blob: 461e5a7197e724ef2175a73d15ddc10b0fad8ca0 [file] [log] [blame]
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
**********************************************************************
* Copyright (C) 1999-2015, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 10/20/99 alan Creation.
**********************************************************************
*/
#include "unicode/utypes.h"
#include "unicode/parsepos.h"
#include "unicode/symtable.h"
#include "unicode/uniset.h"
#include "unicode/ustring.h"
#include "unicode/utf8.h"
#include "unicode/utf16.h"
#include "ruleiter.h"
#include "cmemory.h"
#include "cstring.h"
#include "patternprops.h"
#include "uelement.h"
#include "util.h"
#include "uvector.h"
#include "charstr.h"
#include "ustrfmt.h"
#include "uassert.h"
#include "bmpset.h"
#include "unisetspan.h"
// HIGH_VALUE > all valid values. 110000 for codepoints
#define UNICODESET_HIGH 0x0110000
// LOW <= all valid values. ZERO for codepoints
#define UNICODESET_LOW 0x000000
/** Max list [0, 1, 2, ..., max code point, HIGH] */
constexpr int32_t MAX_LENGTH = UNICODESET_HIGH + 1;
U_NAMESPACE_BEGIN
SymbolTable::~SymbolTable() {}
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UnicodeSet)
/**
* Modify the given UChar32 variable so that it is in range, by
* pinning values < UNICODESET_LOW to UNICODESET_LOW, and
* pinning values > UNICODESET_HIGH-1 to UNICODESET_HIGH-1.
* It modifies its argument in-place and also returns it.
*/
static inline UChar32 pinCodePoint(UChar32& c) {
if (c < UNICODESET_LOW) {
c = UNICODESET_LOW;
} else if (c > (UNICODESET_HIGH-1)) {
c = (UNICODESET_HIGH-1);
}
return c;
}
//----------------------------------------------------------------
// Debugging
//----------------------------------------------------------------
// DO NOT DELETE THIS CODE. This code is used to debug memory leaks.
// To enable the debugging, define the symbol DEBUG_MEM in the line
// below. This will result in text being sent to stdout that looks
// like this:
// DEBUG UnicodeSet: ct 0x00A39B20; 397 [\u0A81-\u0A83\u0A85-
// DEBUG UnicodeSet: dt 0x00A39B20; 396 [\u0A81-\u0A83\u0A85-
// Each line lists a construction (ct) or destruction (dt) event, the
// object address, the number of outstanding objects after the event,
// and the pattern of the object in question.
// #define DEBUG_MEM
#ifdef DEBUG_MEM
#include <stdio.h>
static int32_t _dbgCount = 0;
static inline void _dbgct(UnicodeSet* set) {
UnicodeString str;
set->toPattern(str, TRUE);
char buf[40];
str.extract(0, 39, buf, "");
printf("DEBUG UnicodeSet: ct 0x%08X; %d %s\n", set, ++_dbgCount, buf);
}
static inline void _dbgdt(UnicodeSet* set) {
UnicodeString str;
set->toPattern(str, TRUE);
char buf[40];
str.extract(0, 39, buf, "");
printf("DEBUG UnicodeSet: dt 0x%08X; %d %s\n", set, --_dbgCount, buf);
}
#else
#define _dbgct(set)
#define _dbgdt(set)
#endif
//----------------------------------------------------------------
// UnicodeString in UVector support
//----------------------------------------------------------------
static void U_CALLCONV cloneUnicodeString(UElement *dst, UElement *src) {
dst->pointer = new UnicodeString(*(UnicodeString*)src->pointer);
}
static int8_t U_CALLCONV compareUnicodeString(UElement t1, UElement t2) {
const UnicodeString &a = *(const UnicodeString*)t1.pointer;
const UnicodeString &b = *(const UnicodeString*)t2.pointer;
return a.compare(b);
}
UBool UnicodeSet::hasStrings() const {
return strings != nullptr && !strings->isEmpty();
}
int32_t UnicodeSet::stringsSize() const {
return strings == nullptr ? 0 : strings->size();
}
UBool UnicodeSet::stringsContains(const UnicodeString &s) const {
return strings != nullptr && strings->contains((void*) &s);
}
//----------------------------------------------------------------
// Constructors &c
//----------------------------------------------------------------
/**
* Constructs an empty set.
*/
UnicodeSet::UnicodeSet() {
list[0] = UNICODESET_HIGH;
_dbgct(this);
}
/**
* Constructs a set containing the given range. If <code>end >
* start</code> then an empty set is created.
*
* @param start first character, inclusive, of range
* @param end last character, inclusive, of range
*/
UnicodeSet::UnicodeSet(UChar32 start, UChar32 end) {
list[0] = UNICODESET_HIGH;
add(start, end);
_dbgct(this);
}
/**
* Constructs a set that is identical to the given UnicodeSet.
*/
UnicodeSet::UnicodeSet(const UnicodeSet& o) : UnicodeFilter(o) {
*this = o;
_dbgct(this);
}
// Copy-construct as thawed.
UnicodeSet::UnicodeSet(const UnicodeSet& o, UBool /* asThawed */) : UnicodeFilter(o) {
if (ensureCapacity(o.len)) {
// *this = o except for bmpSet and stringSpan
len = o.len;
uprv_memcpy(list, o.list, (size_t)len*sizeof(UChar32));
if (o.hasStrings()) {
UErrorCode status = U_ZERO_ERROR;
if (!allocateStrings(status) ||
(strings->assign(*o.strings, cloneUnicodeString, status), U_FAILURE(status))) {
setToBogus();
return;
}
}
if (o.pat) {
setPattern(o.pat, o.patLen);
}
_dbgct(this);
}
}
/**
* Destructs the set.
*/
UnicodeSet::~UnicodeSet() {
_dbgdt(this); // first!
if (list != stackList) {
uprv_free(list);
}
delete bmpSet;
if (buffer != stackList) {
uprv_free(buffer);
}
delete strings;
delete stringSpan;
releasePattern();
}
/**
* Assigns this object to be a copy of another.
*/
UnicodeSet& UnicodeSet::operator=(const UnicodeSet& o) {
return copyFrom(o, FALSE);
}
UnicodeSet& UnicodeSet::copyFrom(const UnicodeSet& o, UBool asThawed) {
if (this == &o) {
return *this;
}
if (isFrozen()) {
return *this;
}
if (o.isBogus()) {
setToBogus();
return *this;
}
if (!ensureCapacity(o.len)) {
// ensureCapacity will mark the UnicodeSet as Bogus if OOM failure happens.
return *this;
}
len = o.len;
uprv_memcpy(list, o.list, (size_t)len*sizeof(UChar32));
if (o.bmpSet != nullptr && !asThawed) {
bmpSet = new BMPSet(*o.bmpSet, list, len);
if (bmpSet == NULL) { // Check for memory allocation error.
setToBogus();
return *this;
}
}
if (o.hasStrings()) {
UErrorCode status = U_ZERO_ERROR;
if ((strings == nullptr && !allocateStrings(status)) ||
(strings->assign(*o.strings, cloneUnicodeString, status), U_FAILURE(status))) {
setToBogus();
return *this;
}
} else if (hasStrings()) {
strings->removeAllElements();
}
if (o.stringSpan != nullptr && !asThawed) {
stringSpan = new UnicodeSetStringSpan(*o.stringSpan, *strings);
if (stringSpan == NULL) { // Check for memory allocation error.
setToBogus();
return *this;
}
}
releasePattern();
if (o.pat) {
setPattern(o.pat, o.patLen);
}
return *this;
}
/**
* Returns a copy of this object. All UnicodeMatcher objects have
* to support cloning in order to allow classes using
* UnicodeMatchers, such as Transliterator, to implement cloning.
*/
UnicodeSet* UnicodeSet::clone() const {
return new UnicodeSet(*this);
}
UnicodeSet *UnicodeSet::cloneAsThawed() const {
return new UnicodeSet(*this, TRUE);
}
/**
* Compares the specified object with this set for equality. Returns
* <tt>true</tt> if the two sets
* have the same size, and every member of the specified set is
* contained in this set (or equivalently, every member of this set is
* contained in the specified set).
*
* @param o set to be compared for equality with this set.
* @return <tt>true</tt> if the specified set is equal to this set.
*/
UBool UnicodeSet::operator==(const UnicodeSet& o) const {
if (len != o.len) return FALSE;
for (int32_t i = 0; i < len; ++i) {
if (list[i] != o.list[i]) return FALSE;
}
if (hasStrings() != o.hasStrings()) { return FALSE; }
if (hasStrings() && *strings != *o.strings) return FALSE;
return TRUE;
}
/**
* Returns the hash code value for this set.
*
* @return the hash code value for this set.
* @see Object#hashCode()
*/
int32_t UnicodeSet::hashCode(void) const {
uint32_t result = static_cast<uint32_t>(len);
for (int32_t i = 0; i < len; ++i) {
result *= 1000003u;
result += list[i];
}
return static_cast<int32_t>(result);
}
//----------------------------------------------------------------
// Public API
//----------------------------------------------------------------
/**
* Returns the number of elements in this set (its cardinality),
* Note than the elements of a set may include both individual
* codepoints and strings.
*
* @return the number of elements in this set (its cardinality).
*/
int32_t UnicodeSet::size(void) const {
int32_t n = 0;
int32_t count = getRangeCount();
for (int32_t i = 0; i < count; ++i) {
n += getRangeEnd(i) - getRangeStart(i) + 1;
}
return n + stringsSize();
}
/**
* Returns <tt>true</tt> if this set contains no elements.
*
* @return <tt>true</tt> if this set contains no elements.
*/
UBool UnicodeSet::isEmpty(void) const {
return len == 1 && !hasStrings();
}
/**
* Returns true if this set contains the given character.
* @param c character to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::contains(UChar32 c) const {
// Set i to the index of the start item greater than ch
// We know we will terminate without length test!
// LATER: for large sets, add binary search
//int32_t i = -1;
//for (;;) {
// if (c < list[++i]) break;
//}
if (bmpSet != NULL) {
return bmpSet->contains(c);
}
if (stringSpan != NULL) {
return stringSpan->contains(c);
}
if (c >= UNICODESET_HIGH) { // Don't need to check LOW bound
return FALSE;
}
int32_t i = findCodePoint(c);
return (UBool)(i & 1); // return true if odd
}
/**
* Returns the smallest value i such that c < list[i]. Caller
* must ensure that c is a legal value or this method will enter
* an infinite loop. This method performs a binary search.
* @param c a character in the range MIN_VALUE..MAX_VALUE
* inclusive
* @return the smallest integer i in the range 0..len-1,
* inclusive, such that c < list[i]
*/
int32_t UnicodeSet::findCodePoint(UChar32 c) const {
/* Examples:
findCodePoint(c)
set list[] c=0 1 3 4 7 8
=== ============== ===========
[] [110000] 0 0 0 0 0 0
[\u0000-\u0003] [0, 4, 110000] 1 1 1 2 2 2
[\u0004-\u0007] [4, 8, 110000] 0 0 0 1 1 2
[:Any:] [0, 110000] 1 1 1 1 1 1
*/
// Return the smallest i such that c < list[i]. Assume
// list[len - 1] == HIGH and that c is legal (0..HIGH-1).
if (c < list[0])
return 0;
// High runner test. c is often after the last range, so an
// initial check for this condition pays off.
int32_t lo = 0;
int32_t hi = len - 1;
if (lo >= hi || c >= list[hi-1])
return hi;
// invariant: c >= list[lo]
// invariant: c < list[hi]
for (;;) {
int32_t i = (lo + hi) >> 1;
if (i == lo) {
break; // Found!
} else if (c < list[i]) {
hi = i;
} else {
lo = i;
}
}
return hi;
}
/**
* Returns true if this set contains every character
* of the given range.
* @param start first character, inclusive, of the range
* @param end last character, inclusive, of the range
* @return true if the test condition is met
*/
UBool UnicodeSet::contains(UChar32 start, UChar32 end) const {
//int32_t i = -1;
//for (;;) {
// if (start < list[++i]) break;
//}
int32_t i = findCodePoint(start);
return ((i & 1) != 0 && end < list[i]);
}
/**
* Returns <tt>true</tt> if this set contains the given
* multicharacter string.
* @param s string to be checked for containment
* @return <tt>true</tt> if this set contains the specified string
*/
UBool UnicodeSet::contains(const UnicodeString& s) const {
int32_t cp = getSingleCP(s);
if (cp < 0) {
return stringsContains(s);
} else {
return contains((UChar32) cp);
}
}
/**
* Returns true if this set contains all the characters and strings
* of the given set.
* @param c set to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsAll(const UnicodeSet& c) const {
// The specified set is a subset if all of its pairs are contained in
// this set. It's possible to code this more efficiently in terms of
// direct manipulation of the inversion lists if the need arises.
int32_t n = c.getRangeCount();
for (int i=0; i<n; ++i) {
if (!contains(c.getRangeStart(i), c.getRangeEnd(i))) {
return FALSE;
}
}
return !c.hasStrings() || (strings != nullptr && strings->containsAll(*c.strings));
}
/**
* Returns true if this set contains all the characters
* of the given string.
* @param s string containing characters to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsAll(const UnicodeString& s) const {
return (UBool)(span(s.getBuffer(), s.length(), USET_SPAN_CONTAINED) ==
s.length());
}
/**
* Returns true if this set contains none of the characters
* of the given range.
* @param start first character, inclusive, of the range
* @param end last character, inclusive, of the range
* @return true if the test condition is met
*/
UBool UnicodeSet::containsNone(UChar32 start, UChar32 end) const {
//int32_t i = -1;
//for (;;) {
// if (start < list[++i]) break;
//}
int32_t i = findCodePoint(start);
return ((i & 1) == 0 && end < list[i]);
}
/**
* Returns true if this set contains none of the characters and strings
* of the given set.
* @param c set to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsNone(const UnicodeSet& c) const {
// The specified set is a subset if all of its pairs are contained in
// this set. It's possible to code this more efficiently in terms of
// direct manipulation of the inversion lists if the need arises.
int32_t n = c.getRangeCount();
for (int32_t i=0; i<n; ++i) {
if (!containsNone(c.getRangeStart(i), c.getRangeEnd(i))) {
return FALSE;
}
}
return strings == nullptr || !c.hasStrings() || strings->containsNone(*c.strings);
}
/**
* Returns true if this set contains none of the characters
* of the given string.
* @param s string containing characters to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsNone(const UnicodeString& s) const {
return (UBool)(span(s.getBuffer(), s.length(), USET_SPAN_NOT_CONTAINED) ==
s.length());
}
/**
* Returns <tt>true</tt> if this set contains any character whose low byte
* is the given value. This is used by <tt>RuleBasedTransliterator</tt> for
* indexing.
*/
UBool UnicodeSet::matchesIndexValue(uint8_t v) const {
/* The index value v, in the range [0,255], is contained in this set if
* it is contained in any pair of this set. Pairs either have the high
* bytes equal, or unequal. If the high bytes are equal, then we have
* aaxx..aayy, where aa is the high byte. Then v is contained if xx <=
* v <= yy. If the high bytes are unequal we have aaxx..bbyy, bb>aa.
* Then v is contained if xx <= v || v <= yy. (This is identical to the
* time zone month containment logic.)
*/
int32_t i;
int32_t rangeCount=getRangeCount();
for (i=0; i<rangeCount; ++i) {
UChar32 low = getRangeStart(i);
UChar32 high = getRangeEnd(i);
if ((low & ~0xFF) == (high & ~0xFF)) {
if ((low & 0xFF) <= v && v <= (high & 0xFF)) {
return TRUE;
}
} else if ((low & 0xFF) <= v || v <= (high & 0xFF)) {
return TRUE;
}
}
if (hasStrings()) {
for (i=0; i<strings->size(); ++i) {
const UnicodeString& s = *(const UnicodeString*)strings->elementAt(i);
if (s.isEmpty()) {
continue; // skip the empty string
}
UChar32 c = s.char32At(0);
if ((c & 0xFF) == v) {
return TRUE;
}
}
}
return FALSE;
}
/**
* Implementation of UnicodeMatcher::matches(). Always matches the
* longest possible multichar string.
*/
UMatchDegree UnicodeSet::matches(const Replaceable& text,
int32_t& offset,
int32_t limit,
UBool incremental) {
if (offset == limit) {
if (contains(U_ETHER)) {
return incremental ? U_PARTIAL_MATCH : U_MATCH;
} else {
return U_MISMATCH;
}
} else {
if (hasStrings()) { // try strings first
// might separate forward and backward loops later
// for now they are combined
// TODO Improve efficiency of this, at least in the forward
// direction, if not in both. In the forward direction we
// can assume the strings are sorted.
int32_t i;
UBool forward = offset < limit;
// firstChar is the leftmost char to match in the
// forward direction or the rightmost char to match in
// the reverse direction.
UChar firstChar = text.charAt(offset);
// If there are multiple strings that can match we
// return the longest match.
int32_t highWaterLength = 0;
for (i=0; i<strings->size(); ++i) {
const UnicodeString& trial = *(const UnicodeString*)strings->elementAt(i);
if (trial.isEmpty()) {
continue; // skip the empty string
}
UChar c = trial.charAt(forward ? 0 : trial.length() - 1);
// Strings are sorted, so we can optimize in the
// forward direction.
if (forward && c > firstChar) break;
if (c != firstChar) continue;
int32_t matchLen = matchRest(text, offset, limit, trial);
if (incremental) {
int32_t maxLen = forward ? limit-offset : offset-limit;
if (matchLen == maxLen) {
// We have successfully matched but only up to limit.
return U_PARTIAL_MATCH;
}
}
if (matchLen == trial.length()) {
// We have successfully matched the whole string.
if (matchLen > highWaterLength) {
highWaterLength = matchLen;
}
// In the forward direction we know strings
// are sorted so we can bail early.
if (forward && matchLen < highWaterLength) {
break;
}
continue;
}
}
// We've checked all strings without a partial match.
// If we have full matches, return the longest one.
if (highWaterLength != 0) {
offset += forward ? highWaterLength : -highWaterLength;
return U_MATCH;
}
}
return UnicodeFilter::matches(text, offset, limit, incremental);
}
}
/**
* Returns the longest match for s in text at the given position.
* If limit > start then match forward from start+1 to limit
* matching all characters except s.charAt(0). If limit < start,
* go backward starting from start-1 matching all characters
* except s.charAt(s.length()-1). This method assumes that the
* first character, text.charAt(start), matches s, so it does not
* check it.
* @param text the text to match
* @param start the first character to match. In the forward
* direction, text.charAt(start) is matched against s.charAt(0).
* In the reverse direction, it is matched against
* s.charAt(s.length()-1).
* @param limit the limit offset for matching, either last+1 in
* the forward direction, or last-1 in the reverse direction,
* where last is the index of the last character to match.
* @return If part of s matches up to the limit, return |limit -
* start|. If all of s matches before reaching the limit, return
* s.length(). If there is a mismatch between s and text, return
* 0
*/
int32_t UnicodeSet::matchRest(const Replaceable& text,
int32_t start, int32_t limit,
const UnicodeString& s) {
int32_t i;
int32_t maxLen;
int32_t slen = s.length();
if (start < limit) {
maxLen = limit - start;
if (maxLen > slen) maxLen = slen;
for (i = 1; i < maxLen; ++i) {
if (text.charAt(start + i) != s.charAt(i)) return 0;
}
} else {
maxLen = start - limit;
if (maxLen > slen) maxLen = slen;
--slen; // <=> slen = s.length() - 1;
for (i = 1; i < maxLen; ++i) {
if (text.charAt(start - i) != s.charAt(slen - i)) return 0;
}
}
return maxLen;
}
/**
* Implement of UnicodeMatcher
*/
void UnicodeSet::addMatchSetTo(UnicodeSet& toUnionTo) const {
toUnionTo.addAll(*this);
}
/**
* Returns the index of the given character within this set, where
* the set is ordered by ascending code point. If the character
* is not in this set, return -1. The inverse of this method is
* <code>charAt()</code>.
* @return an index from 0..size()-1, or -1
*/
int32_t UnicodeSet::indexOf(UChar32 c) const {
if (c < MIN_VALUE || c > MAX_VALUE) {
return -1;
}
int32_t i = 0;
int32_t n = 0;
for (;;) {
UChar32 start = list[i++];
if (c < start) {
return -1;
}
UChar32 limit = list[i++];
if (c < limit) {
return n + c - start;
}
n += limit - start;
}
}
/**
* Returns the character at the given index within this set, where
* the set is ordered by ascending code point. If the index is
* out of range, return (UChar32)-1. The inverse of this method is
* <code>indexOf()</code>.
* @param index an index from 0..size()-1
* @return the character at the given index, or (UChar32)-1.
*/
UChar32 UnicodeSet::charAt(int32_t index) const {
if (index >= 0) {
// len2 is the largest even integer <= len, that is, it is len
// for even values and len-1 for odd values. With odd values
// the last entry is UNICODESET_HIGH.
int32_t len2 = len & ~1;
for (int32_t i=0; i < len2;) {
UChar32 start = list[i++];
int32_t count = list[i++] - start;
if (index < count) {
return (UChar32)(start + index);
}
index -= count;
}
}
return (UChar32)-1;
}
/**
* Make this object represent the range <code>start - end</code>.
* If <code>end > start</code> then this object is set to an
* an empty range.
*
* @param start first character in the set, inclusive
* @rparam end last character in the set, inclusive
*/
UnicodeSet& UnicodeSet::set(UChar32 start, UChar32 end) {
clear();
complement(start, end);
return *this;
}
/**
* Adds the specified range to this set if it is not already
* present. If this set already contains the specified range,
* the call leaves this set unchanged. If <code>end > start</code>
* then an empty range is added, leaving the set unchanged.
*
* @param start first character, inclusive, of range to be added
* to this set.
* @param end last character, inclusive, of range to be added
* to this set.
*/
UnicodeSet& UnicodeSet::add(UChar32 start, UChar32 end) {
if (pinCodePoint(start) < pinCodePoint(end)) {
UChar32 limit = end + 1;
// Fast path for adding a new range after the last one.
// Odd list length: [..., lastStart, lastLimit, HIGH]
if ((len & 1) != 0) {
// If the list is empty, set lastLimit low enough to not be adjacent to 0.
UChar32 lastLimit = len == 1 ? -2 : list[len - 2];
if (lastLimit <= start && !isFrozen() && !isBogus()) {
if (lastLimit == start) {
// Extend the last range.
list[len - 2] = limit;
if (limit == UNICODESET_HIGH) {
--len;
}
} else {
list[len - 1] = start;
if (limit < UNICODESET_HIGH) {
if (ensureCapacity(len + 2)) {
list[len++] = limit;
list[len++] = UNICODESET_HIGH;
}
} else { // limit == UNICODESET_HIGH
if (ensureCapacity(len + 1)) {
list[len++] = UNICODESET_HIGH;
}
}
}
releasePattern();
return *this;
}
}
// This is slow. Could be much faster using findCodePoint(start)
// and modifying the list, dealing with adjacent & overlapping ranges.
UChar32 range[3] = { start, limit, UNICODESET_HIGH };
add(range, 2, 0);
} else if (start == end) {
add(start);
}
return *this;
}
// #define DEBUG_US_ADD
#ifdef DEBUG_US_ADD
#include <stdio.h>
void dump(UChar32 c) {
if (c <= 0xFF) {
printf("%c", (char)c);
} else {
printf("U+%04X", c);
}
}
void dump(const UChar32* list, int32_t len) {
printf("[");
for (int32_t i=0; i<len; ++i) {
if (i != 0) printf(", ");
dump(list[i]);
}
printf("]");
}
#endif
/**
* Adds the specified character to this set if it is not already
* present. If this set already contains the specified character,
* the call leaves this set unchanged.
*/
UnicodeSet& UnicodeSet::add(UChar32 c) {
// find smallest i such that c < list[i]
// if odd, then it is IN the set
// if even, then it is OUT of the set
int32_t i = findCodePoint(pinCodePoint(c));
// already in set?
if ((i & 1) != 0 || isFrozen() || isBogus()) return *this;
// HIGH is 0x110000
// assert(list[len-1] == HIGH);
// empty = [HIGH]
// [start_0, limit_0, start_1, limit_1, HIGH]
// [..., start_k-1, limit_k-1, start_k, limit_k, ..., HIGH]
// ^
// list[i]
// i == 0 means c is before the first range
#ifdef DEBUG_US_ADD
printf("Add of ");
dump(c);
printf(" found at %d", i);
printf(": ");
dump(list, len);
printf(" => ");
#endif
if (c == list[i]-1) {
// c is before start of next range
list[i] = c;
// if we touched the HIGH mark, then add a new one
if (c == (UNICODESET_HIGH - 1)) {
if (!ensureCapacity(len+1)) {
// ensureCapacity will mark the object as Bogus if OOM failure happens.
return *this;
}
list[len++] = UNICODESET_HIGH;
}
if (i > 0 && c == list[i-1]) {
// collapse adjacent ranges
// [..., start_k-1, c, c, limit_k, ..., HIGH]
// ^
// list[i]
//for (int32_t k=i-1; k<len-2; ++k) {
// list[k] = list[k+2];
//}
UChar32* dst = list + i - 1;
UChar32* src = dst + 2;
UChar32* srclimit = list + len;
while (src < srclimit) *(dst++) = *(src++);
len -= 2;
}
}
else if (i > 0 && c == list[i-1]) {
// c is after end of prior range
list[i-1]++;
// no need to check for collapse here
}
else {
// At this point we know the new char is not adjacent to
// any existing ranges, and it is not 10FFFF.
// [..., start_k-1, limit_k-1, start_k, limit_k, ..., HIGH]
// ^
// list[i]
// [..., start_k-1, limit_k-1, c, c+1, start_k, limit_k, ..., HIGH]
// ^
// list[i]
if (!ensureCapacity(len+2)) {
// ensureCapacity will mark the object as Bogus if OOM failure happens.
return *this;
}
UChar32 *p = list + i;
uprv_memmove(p + 2, p, (len - i) * sizeof(*p));
list[i] = c;
list[i+1] = c+1;
len += 2;
}
#ifdef DEBUG_US_ADD
dump(list, len);
printf("\n");
for (i=1; i<len; ++i) {
if (list[i] <= list[i-1]) {
// Corrupt array!
printf("ERROR: list has been corrupted\n");
exit(1);
}
}
#endif
releasePattern();
return *this;
}
/**
* Adds the specified multicharacter to this set if it is not already
* present. If this set already contains the multicharacter,
* the call leaves this set unchanged.
* Thus "ch" => {"ch"}
*
* @param s the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::add(const UnicodeString& s) {
if (isFrozen() || isBogus()) return *this;
int32_t cp = getSingleCP(s);
if (cp < 0) {
if (!stringsContains(s)) {
_add(s);
releasePattern();
}
} else {
add((UChar32)cp);
}
return *this;
}
/**
* Adds the given string, in order, to 'strings'. The given string
* must have been checked by the caller to not already be in 'strings'.
*/
void UnicodeSet::_add(const UnicodeString& s) {
if (isFrozen() || isBogus()) {
return;
}
UErrorCode ec = U_ZERO_ERROR;
if (strings == nullptr && !allocateStrings(ec)) {
setToBogus();
return;
}
UnicodeString* t = new UnicodeString(s);
if (t == NULL) { // Check for memory allocation error.
setToBogus();
return;
}
strings->sortedInsert(t, compareUnicodeString, ec);
if (U_FAILURE(ec)) {
setToBogus();
delete t;
}
}
/**
* @return a code point IF the string consists of a single one.
* otherwise returns -1.
* @param string to test
*/
int32_t UnicodeSet::getSingleCP(const UnicodeString& s) {
int32_t sLength = s.length();
if (sLength == 1) return s.charAt(0);
if (sLength == 2) {
UChar32 cp = s.char32At(0);
if (cp > 0xFFFF) { // is surrogate pair
return cp;
}
}
return -1;
}
/**
* Adds each of the characters in this string to the set. Thus "ch" => {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::addAll(const UnicodeString& s) {
UChar32 cp;
for (int32_t i = 0; i < s.length(); i += U16_LENGTH(cp)) {
cp = s.char32At(i);
add(cp);
}
return *this;
}
/**
* Retains EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::retainAll(const UnicodeString& s) {
UnicodeSet set;
set.addAll(s);
retainAll(set);
return *this;
}
/**
* Complement EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::complementAll(const UnicodeString& s) {
UnicodeSet set;
set.addAll(s);
complementAll(set);
return *this;
}
/**
* Remove EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::removeAll(const UnicodeString& s) {
UnicodeSet set;
set.addAll(s);
removeAll(set);
return *this;
}
UnicodeSet& UnicodeSet::removeAllStrings() {
if (!isFrozen() && hasStrings()) {
strings->removeAllElements();
releasePattern();
}
return *this;
}
/**
* Makes a set from a multicharacter string. Thus "ch" => {"ch"}
* <br><b>Warning: you cannot add an empty string ("") to a UnicodeSet.</b>
* @param the source string
* @return a newly created set containing the given string
*/
UnicodeSet* U_EXPORT2 UnicodeSet::createFrom(const UnicodeString& s) {
UnicodeSet *set = new UnicodeSet();
if (set != NULL) { // Check for memory allocation error.
set->add(s);
}
return set;
}
/**
* Makes a set from each of the characters in the string. Thus "ch" => {"c", "h"}
* @param the source string
* @return a newly created set containing the given characters
*/
UnicodeSet* U_EXPORT2 UnicodeSet::createFromAll(const UnicodeString& s) {
UnicodeSet *set = new UnicodeSet();
if (set != NULL) { // Check for memory allocation error.
set->addAll(s);
}
return set;
}
/**
* Retain only the elements in this set that are contained in the
* specified range. If <code>end > start</code> then an empty range is
* retained, leaving the set empty.
*
* @param start first character, inclusive, of range to be retained
* to this set.
* @param end last character, inclusive, of range to be retained
* to this set.
*/
UnicodeSet& UnicodeSet::retain(UChar32 start, UChar32 end) {
if (pinCodePoint(start) <= pinCodePoint(end)) {
UChar32 range[3] = { start, end+1, UNICODESET_HIGH };
retain(range, 2, 0);
} else {
clear();
}
return *this;
}
UnicodeSet& UnicodeSet::retain(UChar32 c) {
return retain(c, c);
}
UnicodeSet& UnicodeSet::retain(const UnicodeString &s) {
if (isFrozen() || isBogus()) { return *this; }
UChar32 cp = getSingleCP(s);
if (cp < 0) {
bool isIn = stringsContains(s);
// Check for getRangeCount() first to avoid somewhat-expensive size()
// when there are single code points.
if (isIn && getRangeCount() == 0 && size() == 1) {
return *this;
}
clear();
if (isIn) {
_add(s);
}
} else {
retain(cp, cp);
}
return *this;
}
/**
* Removes the specified range from this set if it is present.
* The set will not contain the specified range once the call
* returns. If <code>end > start</code> then an empty range is
* removed, leaving the set unchanged.
*
* @param start first character, inclusive, of range to be removed
* from this set.
* @param end last character, inclusive, of range to be removed
* from this set.
*/
UnicodeSet& UnicodeSet::remove(UChar32 start, UChar32 end) {
if (pinCodePoint(start) <= pinCodePoint(end)) {
UChar32 range[3] = { start, end+1, UNICODESET_HIGH };
retain(range, 2, 2);
}
return *this;
}
/**
* Removes the specified character from this set if it is present.
* The set will not contain the specified range once the call
* returns.
*/
UnicodeSet& UnicodeSet::remove(UChar32 c) {
return remove(c, c);
}
/**
* Removes the specified string from this set if it is present.
* The set will not contain the specified character once the call
* returns.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::remove(const UnicodeString& s) {
if (isFrozen() || isBogus()) return *this;
int32_t cp = getSingleCP(s);
if (cp < 0) {
if (strings != nullptr && strings->removeElement((void*) &s)) {
releasePattern();
}
} else {
remove((UChar32)cp, (UChar32)cp);
}
return *this;
}
/**
* Complements the specified range in this set. Any character in
* the range will be removed if it is in this set, or will be
* added if it is not in this set. If <code>end > start</code>
* then an empty range is xor'ed, leaving the set unchanged.
*
* @param start first character, inclusive, of range to be removed
* from this set.
* @param end last character, inclusive, of range to be removed
* from this set.
*/
UnicodeSet& UnicodeSet::complement(UChar32 start, UChar32 end) {
if (isFrozen() || isBogus()) {
return *this;
}
if (pinCodePoint(start) <= pinCodePoint(end)) {
UChar32 range[3] = { start, end+1, UNICODESET_HIGH };
exclusiveOr(range, 2, 0);
}
releasePattern();
return *this;
}
UnicodeSet& UnicodeSet::complement(UChar32 c) {
return complement(c, c);
}
/**
* This is equivalent to
* <code>complement(MIN_VALUE, MAX_VALUE)</code>.
*/
UnicodeSet& UnicodeSet::complement(void) {
if (isFrozen() || isBogus()) {
return *this;
}
if (list[0] == UNICODESET_LOW) {
uprv_memmove(list, list + 1, (size_t)(len-1)*sizeof(UChar32));
--len;
} else {
if (!ensureCapacity(len+1)) {
return *this;
}
uprv_memmove(list + 1, list, (size_t)len*sizeof(UChar32));
list[0] = UNICODESET_LOW;
++len;
}
releasePattern();
return *this;
}
/**
* Complement the specified string in this set.
* The set will not contain the specified string once the call
* returns.
*
* @param s the string to complement
* @return this object, for chaining
*/
UnicodeSet& UnicodeSet::complement(const UnicodeString& s) {
if (isFrozen() || isBogus()) return *this;
int32_t cp = getSingleCP(s);
if (cp < 0) {
if (stringsContains(s)) {
strings->removeElement((void*) &s);
} else {
_add(s);
}
releasePattern();
} else {
complement((UChar32)cp, (UChar32)cp);
}
return *this;
}
/**
* Adds all of the elements in the specified set to this set if
* they're not already present. This operation effectively
* modifies this set so that its value is the <i>union</i> of the two
* sets. The behavior of this operation is unspecified if the specified
* collection is modified while the operation is in progress.
*
* @param c set whose elements are to be added to this set.
* @see #add(char, char)
*/
UnicodeSet& UnicodeSet::addAll(const UnicodeSet& c) {
if ( c.len>0 && c.list!=NULL ) {
add(c.list, c.len, 0);
}
// Add strings in order
if ( c.strings!=NULL ) {
for (int32_t i=0; i<c.strings->size(); ++i) {
const UnicodeString* s = (const UnicodeString*)c.strings->elementAt(i);
if (!stringsContains(*s)) {
_add(*s);
}
}
}
return *this;
}
/**
* Retains only the elements in this set that are contained in the
* specified set. In other words, removes from this set all of
* its elements that are not contained in the specified set. This
* operation effectively modifies this set so that its value is
* the <i>intersection</i> of the two sets.
*
* @param c set that defines which elements this set will retain.
*/
UnicodeSet& UnicodeSet::retainAll(const UnicodeSet& c) {
if (isFrozen() || isBogus()) {
return *this;
}
retain(c.list, c.len, 0);
if (hasStrings()) {
if (!c.hasStrings()) {
strings->removeAllElements();
} else {
strings->retainAll(*c.strings);
}
}
return *this;
}
/**
* Removes from this set all of its elements that are contained in the
* specified set. This operation effectively modifies this
* set so that its value is the <i>asymmetric set difference</i> of
* the two sets.
*
* @param c set that defines which elements will be removed from
* this set.
*/
UnicodeSet& UnicodeSet::removeAll(const UnicodeSet& c) {
if (isFrozen() || isBogus()) {
return *this;
}
retain(c.list, c.len, 2);
if (hasStrings() && c.hasStrings()) {
strings->removeAll(*c.strings);
}
return *this;
}
/**
* Complements in this set all elements contained in the specified
* set. Any character in the other set will be removed if it is
* in this set, or will be added if it is not in this set.
*
* @param c set that defines which elements will be xor'ed from
* this set.
*/
UnicodeSet& UnicodeSet::complementAll(const UnicodeSet& c) {
if (isFrozen() || isBogus()) {
return *this;
}
exclusiveOr(c.list, c.len, 0);
if (c.strings != nullptr) {
for (int32_t i=0; i<c.strings->size(); ++i) {
void* e = c.strings->elementAt(i);
if (strings == nullptr || !strings->removeElement(e)) {
_add(*(const UnicodeString*)e);
}
}
}
return *this;
}
/**
* Removes all of the elements from this set. This set will be
* empty after this call returns.
*/
UnicodeSet& UnicodeSet::clear(void) {
if (isFrozen()) {
return *this;
}
list[0] = UNICODESET_HIGH;
len = 1;
releasePattern();
if (strings != NULL) {
strings->removeAllElements();
}
// Remove bogus
fFlags = 0;
return *this;
}
/**
* Iteration method that returns the number of ranges contained in
* this set.
* @see #getRangeStart
* @see #getRangeEnd
*/
int32_t UnicodeSet::getRangeCount() const {
return len/2;
}
/**
* Iteration method that returns the first character in the
* specified range of this set.
* @see #getRangeCount
* @see #getRangeEnd
*/
UChar32 UnicodeSet::getRangeStart(int32_t index) const {
return list[index*2];
}
/**
* Iteration method that returns the last character in the
* specified range of this set.
* @see #getRangeStart
* @see #getRangeEnd
*/
UChar32 UnicodeSet::getRangeEnd(int32_t index) const {
return list[index*2 + 1] - 1;
}
const UnicodeString* UnicodeSet::getString(int32_t index) const {
return (const UnicodeString*) strings->elementAt(index);
}
/**
* Reallocate this objects internal structures to take up the least
* possible space, without changing this object's value.
*/
UnicodeSet& UnicodeSet::compact() {
if (isFrozen() || isBogus()) {
return *this;
}
// Delete buffer first to defragment memory less.
if (buffer != stackList) {
uprv_free(buffer);
buffer = NULL;
bufferCapacity = 0;
}
if (list == stackList) {
// pass
} else if (len <= INITIAL_CAPACITY) {
uprv_memcpy(stackList, list, len * sizeof(UChar32));
uprv_free(list);
list = stackList;
capacity = INITIAL_CAPACITY;
} else if ((len + 7) < capacity) {
// If we have more than a little unused capacity, shrink it to len.
UChar32* temp = (UChar32*) uprv_realloc(list, sizeof(UChar32) * len);
if (temp) {
list = temp;
capacity = len;
}
// else what the heck happened?! We allocated less memory!
// Oh well. We'll keep our original array.
}
if (strings != nullptr && strings->isEmpty()) {
delete strings;
strings = nullptr;
}
return *this;
}
#ifdef DEBUG_SERIALIZE
#include <stdio.h>
#endif
/**
* Deserialize constructor.
*/
UnicodeSet::UnicodeSet(const uint16_t data[], int32_t dataLen, ESerialization serialization,
UErrorCode &ec) {
if(U_FAILURE(ec)) {
setToBogus();
return;
}
if( (serialization != kSerialized)
|| (data==NULL)
|| (dataLen < 1)) {
ec = U_ILLEGAL_ARGUMENT_ERROR;
setToBogus();
return;
}
// bmp?
int32_t headerSize = ((data[0]&0x8000)) ?2:1;
int32_t bmpLength = (headerSize==1)?data[0]:data[1];
int32_t newLength = (((data[0]&0x7FFF)-bmpLength)/2)+bmpLength;
#ifdef DEBUG_SERIALIZE
printf("dataLen %d headerSize %d bmpLen %d len %d. data[0]=%X/%X/%X/%X\n", dataLen,headerSize,bmpLength,newLength, data[0],data[1],data[2],data[3]);
#endif
if(!ensureCapacity(newLength + 1)) { // +1 for HIGH
return;
}
// copy bmp
int32_t i;
for(i = 0; i< bmpLength;i++) {
list[i] = data[i+headerSize];
#ifdef DEBUG_SERIALIZE
printf("<<16@%d[%d] %X\n", i+headerSize, i, list[i]);
#endif
}
// copy smp
for(i=bmpLength;i<newLength;i++) {
list[i] = ((UChar32)data[headerSize+bmpLength+(i-bmpLength)*2+0] << 16) +
((UChar32)data[headerSize+bmpLength+(i-bmpLength)*2+1]);
#ifdef DEBUG_SERIALIZE
printf("<<32@%d+[%d] %lX\n", headerSize+bmpLength+i, i, list[i]);
#endif
}
U_ASSERT(i == newLength);
if (i == 0 || list[i - 1] != UNICODESET_HIGH) {
list[i++] = UNICODESET_HIGH;
}
len = i;
}
int32_t UnicodeSet::serialize(uint16_t *dest, int32_t destCapacity, UErrorCode& ec) const {
int32_t bmpLength, length, destLength;
if (U_FAILURE(ec)) {
return 0;
}
if (destCapacity<0 || (destCapacity>0 && dest==NULL)) {
ec=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* count necessary 16-bit units */
length=this->len-1; // Subtract 1 to ignore final UNICODESET_HIGH
// assert(length>=0);
if (length==0) {
/* empty set */
if (destCapacity>0) {
*dest=0;
} else {
ec=U_BUFFER_OVERFLOW_ERROR;
}
return 1;
}
/* now length>0 */
if (this->list[length-1]<=0xffff) {
/* all BMP */
bmpLength=length;
} else if (this->list[0]>=0x10000) {
/* all supplementary */
bmpLength=0;
length*=2;
} else {
/* some BMP, some supplementary */
for (bmpLength=0; bmpLength<length && this->list[bmpLength]<=0xffff; ++bmpLength) {}
length=bmpLength+2*(length-bmpLength);
}
#ifdef DEBUG_SERIALIZE
printf(">> bmpLength%d length%d len%d\n", bmpLength, length, len);
#endif
/* length: number of 16-bit array units */
if (length>0x7fff) {
/* there are only 15 bits for the length in the first serialized word */
ec=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
/*
* total serialized length:
* number of 16-bit array units (length) +
* 1 length unit (always) +
* 1 bmpLength unit (if there are supplementary values)
*/
destLength=length+((length>bmpLength)?2:1);
if (destLength<=destCapacity) {
const UChar32 *p;
int32_t i;
#ifdef DEBUG_SERIALIZE
printf("writeHdr\n");
#endif
*dest=(uint16_t)length;
if (length>bmpLength) {
*dest|=0x8000;
*++dest=(uint16_t)bmpLength;
}
++dest;
/* write the BMP part of the array */
p=this->list;
for (i=0; i<bmpLength; ++i) {
#ifdef DEBUG_SERIALIZE
printf("writebmp: %x\n", (int)*p);
#endif
*dest++=(uint16_t)*p++;
}
/* write the supplementary part of the array */
for (; i<length; i+=2) {
#ifdef DEBUG_SERIALIZE
printf("write32: %x\n", (int)*p);
#endif
*dest++=(uint16_t)(*p>>16);
*dest++=(uint16_t)*p++;
}
} else {
ec=U_BUFFER_OVERFLOW_ERROR;
}
return destLength;
}
//----------------------------------------------------------------
// Implementation: Utility methods
//----------------------------------------------------------------
/**
* Allocate our strings vector and return TRUE if successful.
*/
UBool UnicodeSet::allocateStrings(UErrorCode &status) {
if (U_FAILURE(status)) {
return FALSE;
}
strings = new UVector(uprv_deleteUObject,
uhash_compareUnicodeString, 1, status);
if (strings == NULL) { // Check for memory allocation error.
status = U_MEMORY_ALLOCATION_ERROR;
return FALSE;
}
if (U_FAILURE(status)) {
delete strings;
strings = NULL;
return FALSE;
}
return TRUE;
}
int32_t UnicodeSet::nextCapacity(int32_t minCapacity) {
// Grow exponentially to reduce the frequency of allocations.
if (minCapacity < INITIAL_CAPACITY) {
return minCapacity + INITIAL_CAPACITY;
} else if (minCapacity <= 2500) {
return 5 * minCapacity;
} else {
int32_t newCapacity = 2 * minCapacity;
if (newCapacity > MAX_LENGTH) {
newCapacity = MAX_LENGTH;
}
return newCapacity;
}
}
bool UnicodeSet::ensureCapacity(int32_t newLen) {
if (newLen > MAX_LENGTH) {
newLen = MAX_LENGTH;
}
if (newLen <= capacity) {
return true;
}
int32_t newCapacity = nextCapacity(newLen);
UChar32* temp = (UChar32*) uprv_malloc(newCapacity * sizeof(UChar32));
if (temp == NULL) {
setToBogus(); // set the object to bogus state if an OOM failure occurred.
return false;
}
// Copy only the actual contents.
uprv_memcpy(temp, list, len * sizeof(UChar32));
if (list != stackList) {
uprv_free(list);
}
list = temp;
capacity = newCapacity;
return true;
}
bool UnicodeSet::ensureBufferCapacity(int32_t newLen) {
if (newLen > MAX_LENGTH) {
newLen = MAX_LENGTH;
}
if (newLen <= bufferCapacity) {
return true;
}
int32_t newCapacity = nextCapacity(newLen);
UChar32* temp = (UChar32*) uprv_malloc(newCapacity * sizeof(UChar32));
if (temp == NULL) {
setToBogus();
return false;
}
// The buffer has no contents to be copied.
// It is always filled from scratch after this call.
if (buffer != stackList) {
uprv_free(buffer);
}
buffer = temp;
bufferCapacity = newCapacity;
return true;
}
/**
* Swap list and buffer.
*/
void UnicodeSet::swapBuffers(void) {
// swap list and buffer
UChar32* temp = list;
list = buffer;
buffer = temp;
int32_t c = capacity;
capacity = bufferCapacity;
bufferCapacity = c;
}
void UnicodeSet::setToBogus() {
clear(); // Remove everything in the set.
fFlags = kIsBogus;
}
//----------------------------------------------------------------
// Implementation: Fundamental operators
//----------------------------------------------------------------
static inline UChar32 max(UChar32 a, UChar32 b) {
return (a > b) ? a : b;
}
// polarity = 0, 3 is normal: x xor y
// polarity = 1, 2: x xor ~y == x === y
void UnicodeSet::exclusiveOr(const UChar32* other, int32_t otherLen, int8_t polarity) {
if (isFrozen() || isBogus()) {
return;
}
if (!ensureBufferCapacity(len + otherLen)) {
return;
}
int32_t i = 0, j = 0, k = 0;
UChar32 a = list[i++];
UChar32 b;
if (polarity == 1 || polarity == 2) {
b = UNICODESET_LOW;
if (other[j] == UNICODESET_LOW) { // skip base if already LOW
++j;
b = other[j];
}
} else {
b = other[j++];
}
// simplest of all the routines
// sort the values, discarding identicals!
for (;;) {
if (a < b) {
buffer[k++] = a;
a = list[i++];
} else if (b < a) {
buffer[k++] = b;
b = other[j++];
} else if (a != UNICODESET_HIGH) { // at this point, a == b
// discard both values!
a = list[i++];
b = other[j++];
} else { // DONE!
buffer[k++] = UNICODESET_HIGH;
len = k;
break;
}
}
swapBuffers();
releasePattern();
}
// polarity = 0 is normal: x union y
// polarity = 2: x union ~y
// polarity = 1: ~x union y
// polarity = 3: ~x union ~y
void UnicodeSet::add(const UChar32* other, int32_t otherLen, int8_t polarity) {
if (isFrozen() || isBogus() || other==NULL) {
return;
}
if (!ensureBufferCapacity(len + otherLen)) {
return;
}
int32_t i = 0, j = 0, k = 0;
UChar32 a = list[i++];
UChar32 b = other[j++];
// change from xor is that we have to check overlapping pairs
// polarity bit 1 means a is second, bit 2 means b is.
for (;;) {
switch (polarity) {
case 0: // both first; take lower if unequal
if (a < b) { // take a
// Back up over overlapping ranges in buffer[]
if (k > 0 && a <= buffer[k-1]) {
// Pick latter end value in buffer[] vs. list[]
a = max(list[i], buffer[--k]);
} else {
// No overlap
buffer[k++] = a;
a = list[i];
}
i++; // Common if/else code factored out
polarity ^= 1;
} else if (b < a) { // take b
if (k > 0 && b <= buffer[k-1]) {
b = max(other[j], buffer[--k]);
} else {
buffer[k++] = b;
b = other[j];
}
j++;
polarity ^= 2;
} else { // a == b, take a, drop b
if (a == UNICODESET_HIGH) goto loop_end;
// This is symmetrical; it doesn't matter if
// we backtrack with a or b. - liu
if (k > 0 && a <= buffer[k-1]) {
a = max(list[i], buffer[--k]);
} else {
// No overlap
buffer[k++] = a;
a = list[i];
}
i++;
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 3: // both second; take higher if unequal, and drop other
if (b <= a) { // take a
if (a == UNICODESET_HIGH) goto loop_end;
buffer[k++] = a;
} else { // take b
if (b == UNICODESET_HIGH) goto loop_end;
buffer[k++] = b;
}
a = list[i++];
polarity ^= 1; // factored common code
b = other[j++];
polarity ^= 2;
break;
case 1: // a second, b first; if b < a, overlap
if (a < b) { // no overlap, take a
buffer[k++] = a; a = list[i++]; polarity ^= 1;
} else if (b < a) { // OVERLAP, drop b
b = other[j++];
polarity ^= 2;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 2: // a first, b second; if a < b, overlap
if (b < a) { // no overlap, take b
buffer[k++] = b;
b = other[j++];
polarity ^= 2;
} else if (a < b) { // OVERLAP, drop a
a = list[i++];
polarity ^= 1;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
}
}
loop_end:
buffer[k++] = UNICODESET_HIGH; // terminate
len = k;
swapBuffers();
releasePattern();
}
// polarity = 0 is normal: x intersect y
// polarity = 2: x intersect ~y == set-minus
// polarity = 1: ~x intersect y
// polarity = 3: ~x intersect ~y
void UnicodeSet::retain(const UChar32* other, int32_t otherLen, int8_t polarity) {
if (isFrozen() || isBogus()) {
return;
}
if (!ensureBufferCapacity(len + otherLen)) {
return;
}
int32_t i = 0, j = 0, k = 0;
UChar32 a = list[i++];
UChar32 b = other[j++];
// change from xor is that we have to check overlapping pairs
// polarity bit 1 means a is second, bit 2 means b is.
for (;;) {
switch (polarity) {
case 0: // both first; drop the smaller
if (a < b) { // drop a
a = list[i++];
polarity ^= 1;
} else if (b < a) { // drop b
b = other[j++];
polarity ^= 2;
} else { // a == b, take one, drop other
if (a == UNICODESET_HIGH) goto loop_end;
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 3: // both second; take lower if unequal
if (a < b) { // take a
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
} else if (b < a) { // take b
buffer[k++] = b;
b = other[j++];
polarity ^= 2;
} else { // a == b, take one, drop other
if (a == UNICODESET_HIGH) goto loop_end;
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 1: // a second, b first;
if (a < b) { // NO OVERLAP, drop a
a = list[i++];
polarity ^= 1;
} else if (b < a) { // OVERLAP, take b
buffer[k++] = b;
b = other[j++];
polarity ^= 2;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 2: // a first, b second; if a < b, overlap
if (b < a) { // no overlap, drop b
b = other[j++];
polarity ^= 2;
} else if (a < b) { // OVERLAP, take a
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
}
}
loop_end:
buffer[k++] = UNICODESET_HIGH; // terminate
len = k;
swapBuffers();
releasePattern();
}
/**
* Append the <code>toPattern()</code> representation of a
* string to the given <code>StringBuffer</code>.
*/
void UnicodeSet::_appendToPat(UnicodeString& buf, const UnicodeString& s, UBool
escapeUnprintable) {
UChar32 cp;
for (int32_t i = 0; i < s.length(); i += U16_LENGTH(cp)) {
_appendToPat(buf, cp = s.char32At(i), escapeUnprintable);
}
}
/**
* Append the <code>toPattern()</code> representation of a
* character to the given <code>StringBuffer</code>.
*/
void UnicodeSet::_appendToPat(UnicodeString& buf, UChar32 c, UBool
escapeUnprintable) {
if (escapeUnprintable && ICU_Utility::isUnprintable(c)) {
// Use hex escape notation (\uxxxx or \Uxxxxxxxx) for anything
// unprintable
if (ICU_Utility::escapeUnprintable(buf, c)) {
return;
}
}
// Okay to let ':' pass through
switch (c) {
case u'[':
case u']':
case u'-':
case u'^':
case u'&':
case u'\\':
case u'{':
case u'}':
case u':':
case SymbolTable::SYMBOL_REF:
buf.append(u'\\');
break;
default:
// Escape whitespace
if (PatternProps::isWhiteSpace(c)) {
buf.append(u'\\');
}
break;
}
buf.append(c);
}
/**
* Append a string representation of this set to result. This will be
* a cleaned version of the string passed to applyPattern(), if there
* is one. Otherwise it will be generated.
*/
UnicodeString& UnicodeSet::_toPattern(UnicodeString& result,
UBool escapeUnprintable) const
{
if (pat != NULL) {
int32_t i;
int32_t backslashCount = 0;
for (i=0; i<patLen; ) {
UChar32 c;
U16_NEXT(pat, i, patLen, c);
if (escapeUnprintable && ICU_Utility::isUnprintable(c)) {
// If the unprintable character is preceded by an odd
// number of backslashes, then it has been escaped.
// Before unescaping it, we delete the final
// backslash.
if ((backslashCount % 2) == 1) {
result.truncate(result.length() - 1);
}
ICU_Utility::escapeUnprintable(result, c);
backslashCount = 0;
} else {
result.append(c);
if (c == u'\\') {
++backslashCount;
} else {
backslashCount = 0;
}
}
}
return result;
}
return _generatePattern(result, escapeUnprintable);
}
/**
* Returns a string representation of this set. If the result of
* calling this function is passed to a UnicodeSet constructor, it
* will produce another set that is equal to this one.
*/
UnicodeString& UnicodeSet::toPattern(UnicodeString& result,
UBool escapeUnprintable) const
{
result.truncate(0);
return _toPattern(result, escapeUnprintable);
}
/**
* Generate and append a string representation of this set to result.
* This does not use this.pat, the cleaned up copy of the string
* passed to applyPattern().
*/
UnicodeString& UnicodeSet::_generatePattern(UnicodeString& result,
UBool escapeUnprintable) const
{
result.append(u'[');
// // Check against the predefined categories. We implicitly build
// // up ALL category sets the first time toPattern() is called.
// for (int8_t cat=0; cat<Unicode::GENERAL_TYPES_COUNT; ++cat) {
// if (*this == getCategorySet(cat)) {
// result.append(u':');
// result.append(CATEGORY_NAMES, cat*2, 2);
// return result.append(CATEGORY_CLOSE);
// }
// }
int32_t count = getRangeCount();
// If the set contains at least 2 intervals and includes both
// MIN_VALUE and MAX_VALUE, then the inverse representation will
// be more economical.
if (count > 1 &&
getRangeStart(0) == MIN_VALUE &&
getRangeEnd(count-1) == MAX_VALUE) {
// Emit the inverse
result.append(u'^');
for (int32_t i = 1; i < count; ++i) {
UChar32 start = getRangeEnd(i-1)+1;
UChar32 end = getRangeStart(i)-1;
_appendToPat(result, start, escapeUnprintable);
if (start != end) {
if ((start+1) != end) {
result.append(u'-');
}
_appendToPat(result, end, escapeUnprintable);
}
}
}
// Default; emit the ranges as pairs
else {
for (int32_t i = 0; i < count; ++i) {
UChar32 start = getRangeStart(i);
UChar32 end = getRangeEnd(i);
_appendToPat(result, start, escapeUnprintable);
if (start != end) {
if ((start+1) != end) {
result.append(u'-');
}
_appendToPat(result, end, escapeUnprintable);
}
}
}
if (strings != nullptr) {
for (int32_t i = 0; i<strings->size(); ++i) {
result.append(u'{');
_appendToPat(result,
*(const UnicodeString*) strings->elementAt(i),
escapeUnprintable);
result.append(u'}');
}
}
return result.append(u']');
}
/**
* Release existing cached pattern
*/
void UnicodeSet::releasePattern() {
if (pat) {
uprv_free(pat);
pat = NULL;
patLen = 0;
}
}
/**
* Set the new pattern to cache.
*/
void UnicodeSet::setPattern(const char16_t *newPat, int32_t newPatLen) {
releasePattern();
pat = (UChar *)uprv_malloc((newPatLen + 1) * sizeof(UChar));
if (pat) {
patLen = newPatLen;
u_memcpy(pat, newPat, patLen);
pat[patLen] = 0;
}
// else we don't care if malloc failed. This was just a nice cache.
// We can regenerate an equivalent pattern later when requested.
}
UnicodeSet *UnicodeSet::freeze() {
if(!isFrozen() && !isBogus()) {
compact();
// Optimize contains() and span() and similar functions.
if (hasStrings()) {
stringSpan = new UnicodeSetStringSpan(*this, *strings, UnicodeSetStringSpan::ALL);
if (stringSpan == nullptr) {
setToBogus();
return this;
} else if (!stringSpan->needsStringSpanUTF16()) {
// All strings are irrelevant for span() etc. because
// all of each string's code points are contained in this set.
// Do not check needsStringSpanUTF8() because UTF-8 has at most as
// many relevant strings as UTF-16.
// (Thus needsStringSpanUTF8() implies needsStringSpanUTF16().)
delete stringSpan;
stringSpan = NULL;
}
}
if (stringSpan == NULL) {
// No span-relevant strings: Optimize for code point spans.
bmpSet=new BMPSet(list, len);
if (bmpSet == NULL) { // Check for memory allocation error.
setToBogus();
}
}
}
return this;
}
int32_t UnicodeSet::span(const UChar *s, int32_t length, USetSpanCondition spanCondition) const {
if(length>0 && bmpSet!=NULL) {
return (int32_t)(bmpSet->span(s, s+length, spanCondition)-s);
}
if(length<0) {
length=u_strlen(s);
}
if(length==0) {
return 0;
}
if(stringSpan!=NULL) {
return stringSpan->span(s, length, spanCondition);
} else if(hasStrings()) {
uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ?
UnicodeSetStringSpan::FWD_UTF16_NOT_CONTAINED :
UnicodeSetStringSpan::FWD_UTF16_CONTAINED;
UnicodeSetStringSpan strSpan(*this, *strings, which);
if(strSpan.needsStringSpanUTF16()) {
return strSpan.span(s, length, spanCondition);
}
}
if(spanCondition!=USET_SPAN_NOT_CONTAINED) {
spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values.
}
UChar32 c;
int32_t start=0, prev=0;
do {
U16_NEXT(s, start, length, c);
if(spanCondition!=contains(c)) {
break;
}
} while((prev=start)<length);
return prev;
}
int32_t UnicodeSet::spanBack(const UChar *s, int32_t length, USetSpanCondition spanCondition) const {
if(length>0 && bmpSet!=NULL) {
return (int32_t)(bmpSet->spanBack(s, s+length, spanCondition)-s);
}
if(length<0) {
length=u_strlen(s);
}
if(length==0) {
return 0;
}
if(stringSpan!=NULL) {
return stringSpan->spanBack(s, length, spanCondition);
} else if(hasStrings()) {
uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ?
UnicodeSetStringSpan::BACK_UTF16_NOT_CONTAINED :
UnicodeSetStringSpan::BACK_UTF16_CONTAINED;
UnicodeSetStringSpan strSpan(*this, *strings, which);
if(strSpan.needsStringSpanUTF16()) {
return strSpan.spanBack(s, length, spanCondition);
}
}
if(spanCondition!=USET_SPAN_NOT_CONTAINED) {
spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values.
}
UChar32 c;
int32_t prev=length;
do {
U16_PREV(s, 0, length, c);
if(spanCondition!=contains(c)) {
break;
}
} while((prev=length)>0);
return prev;
}
int32_t UnicodeSet::spanUTF8(const char *s, int32_t length, USetSpanCondition spanCondition) const {
if(length>0 && bmpSet!=NULL) {
const uint8_t *s0=(const uint8_t *)s;
return (int32_t)(bmpSet->spanUTF8(s0, length, spanCondition)-s0);
}
if(length<0) {
length=(int32_t)uprv_strlen(s);
}
if(length==0) {
return 0;
}
if(stringSpan!=NULL) {
return stringSpan->spanUTF8((const uint8_t *)s, length, spanCondition);
} else if(hasStrings()) {
uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ?
UnicodeSetStringSpan::FWD_UTF8_NOT_CONTAINED :
UnicodeSetStringSpan::FWD_UTF8_CONTAINED;
UnicodeSetStringSpan strSpan(*this, *strings, which);
if(strSpan.needsStringSpanUTF8()) {
return strSpan.spanUTF8((const uint8_t *)s, length, spanCondition);
}
}
if(spanCondition!=USET_SPAN_NOT_CONTAINED) {
spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values.
}
UChar32 c;
int32_t start=0, prev=0;
do {
U8_NEXT_OR_FFFD(s, start, length, c);
if(spanCondition!=contains(c)) {
break;
}
} while((prev=start)<length);
return prev;
}
int32_t UnicodeSet::spanBackUTF8(const char *s, int32_t length, USetSpanCondition spanCondition) const {
if(length>0 && bmpSet!=NULL) {
const uint8_t *s0=(const uint8_t *)s;
return bmpSet->spanBackUTF8(s0, length, spanCondition);
}
if(length<0) {
length=(int32_t)uprv_strlen(s);
}
if(length==0) {
return 0;
}
if(stringSpan!=NULL) {
return stringSpan->spanBackUTF8((const uint8_t *)s, length, spanCondition);
} else if(hasStrings()) {
uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ?
UnicodeSetStringSpan::BACK_UTF8_NOT_CONTAINED :
UnicodeSetStringSpan::BACK_UTF8_CONTAINED;
UnicodeSetStringSpan strSpan(*this, *strings, which);
if(strSpan.needsStringSpanUTF8()) {
return strSpan.spanBackUTF8((const uint8_t *)s, length, spanCondition);
}
}
if(spanCondition!=USET_SPAN_NOT_CONTAINED) {
spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values.
}
UChar32 c;
int32_t prev=length;
do {
U8_PREV_OR_FFFD(s, 0, length, c);
if(spanCondition!=contains(c)) {
break;
}
} while((prev=length)>0);
return prev;
}
U_NAMESPACE_END