndex, status);
outIndex++;
}
}
private:
const UChar **outQuantitiesArray;
int32_t &outSize;
BytesTrieBuilder &trieBuilder;
int32_t outIndex;
};
icu::UInitOnce gUnitExtrasInitOnce = U_INITONCE_INITIALIZER;
// Array of simple unit IDs.
//
// The array memory itself is owned by this pointer, but the individual char* in
// that array point at static memory. (Note that these char* are also returned
// by SingleUnitImpl::getSimpleUnitID().)
const char **gSimpleUnits = nullptr;
// Maps from the value associated with each simple unit ID to an index into the
// gCategories array.
int32_t *gSimpleUnitCategories = nullptr;
char *gSerializedUnitExtrasStemTrie = nullptr;
// Array of UChar* pointing at the unit categories (aka "quantities", aka
// "types"), as found in the `unitQuantities` resource. The array memory itself
// is owned by this pointer, but the individual UChar* in that array point at
// static memory.
const UChar **gCategories = nullptr;
// Number of items in `gCategories`.
int32_t gCategoriesCount = 0;
// TODO: rather save an index into gCategories?
const char *kConsumption = "consumption";
size_t kConsumptionLen = strlen("consumption");
// Serialized BytesTrie for mapping from base units to indices into gCategories.
char *gSerializedUnitCategoriesTrie = nullptr;
UBool U_CALLCONV cleanupUnitExtras() {
uprv_free(gSerializedUnitCategoriesTrie);
gSerializedUnitCategoriesTrie = nullptr;
uprv_free(gCategories);
gCategories = nullptr;
uprv_free(gSerializedUnitExtrasStemTrie);
gSerializedUnitExtrasStemTrie = nullptr;
uprv_free(gSimpleUnitCategories);
gSimpleUnitCategories = nullptr;
uprv_free(gSimpleUnits);
gSimpleUnits = nullptr;
gUnitExtrasInitOnce.reset();
return TRUE;
}
void U_CALLCONV initUnitExtras(UErrorCode& status) {
ucln_i18n_registerCleanup(UCLN_I18N_UNIT_EXTRAS, cleanupUnitExtras);
LocalUResourceBundlePointer unitsBundle(ures_openDirect(nullptr, "units", &status));
// Collect unitQuantities information into gSerializedUnitCategoriesTrie and gCategories.
const char *CATEGORY_TABLE_NAME = "unitQuantities";
LocalUResourceBundlePointer unitQuantities(
ures_getByKey(unitsBundle.getAlias(), CATEGORY_TABLE_NAME, nullptr, &status));
if (U_FAILURE(status)) { return; }
gCategoriesCount = unitQuantities.getAlias()->fSize;
size_t quantitiesMallocSize = sizeof(UChar *) * gCategoriesCount;
gCategories = static_cast<const UChar **>(uprv_malloc(quantitiesMallocSize));
if (gCategories == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memset(gCategories, 0, quantitiesMallocSize);
BytesTrieBuilder quantitiesBuilder(status);
CategoriesSink categoriesSink(gCategories, gCategoriesCount, quantitiesBuilder);
ures_getAllItemsWithFallback(unitsBundle.getAlias(), CATEGORY_TABLE_NAME, categoriesSink, status);
StringPiece resultQuantities = quantitiesBuilder.buildStringPiece(USTRINGTRIE_BUILD_FAST, status);
if (U_FAILURE(status)) { return; }
// Copy the result into the global constant pointer
size_t numBytesQuantities = resultQuantities.length();
gSerializedUnitCategoriesTrie = static_cast<char *>(uprv_malloc(numBytesQuantities));
if (gSerializedUnitCategoriesTrie == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memcpy(gSerializedUnitCategoriesTrie, resultQuantities.data(), numBytesQuantities);
// Build the BytesTrie that Parser needs for parsing unit identifiers.
BytesTrieBuilder b(status);
if (U_FAILURE(status)) { return; }
// Add SI and binary prefixes
for (const auto& unitPrefixInfo : gUnitPrefixStrings) {
b.add(unitPrefixInfo.string, unitPrefixInfo.value + kPrefixOffset, status);
}
if (U_FAILURE(status)) { return; }
// Add syntax parts (compound, power prefixes)
b.add("-per-", COMPOUND_PART_PER, status);
b.add("-", COMPOUND_PART_TIMES, status);
b.add("-and-", COMPOUND_PART_AND, status);
b.add("per-", INITIAL_COMPOUND_PART_PER, status);
b.add("square-", POWER_PART_P2, status);
b.add("cubic-", POWER_PART_P3, status);
b.add("pow2-", POWER_PART_P2, status);
b.add("pow3-", POWER_PART_P3, status);
b.add("pow4-", POWER_PART_P4, status);
b.add("pow5-", POWER_PART_P5, status);
b.add("pow6-", POWER_PART_P6, status);
b.add("pow7-", POWER_PART_P7, status);
b.add("pow8-", POWER_PART_P8, status);
b.add("pow9-", POWER_PART_P9, status);
b.add("pow10-", POWER_PART_P10, status);
b.add("pow11-", POWER_PART_P11, status);
b.add("pow12-", POWER_PART_P12, status);
b.add("pow13-", POWER_PART_P13, status);
b.add("pow14-", POWER_PART_P14, status);
b.add("pow15-", POWER_PART_P15, status);
if (U_FAILURE(status)) { return; }
// Add sanctioned simple units by offset: simple units all have entries in
// units/convertUnits resources.
LocalUResourceBundlePointer convertUnits(
ures_getByKey(unitsBundle.getAlias(), "convertUnits", nullptr, &status));
if (U_FAILURE(status)) { return; }
// Allocate enough space: with identifierSink below skipping kilogram, we're
// probably allocating one more than needed.
int32_t simpleUnitsCount = convertUnits.getAlias()->fSize;
int32_t arrayMallocSize = sizeof(char *) * simpleUnitsCount;
gSimpleUnits = static_cast<const char **>(uprv_malloc(arrayMallocSize));
if (gSimpleUnits == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memset(gSimpleUnits, 0, arrayMallocSize);
arrayMallocSize = sizeof(int32_t) * simpleUnitsCount;
gSimpleUnitCategories = static_cast<int32_t *>(uprv_malloc(arrayMallocSize));
if (gSimpleUnitCategories == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memset(gSimpleUnitCategories, 0, arrayMallocSize);
// Populate gSimpleUnits and build the associated trie.
SimpleUnitIdentifiersSink identifierSink(resultQuantities, gSimpleUnits, gSimpleUnitCategories,
simpleUnitsCount, b, kSimpleUnitOffset);
ures_getAllItemsWithFallback(unitsBundle.getAlias(), "convertUnits", identifierSink, status);
// Build the CharsTrie
// TODO: Use SLOW or FAST here?
StringPiece result = b.buildStringPiece(USTRINGTRIE_BUILD_FAST, status);
if (U_FAILURE(status)) { return; }
// Copy the result into the global constant pointer
size_t numBytes = result.length();
gSerializedUnitExtrasStemTrie = static_cast<char *>(uprv_malloc(numBytes));
if (gSerializedUnitExtrasStemTrie == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memcpy(gSerializedUnitExtrasStemTrie, result.data(), numBytes);
}
class Token {
public:
Token(int32_t match) : fMatch(match) {}
enum Type {
TYPE_UNDEFINED,
TYPE_PREFIX,
// Token type for "-per-", "-", and "-and-".
TYPE_COMPOUND_PART,
// Token type for "per-".
TYPE_INITIAL_COMPOUND_PART,
TYPE_POWER_PART,
TYPE_SIMPLE_UNIT,
};
// Calling getType() is invalid, resulting in an assertion failure, if Token
// value isn't positive.
Type getType() const {
U_ASSERT(fMatch > 0);
if (fMatch < kCompoundPartOffset) {
return TYPE_PREFIX;
}
if (fMatch < kInitialCompoundPartOffset) {
return TYPE_COMPOUND_PART;
}
if (fMatch < kPowerPartOffset) {
return TYPE_INITIAL_COMPOUND_PART;
}
if (fMatch < kSimpleUnitOffset) {
return TYPE_POWER_PART;
}
return TYPE_SIMPLE_UNIT;
}
UMeasurePrefix getUnitPrefix() const {
U_ASSERT(getType() == TYPE_PREFIX);
return static_cast<UMeasurePrefix>(fMatch - kPrefixOffset);
}
// Valid only for tokens with type TYPE_COMPOUND_PART.
int32_t getMatch() const {
U_ASSERT(getType() == TYPE_COMPOUND_PART);
return fMatch;
}
int32_t getInitialCompoundPart() const {
// Even if there is only one InitialCompoundPart value, we have this
// function for the simplicity of code consistency.
U_ASSERT(getType() == TYPE_INITIAL_COMPOUND_PART);
// Defensive: if this assert fails, code using this function also needs
// to change.
U_ASSERT(fMatch == INITIAL_COMPOUND_PART_PER);
return fMatch;
}
int8_t getPower() const {
U_ASSERT(getType() == TYPE_POWER_PART);
return static_cast<int8_t>(fMatch - kPowerPartOffset);
}
int32_t getSimpleUnitIndex() const {
U_ASSERT(getType() == TYPE_SIMPLE_UNIT);
return fMatch - kSimpleUnitOffset;
}
private:
int32_t fMatch;
};
class Parser {
public:
/**
* Factory function for parsing the given identifier.
*
* @param source The identifier to parse. This function does not make a copy
* of source: the underlying string that source points at, must outlive the
* parser.
* @param status ICU error code.
*/
static Parser from(StringPiece source, UErrorCode& status) {
if (U_FAILURE(status)) {
return Parser();
}
umtx_initOnce(gUnitExtrasInitOnce, &initUnitExtras, status);
if (U_FAILURE(status)) {
return Parser();
}
return Parser(source);
}
MeasureUnitImpl parse(UErrorCode& status) {
MeasureUnitImpl result;
if (U_FAILURE(status)) {
return result;
}
if (fSource.empty()) {
// The dimenionless unit: nothing to parse. leave result as is.
return result;
}
while (hasNext()) {
bool sawAnd = false;
SingleUnitImpl singleUnit = nextSingleUnit(sawAnd, status);
if (U_FAILURE(status)) {
return result;
}
bool added = result.appendSingleUnit(singleUnit, status);
if (U_FAILURE(status)) {
return result;
}
if (sawAnd && !added) {
// Two similar units are not allowed in a mixed unit.
status = kUnitIdentifierSyntaxError;
return result;
}
if (result.singleUnits.length() >= 2) {
// nextSingleUnit fails appropriately for "per" and "and" in the
// same identifier. It doesn't fail for other compound units
// (COMPOUND_PART_TIMES). Consequently we take care of that
// here.
UMeasureUnitComplexity complexity =
sawAnd ? UMEASURE_UNIT_MIXED : UMEASURE_UNIT_COMPOUND;
if (result.singleUnits.length() == 2) {
// After appending two singleUnits, the complexity will be `UMEASURE_UNIT_COMPOUND`
U_ASSERT(result.complexity == UMEASURE_UNIT_COMPOUND);
result.complexity = complexity;
} else if (result.complexity != complexity) {
// Can't have mixed compound units
status = kUnitIdentifierSyntaxError;
return result;
}
}
}
return result;
}
private:
// Tracks parser progress: the offset into fSource.
int32_t fIndex = 0;
// Since we're not owning this memory, whatever is passed to the constructor
// should live longer than this Parser - and the parser shouldn't return any
// references to that string.
StringPiece fSource;
BytesTrie fTrie;
// Set to true when we've seen a "-per-" or a "per-", after which all units
// are in the denominator. Until we find an "-and-", at which point the
// identifier is invalid pending TODO(CLDR-13700).
bool fAfterPer = false;
Parser() : fSource(""), fTrie(u"") {}
Parser(StringPiece source)
: fSource(source), fTrie(gSerializedUnitExtrasStemTrie) {}
inline bool hasNext() const {
return fIndex < fSource.length();
}
// Returns the next Token parsed from fSource, advancing fIndex to the end
// of that token in fSource. In case of U_FAILURE(status), the token
// returned will cause an abort if getType() is called on it.
Token nextToken(UErrorCode& status) {
fTrie.reset();
int32_t match = -1;
// Saves the position in the fSource string for the end of the most
// recent matching token.
int32_t previ = -1;
// Find the longest token that matches a value in the trie:
while (fIndex < fSource.length()) {
auto result = fTrie.next(fSource.data()[fIndex++]);
if (result == USTRINGTRIE_NO_MATCH) {
break;
} else if (result == USTRINGTRIE_NO_VALUE) {
continue;
}
U_ASSERT(USTRINGTRIE_HAS_VALUE(result));
match = fTrie.getValue();
previ = fIndex;
if (result == USTRINGTRIE_FINAL_VALUE) {
break;
}
U_ASSERT(result == USTRINGTRIE_INTERMEDIATE_VALUE);
// continue;
}
if (match < 0) {
status = kUnitIdentifierSyntaxError;
} else {
fIndex = previ;
}
return Token(match);
}
/**
* Returns the next "single unit" via result.
*
* If a "-per-" was parsed, the result will have appropriate negative
* dimensionality.
*
* Returns an error if we parse both compound units and "-and-", since mixed
* compound units are not yet supported - TODO(CLDR-13700).
*
* @param result Will be overwritten by the result, if status shows success.
* @param sawAnd If an "-and-" was parsed prior to finding the "single
* unit", sawAnd is set to true. If not, it is left as is.
* @param status ICU error code.
*/
SingleUnitImpl nextSingleUnit(bool &sawAnd, UErrorCode &status) {
SingleUnitImpl result;
if (U_FAILURE(status)) {
return result;
}
// state:
// 0 = no tokens seen yet (will accept power, SI or binary prefix, or simple unit)
// 1 = power token seen (will not accept another power token)
// 2 = SI or binary prefix token seen (will not accept a power, or SI or binary prefix token)
int32_t state = 0;
bool atStart = fIndex == 0;
Token token = nextToken(status);
if (U_FAILURE(status)) {
return result;
}
if (atStart) {
// Identifiers optionally start with "per-".
if (token.getType() == Token::TYPE_INITIAL_COMPOUND_PART) {
U_ASSERT(token.getInitialCompoundPart() == INITIAL_COMPOUND_PART_PER);
fAfterPer = true;
result.dimensionality = -1;
token = nextToken(status);
if (U_FAILURE(status)) {
return result;
}
}
} else {
// All other SingleUnit's are separated from previous SingleUnit's
// via a compound part:
if (token.getType() != Token::TYPE_COMPOUND_PART) {
status = kUnitIdentifierSyntaxError;
return result;
}
switch (token.getMatch()) {
case COMPOUND_PART_PER:
if (sawAnd) {
// Mixed compound units not yet supported,
// TODO(CLDR-13700).
status = kUnitIdentifierSyntaxError;
return result;
}
fAfterPer = true;
result.dimensionality = -1;
break;
case COMPOUND_PART_TIMES:
if (fAfterPer) {
result.dimensionality = -1;
}
break;
case COMPOUND_PART_AND:
if (fAfterPer) {
// Can't start with "-and-", and mixed compound units
// not yet supported, TODO(CLDR-13700).
status = kUnitIdentifierSyntaxError;
return result;
}
sawAnd = true;
break;
}
token = nextToken(status);
if (U_FAILURE(status)) {
return result;
}
}
// Read tokens until we have a complete SingleUnit or we reach the end.
while (true) {
switch (token.getType()) {
case Token::TYPE_POWER_PART:
if (state > 0) {
status = kUnitIdentifierSyntaxError;
return result;
}
result.dimensionality *= token.getPower();
state = 1;
break;
case Token::TYPE_PREFIX:
if (state > 1) {
status = kUnitIdentifierSyntaxError;
return result;
}
result.unitPrefix = token.getUnitPrefix();
state = 2;
break;
case Token::TYPE_SIMPLE_UNIT:
result.index = token.getSimpleUnitIndex();
return result;
default:
status = kUnitIdentifierSyntaxError;
return result;
}
if (!hasNext()) {
// We ran out of tokens before finding a complete single unit.
status = kUnitIdentifierSyntaxError;
return result;
}
token = nextToken(status);
if (U_FAILURE(status)) {
return result;
}
}
return result;
}
};
// Sorting function wrapping SingleUnitImpl::compareTo for use with uprv_sortArray.
int32_t U_CALLCONV
compareSingleUnits(const void* /*context*/, const void* left, const void* right) {
auto realLeft = static_cast<const SingleUnitImpl* const*>(left);
auto realRight = static_cast<const SingleUnitImpl* const*>(right);
return (*realLeft)->compareTo(**realRight);
}
// Returns an index into the gCategories array, for the "unitQuantity" (aka
// "type" or "category") associated with the given base unit identifier. Returns
// -1 on failure, together with U_UNSUPPORTED_ERROR.
int32_t getUnitCategoryIndex(StringPiece baseUnitIdentifier, UErrorCode &status) {
umtx_initOnce(gUnitExtrasInitOnce, &initUnitExtras, status);
if (U_FAILURE(status)) {
return -1;
}
BytesTrie trie(gSerializedUnitCategoriesTrie);
UStringTrieResult result = trie.next(baseUnitIdentifier.data(), baseUnitIdentifier.length());
if (!USTRINGTRIE_HAS_VALUE(result)) {
status = U_UNSUPPORTED_ERROR;
return -1;
}
return trie.getValue();
}
} // namespace
U_CAPI int32_t U_EXPORT2
umeas_getPrefixPower(UMeasurePrefix unitPrefix) {
if (unitPrefix >= UMEASURE_PREFIX_INTERNAL_MIN_BIN &&
unitPrefix <= UMEASURE_PREFIX_INTERNAL_MAX_BIN) {
return unitPrefix - UMEASURE_PREFIX_INTERNAL_ONE_BIN;
}
U_ASSERT(unitPrefix >= UMEASURE_PREFIX_INTERNAL_MIN_SI &&
unitPrefix <= UMEASURE_PREFIX_INTERNAL_MAX_SI);
return unitPrefix - UMEASURE_PREFIX_ONE;
}
U_CAPI int32_t U_EXPORT2
umeas_getPrefixBase(UMeasurePrefix unitPrefix) {
if (unitPrefix >= UMEASURE_PREFIX_INTERNAL_MIN_BIN &&
unitPrefix <= UMEASURE_PREFIX_INTERNAL_MAX_BIN) {
return 1024;
}
U_ASSERT(unitPrefix >= UMEASURE_PREFIX_INTERNAL_MIN_SI &&
unitPrefix <= UMEASURE_PREFIX_INTERNAL_MAX_SI);
return 10;
}
CharString U_I18N_API getUnitQuantity(StringPiece baseUnitIdentifier, UErrorCode &status) {
CharString result;
U_ASSERT(result.length() == 0);
if (U_FAILURE(status)) {
return result;
}
UErrorCode localStatus = U_ZERO_ERROR;
int32_t idx = getUnitCategoryIndex(baseUnitIdentifier, localStatus);
if (U_FAILURE(localStatus)) {
// TODO(icu-units#130): support inverting any unit, with correct
// fallback logic: inversion and fallback may depend on presence or
// absence of a usage for that category.
if (uprv_strcmp(baseUnitIdentifier.data(), "meter-per-cubic-meter") == 0) {
result.append(kConsumption, (int32_t)kConsumptionLen, status);
return result;
}
status = U_INVALID_FORMAT_ERROR;
return result;
}
if (idx < 0 || idx >= gCategoriesCount) {
status = U_INVALID_FORMAT_ERROR;
return result;
}
result.appendInvariantChars(gCategories[idx], u_strlen(gCategories[idx]), status);
return result;
}
// In ICU4J, this is MeasureUnit.getSingleUnitImpl().
SingleUnitImpl SingleUnitImpl::forMeasureUnit(const MeasureUnit& measureUnit, UErrorCode& status) {
MeasureUnitImpl temp;
const MeasureUnitImpl& impl = MeasureUnitImpl::forMeasureUnit(measureUnit, temp, status);
if (U_FAILURE(status)) {
return {};
}
if (impl.singleUnits.length() == 0) {
return {};
}
if (impl.singleUnits.length() == 1) {
return *impl.singleUnits[0];
}
status = U_ILLEGAL_ARGUMENT_ERROR;
return {};
}
MeasureUnit SingleUnitImpl::build(UErrorCode& status) const {
MeasureUnitImpl temp;
temp.appendSingleUnit(*this, status);
return std::move(temp).build(status);
}
const char *SingleUnitImpl::getSimpleUnitID() const {
return gSimpleUnits[index];
}
void SingleUnitImpl::appendNeutralIdentifier(CharString &result, UErrorCode &status) const {
int32_t absPower = std::abs(this->dimensionality);
U_ASSERT(absPower > 0); // "this function does not support the dimensionless single units";
if (absPower == 1) {
// no-op
} else if (absPower == 2) {
result.append(StringPiece("square-"), status);
} else if (absPower == 3) {
result.append(StringPiece("cubic-"), status);
} else if (absPower <= 15) {
result.append(StringPiece("pow"), status);
result.appendNumber(absPower, status);
result.append(StringPiece("-"), status);
} else {
status = U_ILLEGAL_ARGUMENT_ERROR; // Unit Identifier Syntax Error
return;
}
if (U_FAILURE(status)) {
return;
}
if (this->unitPrefix != UMEASURE_PREFIX_ONE) {
bool found = false;
for (const auto &unitPrefixInfo : gUnitPrefixStrings) {
// TODO: consider using binary search? If we do this, add a unit
// test to ensure gUnitPrefixStrings is sorted?
if (unitPrefixInfo.value == this->unitPrefix) {
result.append(unitPrefixInfo.string, status);
found = true;
break;
}
}
if (!found) {
status = U_UNSUPPORTED_ERROR;
return;
}
}
result.append(StringPiece(this->getSimpleUnitID()), status);
}
int32_t SingleUnitImpl::getUnitCategoryIndex() const {
return gSimpleUnitCategories[index];
}
MeasureUnitImpl::MeasureUnitImpl(const MeasureUnitImpl &other, UErrorCode &status) {
*this = other.copy(status);
}
MeasureUnitImpl::MeasureUnitImpl(const SingleUnitImpl &singleUnit, UErrorCode &status) {
this->appendSingleUnit(singleUnit, status);
}
MeasureUnitImpl MeasureUnitImpl::forIdentifier(StringPiece identifier, UErrorCode& status) {
return Parser::from(identifier, status).parse(status);
}
const MeasureUnitImpl& MeasureUnitImpl::forMeasureUnit(
const MeasureUnit& measureUnit, MeasureUnitImpl& memory, UErrorCode& status) {
if (measureUnit.fImpl) {
return *measureUnit.fImpl;
} else {
memory = Parser::from(measureUnit.getIdentifier(), status).parse(status);
return memory;
}
}
MeasureUnitImpl MeasureUnitImpl::forMeasureUnitMaybeCopy(
const MeasureUnit& measureUnit, UErrorCode& status) {
if (measureUnit.fImpl) {
return measureUnit.fImpl->copy(status);
} else {
return Parser::from(measureUnit.getIdentifier(), status).parse(status);
}
}
void MeasureUnitImpl::takeReciprocal(UErrorCode& /*status*/) {
identifier.clear();
for (int32_t i = 0; i < singleUnits.length(); i++) {
singleUnits[i]->dimensionality *= -1;
}
}
bool MeasureUnitImpl::appendSingleUnit(const SingleUnitImpl &singleUnit, UErrorCode &status) {
identifier.clear();
if (singleUnit.isDimensionless()) {
// Do not append dimensionless units.
return false;
}
// Find a similar unit that already exists, to attempt to coalesce
SingleUnitImpl *oldUnit = nullptr;
for (int32_t i = 0; i < this->singleUnits.length(); i++) {
auto *candidate = this->singleUnits[i];
if (candidate->isCompatibleWith(singleUnit)) {
oldUnit = candidate;
}
}
if (oldUnit) {
// Both dimensionalities will be positive, or both will be negative, by
// virtue of isCompatibleWith().
oldUnit->dimensionality += singleUnit.dimensionality;
return false;
}
// Add a copy of singleUnit
// NOTE: MaybeStackVector::emplaceBackAndCheckErrorCode creates new copy of singleUnit.
this->singleUnits.emplaceBackAndCheckErrorCode(status, singleUnit);
if (U_FAILURE(status)) {
return false;
}
// If the MeasureUnitImpl is `UMEASURE_UNIT_SINGLE` and after the appending a unit, the `singleUnits`
// contains more than one. thus means the complexity should be `UMEASURE_UNIT_COMPOUND`
if (this->singleUnits.length() > 1 &&
this->complexity == UMeasureUnitComplexity::UMEASURE_UNIT_SINGLE) {
this->complexity = UMeasureUnitComplexity::UMEASURE_UNIT_COMPOUND;
}
return true;
}
MaybeStackVector<MeasureUnitImplWithIndex>
MeasureUnitImpl::extractIndividualUnitsWithIndices(UErrorCode &status) const {
MaybeStackVector<MeasureUnitImplWithIndex> result;
if (this->complexity != UMeasureUnitComplexity::UMEASURE_UNIT_MIXED) {
result.emplaceBackAndCheckErrorCode(status, 0, new MeasureUnitImpl(*this, status));
return result;
}
for (int32_t i = 0; i < singleUnits.length(); ++i) {
result.emplaceBackAndCheckErrorCode(status, i, new MeasureUnitImpl(*singleUnits[i], status));
if (U_FAILURE(status)) {
return result;
}
}
return result;
}
/**
* Normalize a MeasureUnitImpl and generate the identifier string in place.
*/
void MeasureUnitImpl::serialize(UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
if (this->singleUnits.length() == 0) {
// Dimensionless, constructed by the default constructor.
return;
}
if (this->complexity == UMEASURE_UNIT_COMPOUND) {
// Note: don't sort a MIXED unit
uprv_sortArray(this->singleUnits.getAlias(), this->singleUnits.length(),
sizeof(this->singleUnits[0]), compareSingleUnits, nullptr, false, &status);
if (U_FAILURE(status)) {
return;
}
}
CharString result;
bool beforePer = true;
bool firstTimeNegativeDimension = false;
for (int32_t i = 0; i < this->singleUnits.length(); i++) {
if (beforePer && (*this->singleUnits[i]).dimensionality < 0) {
beforePer = false;
firstTimeNegativeDimension = true;
} else if ((*this->singleUnits[i]).dimensionality < 0) {
firstTimeNegativeDimension = false;
}
if (U_FAILURE(status)) {
return;
}
if (this->complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED) {
if (result.length() != 0) {
result.append(StringPiece("-and-"), status);
}
} else {
if (firstTimeNegativeDimension) {
if (result.length() == 0) {
result.append(StringPiece("per-"), status);
} else {
result.append(StringPiece("-per-"), status);
}
} else {
if (result.length() != 0) {
result.append(StringPiece("-"), status);
}
}
}
this->singleUnits[i]->appendNeutralIdentifier(result, status);
}
this->identifier = CharString(result, status);
}
MeasureUnit MeasureUnitImpl::build(UErrorCode& status) && {
this->serialize(status);
return MeasureUnit(std::move(*this));
}
MeasureUnit MeasureUnit::forIdentifier(StringPiece identifier, UErrorCode& status) {
return Parser::from(identifier, status).parse(status).build(status);
}
UMeasureUnitComplexity MeasureUnit::getComplexity(UErrorCode& status) const {
MeasureUnitImpl temp;
return MeasureUnitImpl::forMeasureUnit(*this, temp, status).complexity;
}
UMeasurePrefix MeasureUnit::getPrefix(UErrorCode& status) const {
return SingleUnitImpl::forMeasureUnit(*this, status).unitPrefix;
}
MeasureUnit MeasureUnit::withPrefix(UMeasurePrefix prefix, UErrorCode& status) const {
SingleUnitImpl singleUnit = SingleUnitImpl::forMeasureUnit(*this, status);
singleUnit.unitPrefix = prefix;
return singleUnit.build(status);
}
int32_t MeasureUnit::getDimensionality(UErrorCode& status) const {
SingleUnitImpl singleUnit = SingleUnitImpl::forMeasureUnit(*this, status);
if (U_FAILURE(status)) { return 0; }
if (singleUnit.isDimensionless()) {
return 0;
}
return singleUnit.dimensionality;
}
MeasureUnit MeasureUnit::withDimensionality(int32_t dimensionality, UErrorCode& status) const {
SingleUnitImpl singleUnit = SingleUnitImpl::forMeasureUnit(*this, status);
singleUnit.dimensionality = dimensionality;
return singleUnit.build(status);
}
MeasureUnit MeasureUnit::reciprocal(UErrorCode& status) const {
MeasureUnitImpl impl = MeasureUnitImpl::forMeasureUnitMaybeCopy(*this, status);
impl.takeReciprocal(status);
return std::move(impl).build(status);
}
MeasureUnit MeasureUnit::product(const MeasureUnit& other, UErrorCode& status) const {
MeasureUnitImpl impl = MeasureUnitImpl::forMeasureUnitMaybeCopy(*this, status);
MeasureUnitImpl temp;
const MeasureUnitImpl& otherImpl = MeasureUnitImpl::forMeasureUnit(other, temp, status);
if (impl.complexity == UMEASURE_UNIT_MIXED || otherImpl.complexity == UMEASURE_UNIT_MIXED) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return {};
}
for (int32_t i = 0; i < otherImpl.singleUnits.length(); i++) {
impl.appendSingleUnit(*otherImpl.singleUnits[i], status);
}
if (impl.singleUnits.length() > 1) {
impl.complexity = UMEASURE_UNIT_COMPOUND;
}
return std::move(impl).build(status);
}
LocalArray<MeasureUnit> MeasureUnit::splitToSingleUnitsImpl(int32_t& outCount, UErrorCode& status) const {
MeasureUnitImpl temp;
const MeasureUnitImpl& impl = MeasureUnitImpl::forMeasureUnit(*this, temp, status);
outCount = impl.singleUnits.length();
MeasureUnit* arr = new MeasureUnit[outCount];
if (arr == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return LocalArray<MeasureUnit>();
}
for (int32_t i = 0; i < outCount; i++) {
arr[i] = impl.singleUnits[i]->build(status);
}
return LocalArray<MeasureUnit>(arr, status);
}
U_NAMESPACE_END
#endif /* !UNCONFIG_NO_FORMATTING */