blob: ecf9b1cba72c6d06756b7965d5085f1e9a552eed [file] [log] [blame]
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
*
* Copyright (C) 2001-2012, International Business Machines
* Corporation and others. All Rights Reserved.
*
******************************************************************************
* file name: utrie.cpp
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* created on: 2001oct20
* created by: Markus W. Scherer
*
* This is a common implementation of a "folded" trie.
* It is a kind of compressed, serializable table of 16- or 32-bit values associated with
* Unicode code points (0..0x10ffff).
*/
#ifdef UTRIE_DEBUG
# include <stdio.h>
#endif
#include "unicode/utypes.h"
#include "cmemory.h"
#include "utrie.h"
/* miscellaneous ------------------------------------------------------------ */
#undef ABS
#define ABS(x) ((x)>=0 ? (x) : -(x))
static inline UBool
equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) {
while(length>0 && *s==*t) {
++s;
++t;
--length;
}
return (UBool)(length==0);
}
/* Building a trie ----------------------------------------------------------*/
U_CAPI UNewTrie * U_EXPORT2
utrie_open(UNewTrie *fillIn,
uint32_t *aliasData, int32_t maxDataLength,
uint32_t initialValue, uint32_t leadUnitValue,
UBool latin1Linear) {
UNewTrie *trie;
int32_t i, j;
if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH ||
(latin1Linear && maxDataLength<1024)
) {
return NULL;
}
if(fillIn!=NULL) {
trie=fillIn;
} else {
trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie));
if(trie==NULL) {
return NULL;
}
}
uprv_memset(trie, 0, sizeof(UNewTrie));
trie->isAllocated= (UBool)(fillIn==NULL);
if(aliasData!=NULL) {
trie->data=aliasData;
trie->isDataAllocated=FALSE;
} else {
trie->data=(uint32_t *)uprv_malloc(maxDataLength*4);
if(trie->data==NULL) {
uprv_free(trie);
return NULL;
}
trie->isDataAllocated=TRUE;
}
/* preallocate and reset the first data block (block index 0) */
j=UTRIE_DATA_BLOCK_LENGTH;
if(latin1Linear) {
/* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */
/* made sure above that maxDataLength>=1024 */
/* set indexes to point to consecutive data blocks */
i=0;
do {
/* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */
trie->index[i++]=j;
j+=UTRIE_DATA_BLOCK_LENGTH;
} while(i<(256>>UTRIE_SHIFT));
}
/* reset the initially allocated blocks to the initial value */
trie->dataLength=j;
while(j>0) {
trie->data[--j]=initialValue;
}
trie->leadUnitValue=leadUnitValue;
trie->indexLength=UTRIE_MAX_INDEX_LENGTH;
trie->dataCapacity=maxDataLength;
trie->isLatin1Linear=latin1Linear;
trie->isCompacted=FALSE;
return trie;
}
U_CAPI UNewTrie * U_EXPORT2
utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) {
UNewTrie *trie;
UBool isDataAllocated;
/* do not clone if other is not valid or already compacted */
if(other==NULL || other->data==NULL || other->isCompacted) {
return NULL;
}
/* clone data */
if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) {
isDataAllocated=FALSE;
} else {
aliasDataCapacity=other->dataCapacity;
aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4);
if(aliasData==NULL) {
return NULL;
}
isDataAllocated=TRUE;
}
trie=utrie_open(fillIn, aliasData, aliasDataCapacity,
other->data[0], other->leadUnitValue,
other->isLatin1Linear);
if(trie==NULL) {
uprv_free(aliasData);
} else {
uprv_memcpy(trie->index, other->index, sizeof(trie->index));
uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4);
trie->dataLength=other->dataLength;
trie->isDataAllocated=isDataAllocated;
}
return trie;
}
U_CAPI void U_EXPORT2
utrie_close(UNewTrie *trie) {
if(trie!=NULL) {
if(trie->isDataAllocated) {
uprv_free(trie->data);
trie->data=NULL;
}
if(trie->isAllocated) {
uprv_free(trie);
}
}
}
U_CAPI uint32_t * U_EXPORT2
utrie_getData(UNewTrie *trie, int32_t *pLength) {
if(trie==NULL || pLength==NULL) {
return NULL;
}
*pLength=trie->dataLength;
return trie->data;
}
static int32_t
utrie_allocDataBlock(UNewTrie *trie) {
int32_t newBlock, newTop;
newBlock=trie->dataLength;
newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH;
if(newTop>trie->dataCapacity) {
/* out of memory in the data array */
return -1;
}
trie->dataLength=newTop;
return newBlock;
}
/**
* No error checking for illegal arguments.
*
* @return -1 if no new data block available (out of memory in data array)
* @internal
*/
static int32_t
utrie_getDataBlock(UNewTrie *trie, UChar32 c) {
int32_t indexValue, newBlock;
c>>=UTRIE_SHIFT;
indexValue=trie->index[c];
if(indexValue>0) {
return indexValue;
}
/* allocate a new data block */
newBlock=utrie_allocDataBlock(trie);
if(newBlock<0) {
/* out of memory in the data array */
return -1;
}
trie->index[c]=newBlock;
/* copy-on-write for a block from a setRange() */
uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH);
return newBlock;
}
/**
* @return TRUE if the value was successfully set
*/
U_CAPI UBool U_EXPORT2
utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) {
int32_t block;
/* valid, uncompacted trie and valid c? */
if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) {
return FALSE;
}
block=utrie_getDataBlock(trie, c);
if(block<0) {
return FALSE;
}
trie->data[block+(c&UTRIE_MASK)]=value;
return TRUE;
}
U_CAPI uint32_t U_EXPORT2
utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) {
int32_t block;
/* valid, uncompacted trie and valid c? */
if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) {
if(pInBlockZero!=NULL) {
*pInBlockZero=TRUE;
}
return 0;
}
block=trie->index[c>>UTRIE_SHIFT];
if(pInBlockZero!=NULL) {
*pInBlockZero= (UBool)(block==0);
}
return trie->data[ABS(block)+(c&UTRIE_MASK)];
}
/**
* @internal
*/
static void
utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit,
uint32_t value, uint32_t initialValue, UBool overwrite) {
uint32_t *pLimit;
pLimit=block+limit;
block+=start;
if(overwrite) {
while(block<pLimit) {
*block++=value;
}
} else {
while(block<pLimit) {
if(*block==initialValue) {
*block=value;
}
++block;
}
}
}
U_CAPI UBool U_EXPORT2
utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) {
/*
* repeat value in [start..limit[
* mark index values for repeat-data blocks by setting bit 31 of the index values
* fill around existing values if any, if(overwrite)
*/
uint32_t initialValue;
int32_t block, rest, repeatBlock;
/* valid, uncompacted trie and valid indexes? */
if( trie==NULL || trie->isCompacted ||
(uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit
) {
return FALSE;
}
if(start==limit) {
return TRUE; /* nothing to do */
}
initialValue=trie->data[0];
if(start&UTRIE_MASK) {
UChar32 nextStart;
/* set partial block at [start..following block boundary[ */
block=utrie_getDataBlock(trie, start);
if(block<0) {
return FALSE;
}
nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK;
if(nextStart<=limit) {
utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH,
value, initialValue, overwrite);
start=nextStart;
} else {
utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK,
value, initialValue, overwrite);
return TRUE;
}
}
/* number of positions in the last, partial block */
rest=limit&UTRIE_MASK;
/* round down limit to a block boundary */
limit&=~UTRIE_MASK;
/* iterate over all-value blocks */
if(value==initialValue) {
repeatBlock=0;
} else {
repeatBlock=-1;
}
while(start<limit) {
/* get index value */
block=trie->index[start>>UTRIE_SHIFT];
if(block>0) {
/* already allocated, fill in value */
utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite);
} else if(trie->data[-block]!=value && (block==0 || overwrite)) {
/* set the repeatBlock instead of the current block 0 or range block */
if(repeatBlock>=0) {
trie->index[start>>UTRIE_SHIFT]=-repeatBlock;
} else {
/* create and set and fill the repeatBlock */
repeatBlock=utrie_getDataBlock(trie, start);
if(repeatBlock<0) {
return FALSE;
}
/* set the negative block number to indicate that it is a repeat block */
trie->index[start>>UTRIE_SHIFT]=-repeatBlock;
utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE);
}
}
start+=UTRIE_DATA_BLOCK_LENGTH;
}
if(rest>0) {
/* set partial block at [last block boundary..limit[ */
block=utrie_getDataBlock(trie, start);
if(block<0) {
return FALSE;
}
utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite);
}
return TRUE;
}
static int32_t
_findSameIndexBlock(const int32_t *idx, int32_t indexLength,
int32_t otherBlock) {
int32_t block, i;
for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) {
for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) {
if(idx[block+i]!=idx[otherBlock+i]) {
break;
}
}
if(i==UTRIE_SURROGATE_BLOCK_COUNT) {
return block;
}
}
return indexLength;
}
/*
* Fold the normalization data for supplementary code points into
* a compact area on top of the BMP-part of the trie index,
* with the lead surrogates indexing this compact area.
*
* Duplicate the index values for lead surrogates:
* From inside the BMP area, where some may be overridden with folded values,
* to just after the BMP area, where they can be retrieved for
* code point lookups.
*/
static void
utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) {
int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT];
int32_t *idx;
uint32_t value;
UChar32 c;
int32_t indexLength, block;
#ifdef UTRIE_DEBUG
int countLeadCUWithData=0;
#endif
idx=trie->index;
/* copy the lead surrogate indexes into a temporary array */
uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT);
/*
* set all values for lead surrogate code *units* to leadUnitValue
* so that, by default, runtime lookups will find no data for associated
* supplementary code points, unless there is data for such code points
* which will result in a non-zero folding value below that is set for
* the respective lead units
*
* the above saved the indexes for surrogate code *points*
* fill the indexes with simplified code from utrie_setRange32()
*/
if(trie->leadUnitValue==trie->data[0]) {
block=0; /* leadUnitValue==initialValue, use all-initial-value block */
} else {
/* create and fill the repeatBlock */
block=utrie_allocDataBlock(trie);
if(block<0) {
/* data table overflow */
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE);
block=-block; /* negative block number to indicate that it is a repeat block */
}
for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) {
trie->index[c]=block;
}
/*
* Fold significant index values into the area just after the BMP indexes.
* In case the first lead surrogate has significant data,
* its index block must be used first (in which case the folding is a no-op).
* Later all folded index blocks are moved up one to insert the copied
* lead surrogate indexes.
*/
indexLength=UTRIE_BMP_INDEX_LENGTH;
/* search for any index (stage 1) entries for supplementary code points */
for(c=0x10000; c<0x110000;) {
if(idx[c>>UTRIE_SHIFT]!=0) {
/* there is data, treat the full block for a lead surrogate */
c&=~0x3ff;
#ifdef UTRIE_DEBUG
++countLeadCUWithData;
/* printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); */
#endif
/* is there an identical index block? */
block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT);
/*
* get a folded value for [c..c+0x400[ and,
* if different from the value for the lead surrogate code point,
* set it for the lead surrogate code unit
*/
value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT);
if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) {
if(!utrie_set32(trie, U16_LEAD(c), value)) {
/* data table overflow */
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
/* if we did not find an identical index block... */
if(block==indexLength) {
/* move the actual index (stage 1) entries from the supplementary position to the new one */
uprv_memmove(idx+indexLength,
idx+(c>>UTRIE_SHIFT),
4*UTRIE_SURROGATE_BLOCK_COUNT);
indexLength+=UTRIE_SURROGATE_BLOCK_COUNT;
}
}
c+=0x400;
} else {
c+=UTRIE_DATA_BLOCK_LENGTH;
}
}
#ifdef UTRIE_DEBUG
if(countLeadCUWithData>0) {
printf("supplementary data for %d lead surrogates\n", countLeadCUWithData);
}
#endif
/*
* index array overflow?
* This is to guarantee that a folding offset is of the form
* UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023.
* If the index is too large, then n>=1024 and more than 10 bits are necessary.
*
* In fact, it can only ever become n==1024 with completely unfoldable data and
* the additional block of duplicated values for lead surrogates.
*/
if(indexLength>=UTRIE_MAX_INDEX_LENGTH) {
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return;
}
/*
* make space for the lead surrogate index block and
* insert it between the BMP indexes and the folded ones
*/
uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT,
idx+UTRIE_BMP_INDEX_LENGTH,
4*(indexLength-UTRIE_BMP_INDEX_LENGTH));
uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH,
leadIndexes,
4*UTRIE_SURROGATE_BLOCK_COUNT);
indexLength+=UTRIE_SURROGATE_BLOCK_COUNT;
#ifdef UTRIE_DEBUG
printf("trie index count: BMP %ld all Unicode %ld folded %ld\n",
UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength);
#endif
trie->indexLength=indexLength;
}
/*
* Set a value in the trie index map to indicate which data block
* is referenced and which one is not.
* utrie_compact() will remove data blocks that are not used at all.
* Set
* - 0 if it is used
* - -1 if it is not used
*/
static void
_findUnusedBlocks(UNewTrie *trie) {
int32_t i;
/* fill the entire map with "not used" */
uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4);
/* mark each block that _is_ used with 0 */
for(i=0; i<trie->indexLength; ++i) {
trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0;
}
/* never move the all-initial-value block 0 */
trie->map[0]=0;
}
static int32_t
_findSameDataBlock(const uint32_t *data, int32_t dataLength,
int32_t otherBlock, int32_t step) {
int32_t block;
/* ensure that we do not even partially get past dataLength */
dataLength-=UTRIE_DATA_BLOCK_LENGTH;
for(block=0; block<=dataLength; block+=step) {
if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) {
return block;
}
}
return -1;
}
/*
* Compact a folded build-time trie.
*
* The compaction
* - removes blocks that are identical with earlier ones
* - overlaps adjacent blocks as much as possible (if overlap==TRUE)
* - moves blocks in steps of the data granularity
* - moves and overlaps blocks that overlap with multiple values in the overlap region
*
* It does not
* - try to move and overlap blocks that are not already adjacent
*/
static void
utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) {
int32_t i, start, newStart, overlapStart;
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return;
}
/* valid, uncompacted trie? */
if(trie==NULL) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if(trie->isCompacted) {
return; /* nothing left to do */
}
/* compaction */
/* initialize the index map with "block is used/unused" flags */
_findUnusedBlocks(trie);
/* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */
if(trie->isLatin1Linear && UTRIE_SHIFT<=8) {
overlapStart=UTRIE_DATA_BLOCK_LENGTH+256;
} else {
overlapStart=UTRIE_DATA_BLOCK_LENGTH;
}
newStart=UTRIE_DATA_BLOCK_LENGTH;
for(start=newStart; start<trie->dataLength;) {
/*
* start: index of first entry of current block
* newStart: index where the current block is to be moved
* (right after current end of already-compacted data)
*/
/* skip blocks that are not used */
if(trie->map[start>>UTRIE_SHIFT]<0) {
/* advance start to the next block */
start+=UTRIE_DATA_BLOCK_LENGTH;
/* leave newStart with the previous block! */
continue;
}
/* search for an identical block */
if( start>=overlapStart &&
(i=_findSameDataBlock(trie->data, newStart, start,
overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH))
>=0
) {
/* found an identical block, set the other block's index value for the current block */
trie->map[start>>UTRIE_SHIFT]=i;
/* advance start to the next block */
start+=UTRIE_DATA_BLOCK_LENGTH;
/* leave newStart with the previous block! */
continue;
}
/* see if the beginning of this block can be overlapped with the end of the previous block */
if(overlap && start>=overlapStart) {
/* look for maximum overlap (modulo granularity) with the previous, adjacent block */
for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY;
i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i);
i-=UTRIE_DATA_GRANULARITY) {}
} else {
i=0;
}
if(i>0) {
/* some overlap */
trie->map[start>>UTRIE_SHIFT]=newStart-i;
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) {
trie->data[newStart++]=trie->data[start++];
}
} else if(newStart<start) {
/* no overlap, just move the indexes to their new positions */
trie->map[start>>UTRIE_SHIFT]=newStart;
for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) {
trie->data[newStart++]=trie->data[start++];
}
} else /* no overlap && newStart==start */ {
trie->map[start>>UTRIE_SHIFT]=start;
newStart+=UTRIE_DATA_BLOCK_LENGTH;
start=newStart;
}
}
/* now adjust the index (stage 1) table */
for(i=0; i<trie->indexLength; ++i) {
trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT];
}
#ifdef UTRIE_DEBUG
/* we saved some space */
printf("compacting trie: count of 32-bit words %lu->%lu\n",
(long)trie->dataLength, (long)newStart);
#endif
trie->dataLength=newStart;
}
/* serialization ------------------------------------------------------------ */
/*
* Default function for the folding value:
* Just store the offset (16 bits) if there is any non-initial-value entry.
*
* The offset parameter is never 0.
* Returning the offset itself is safe for UTRIE_SHIFT>=5 because
* for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800
* which fits into 16-bit trie values;
* for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases.
*
* Theoretically, it would be safer for all possible UTRIE_SHIFT including
* those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS
* which would always result in a value of 0x40..0x43f
* (start/end 1k blocks of supplementary Unicode code points).
* However, this would be uglier, and would not work for some existing
* binary data file formats.
*
* Also, we do not plan to change UTRIE_SHIFT because it would change binary
* data file formats, and we would probably not make it smaller because of
* the then even larger BMP index length even for empty tries.
*/
static uint32_t U_CALLCONV
defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) {
uint32_t value, initialValue;
UChar32 limit;
UBool inBlockZero;
initialValue=trie->data[0];
limit=start+0x400;
while(start<limit) {
value=utrie_get32(trie, start, &inBlockZero);
if(inBlockZero) {
start+=UTRIE_DATA_BLOCK_LENGTH;
} else if(value!=initialValue) {
return (uint32_t)offset;
} else {
++start;
}
}
return 0;
}
U_CAPI int32_t U_EXPORT2
utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity,
UNewTrieGetFoldedValue *getFoldedValue,
UBool reduceTo16Bits,
UErrorCode *pErrorCode) {
UTrieHeader *header;
uint32_t *p;
uint16_t *dest16;
int32_t i, length;
uint8_t* data = NULL;
/* argument check */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if(getFoldedValue==NULL) {
getFoldedValue=defaultGetFoldedValue;
}
data = (uint8_t*)dt;
/* fold and compact if necessary, also checks that indexLength is within limits */
if(!trie->isCompacted) {
/* compact once without overlap to improve folding */
utrie_compact(trie, FALSE, pErrorCode);
/* fold the supplementary part of the index array */
utrie_fold(trie, getFoldedValue, pErrorCode);
/* compact again with overlap for minimum data array length */
utrie_compact(trie, TRUE, pErrorCode);
trie->isCompacted=TRUE;
if(U_FAILURE(*pErrorCode)) {
return 0;
}
}
/* is dataLength within limits? */
if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) {
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
}
length=sizeof(UTrieHeader)+2*trie->indexLength;
if(reduceTo16Bits) {
length+=2*trie->dataLength;
} else {
length+=4*trie->dataLength;
}
if(length>capacity) {
return length; /* preflighting */
}
#ifdef UTRIE_DEBUG
printf("**UTrieLengths(serialize)** index:%6ld data:%6ld serialized:%6ld\n",
(long)trie->indexLength, (long)trie->dataLength, (long)length);
#endif
/* set the header fields */
header=(UTrieHeader *)data;
data+=sizeof(UTrieHeader);
header->signature=0x54726965; /* "Trie" */
header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT);
if(!reduceTo16Bits) {
header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT;
}
if(trie->isLatin1Linear) {
header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR;
}
header->indexLength=trie->indexLength;
header->dataLength=trie->dataLength;
/* write the index (stage 1) array and the 16/32-bit data (stage 2) array */
if(reduceTo16Bits) {
/* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */
p=(uint32_t *)trie->index;
dest16=(uint16_t *)data;
for(i=trie->indexLength; i>0; --i) {
*dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT);
}
/* write 16-bit data values */
p=trie->data;
for(i=trie->dataLength; i>0; --i) {
*dest16++=(uint16_t)*p++;
}
} else {
/* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */
p=(uint32_t *)trie->index;
dest16=(uint16_t *)data;
for(i=trie->indexLength; i>0; --i) {
*dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT);
}
/* write 32-bit data values */
uprv_memcpy(dest16, trie->data, 4*(size_t)trie->dataLength);
}
return length;
}
/* inverse to defaultGetFoldedValue() */
U_CAPI int32_t U_EXPORT2
utrie_defaultGetFoldingOffset(uint32_t data) {
return (int32_t)data;
}
U_CAPI int32_t U_EXPORT2
utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) {
const UTrieHeader *header;
const uint16_t *p16;
uint32_t options;
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return -1;
}
/* enough data for a trie header? */
if(length<(int32_t)sizeof(UTrieHeader)) {
*pErrorCode=U_INVALID_FORMAT_ERROR;
return -1;
}
/* check the signature */
header=(const UTrieHeader *)data;
if(header->signature!=0x54726965) {
*pErrorCode=U_INVALID_FORMAT_ERROR;
return -1;
}
/* get the options and check the shift values */
options=header->options;
if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT ||
((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT
) {
*pErrorCode=U_INVALID_FORMAT_ERROR;
return -1;
}
trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0);
/* get the length values */
trie->indexLength=header->indexLength;
trie->dataLength=header->dataLength;
length-=(int32_t)sizeof(UTrieHeader);
/* enough data for the index? */
if(length<2*trie->indexLength) {
*pErrorCode=U_INVALID_FORMAT_ERROR;
return -1;
}
p16=(const uint16_t *)(header+1);
trie->index=p16;
p16+=trie->indexLength;
length-=2*trie->indexLength;
/* get the data */
if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) {
if(length<4*trie->dataLength) {
*pErrorCode=U_INVALID_FORMAT_ERROR;
return -1;
}
trie->data32=(const uint32_t *)p16;
trie->initialValue=trie->data32[0];
length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength;
} else {
if(length<2*trie->dataLength) {
*pErrorCode=U_INVALID_FORMAT_ERROR;
return -1;
}
/* the "data16" data is used via the index pointer */
trie->data32=NULL;
trie->initialValue=trie->index[trie->indexLength];
length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength;
}
trie->getFoldingOffset=utrie_defaultGetFoldingOffset;
return length;
}
U_CAPI int32_t U_EXPORT2
utrie_unserializeDummy(UTrie *trie,
void *data, int32_t length,
uint32_t initialValue, uint32_t leadUnitValue,
UBool make16BitTrie,
UErrorCode *pErrorCode) {
uint16_t *p16;
int32_t actualLength, latin1Length, i, limit;
uint16_t block;
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return -1;
}
/* calculate the actual size of the dummy trie data */
/* max(Latin-1, block 0) */
latin1Length= 256; /*UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH;*/
trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT;
trie->dataLength=latin1Length;
if(leadUnitValue!=initialValue) {
trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH;
}
actualLength=trie->indexLength*2;
if(make16BitTrie) {
actualLength+=trie->dataLength*2;
} else {
actualLength+=trie->dataLength*4;
}
/* enough space for the dummy trie? */
if(length<actualLength) {
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
return actualLength;
}
trie->isLatin1Linear=TRUE;
trie->initialValue=initialValue;
/* fill the index and data arrays */
p16=(uint16_t *)data;
trie->index=p16;
if(make16BitTrie) {
/* indexes to block 0 */
block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT);
limit=trie->indexLength;
for(i=0; i<limit; ++i) {
p16[i]=block;
}
if(leadUnitValue!=initialValue) {
/* indexes for lead surrogate code units to the block after Latin-1 */
block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT);
i=0xd800>>UTRIE_SHIFT;
limit=0xdc00>>UTRIE_SHIFT;
for(; i<limit; ++i) {
p16[i]=block;
}
}
trie->data32=NULL;
/* Latin-1 data */
p16+=trie->indexLength;
for(i=0; i<latin1Length; ++i) {
p16[i]=(uint16_t)initialValue;
}
/* data for lead surrogate code units */
if(leadUnitValue!=initialValue) {
limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH;
for(/* i=latin1Length */; i<limit; ++i) {
p16[i]=(uint16_t)leadUnitValue;
}
}
} else {
uint32_t *p32;
/* indexes to block 0 */
uprv_memset(p16, 0, trie->indexLength*2);
if(leadUnitValue!=initialValue) {
/* indexes for lead surrogate code units to the block after Latin-1 */
block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT);
i=0xd800>>UTRIE_SHIFT;
limit=0xdc00>>UTRIE_SHIFT;
for(; i<limit; ++i) {
p16[i]=block;
}
}
trie->data32=p32=(uint32_t *)(p16+trie->indexLength);
/* Latin-1 data */
for(i=0; i<latin1Length; ++i) {
p32[i]=initialValue;
}
/* data for lead surrogate code units */
if(leadUnitValue!=initialValue) {
limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH;
for(/* i=latin1Length */; i<limit; ++i) {
p32[i]=leadUnitValue;
}
}
}
trie->getFoldingOffset=utrie_defaultGetFoldingOffset;
return actualLength;
}
/* enumeration -------------------------------------------------------------- */
/* default UTrieEnumValue() returns the input value itself */
static uint32_t U_CALLCONV
enumSameValue(const void * /*context*/, uint32_t value) {
return value;
}
/**
* Enumerate all ranges of code points with the same relevant values.
* The values are transformed from the raw trie entries by the enumValue function.
*/
U_CAPI void U_EXPORT2
utrie_enum(const UTrie *trie,
UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) {
const uint32_t *data32;
const uint16_t *idx;
uint32_t value, prevValue, initialValue;
UChar32 c, prev;
int32_t l, i, j, block, prevBlock, nullBlock, offset;
/* check arguments */
if(trie==NULL || trie->index==NULL || enumRange==NULL) {
return;
}
if(enumValue==NULL) {
enumValue=enumSameValue;
}
idx=trie->index;
data32=trie->data32;
/* get the enumeration value that corresponds to an initial-value trie data entry */
initialValue=enumValue(context, trie->initialValue);
if(data32==NULL) {
nullBlock=trie->indexLength;
} else {
nullBlock=0;
}
/* set variables for previous range */
prevBlock=nullBlock;
prev=0;
prevValue=initialValue;
/* enumerate BMP - the main loop enumerates data blocks */
for(i=0, c=0; c<=0xffff; ++i) {
if(c==0xd800) {
/* skip lead surrogate code _units_, go to lead surr. code _points_ */
i=UTRIE_BMP_INDEX_LENGTH;
} else if(c==0xdc00) {
/* go back to regular BMP code points */
i=c>>UTRIE_SHIFT;
}
block=idx[i]<<UTRIE_INDEX_SHIFT;
if(block==prevBlock) {
/* the block is the same as the previous one, and filled with value */
c+=UTRIE_DATA_BLOCK_LENGTH;
} else if(block==nullBlock) {
/* this is the all-initial-value block */
if(prevValue!=initialValue) {
if(prev<c) {
if(!enumRange(context, prev, c, prevValue)) {
return;
}
}
prevBlock=nullBlock;
prev=c;
prevValue=initialValue;
}
c+=UTRIE_DATA_BLOCK_LENGTH;
} else {
prevBlock=block;
for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) {
value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]);
if(value!=prevValue) {
if(prev<c) {
if(!enumRange(context, prev, c, prevValue)) {
return;
}
}
if(j>0) {
/* the block is not filled with all the same value */
prevBlock=-1;
}
prev=c;
prevValue=value;
}
++c;
}
}
}
/* enumerate supplementary code points */
for(l=0xd800; l<0xdc00;) {
/* lead surrogate access */
offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT;
if(offset==nullBlock) {
/* no entries for a whole block of lead surrogates */
if(prevValue!=initialValue) {
if(prev<c) {
if(!enumRange(context, prev, c, prevValue)) {
return;
}
}
prevBlock=nullBlock;
prev=c;
prevValue=initialValue;
}
l+=UTRIE_DATA_BLOCK_LENGTH;
c+=UTRIE_DATA_BLOCK_LENGTH<<10;
continue;
}
value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRIE_MASK)];
/* enumerate trail surrogates for this lead surrogate */
offset=trie->getFoldingOffset(value);
if(offset<=0) {
/* no data for this lead surrogate */
if(prevValue!=initialValue) {
if(prev<c) {
if(!enumRange(context, prev, c, prevValue)) {
return;
}
}
prevBlock=nullBlock;
prev=c;
prevValue=initialValue;
}
/* nothing else to do for the supplementary code points for this lead surrogate */
c+=0x400;
} else {
/* enumerate code points for this lead surrogate */
i=offset;
offset+=UTRIE_SURROGATE_BLOCK_COUNT;
do {
/* copy of most of the body of the BMP loop */
block=idx[i]<<UTRIE_INDEX_SHIFT;
if(block==prevBlock) {
/* the block is the same as the previous one, and filled with value */
c+=UTRIE_DATA_BLOCK_LENGTH;
} else if(block==nullBlock) {
/* this is the all-initial-value block */
if(prevValue!=initialValue) {
if(prev<c) {
if(!enumRange(context, prev, c, prevValue)) {
return;
}
}
prevBlock=nullBlock;
prev=c;
prevValue=initialValue;
}
c+=UTRIE_DATA_BLOCK_LENGTH;
} else {
prevBlock=block;
for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) {
value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]);
if(value!=prevValue) {
if(prev<c) {
if(!enumRange(context, prev, c, prevValue)) {
return;
}
}
if(j>0) {
/* the block is not filled with all the same value */
prevBlock=-1;
}
prev=c;
prevValue=value;
}
++c;
}
}
} while(++i<offset);
}
++l;
}
/* deliver last range */
enumRange(context, prev, c, prevValue);
}