| // © 2016 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| /* |
| ****************************************************************************** |
| * |
| * Copyright (C) 2000-2016, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| * |
| ****************************************************************************** |
| * file name: ucnvmbcs.cpp |
| * encoding: UTF-8 |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * created on: 2000jul03 |
| * created by: Markus W. Scherer |
| * |
| * The current code in this file replaces the previous implementation |
| * of conversion code from multi-byte codepages to Unicode and back. |
| * This implementation supports the following: |
| * - legacy variable-length codepages with up to 4 bytes per character |
| * - all Unicode code points (up to 0x10ffff) |
| * - efficient distinction of unassigned vs. illegal byte sequences |
| * - it is possible in fromUnicode() to directly deal with simple |
| * stateful encodings (used for EBCDIC_STATEFUL) |
| * - it is possible to convert Unicode code points |
| * to a single zero byte (but not as a fallback except for SBCS) |
| * |
| * Remaining limitations in fromUnicode: |
| * - byte sequences must not have leading zero bytes |
| * - except for SBCS codepages: no fallback mapping from Unicode to a zero byte |
| * - limitation to up to 4 bytes per character |
| * |
| * ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these |
| * limitations and adds m:n character mappings and other features. |
| * See ucnv_ext.h for details. |
| * |
| * Change history: |
| * |
| * 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U, |
| * MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2 |
| * macros to ucnvmbcs.h file |
| */ |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION |
| |
| #include "unicode/ucnv.h" |
| #include "unicode/ucnv_cb.h" |
| #include "unicode/udata.h" |
| #include "unicode/uset.h" |
| #include "unicode/utf8.h" |
| #include "unicode/utf16.h" |
| #include "ucnv_bld.h" |
| #include "ucnvmbcs.h" |
| #include "ucnv_ext.h" |
| #include "ucnv_cnv.h" |
| #include "cmemory.h" |
| #include "cstring.h" |
| #include "umutex.h" |
| #include "ustr_imp.h" |
| |
| /* control optimizations according to the platform */ |
| #define MBCS_UNROLL_SINGLE_TO_BMP 1 |
| #define MBCS_UNROLL_SINGLE_FROM_BMP 0 |
| |
| /* |
| * _MBCSHeader versions 5.3 & 4.3 |
| * (Note that the _MBCSHeader version is in addition to the converter formatVersion.) |
| * |
| * This version is optional. Version 5 is used for incompatible data format changes. |
| * makeconv will continue to generate version 4 files if possible. |
| * |
| * Changes from version 4: |
| * |
| * The main difference is an additional _MBCSHeader field with |
| * - the length (number of uint32_t) of the _MBCSHeader |
| * - flags for further incompatible data format changes |
| * - flags for further, backward compatible data format changes |
| * |
| * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from |
| * the file and needs to be reconstituted at load time. |
| * This requires a utf8Friendly format with an additional mbcsIndex table for fast |
| * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar. |
| * (For details about these structures see below, and see ucnvmbcs.h.) |
| * |
| * utf8Friendly also implies that the fromUnicode mappings are stored in ascending order |
| * of the Unicode code points. (This requires that the .ucm file has the |0 etc. |
| * precision markers for all mappings.) |
| * |
| * All fallbacks have been moved to the extension table, leaving only roundtrips in the |
| * omitted data that can be reconstituted from the toUnicode data. |
| * |
| * Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted. |
| * With only roundtrip mappings in the base fromUnicode data, this part is fully |
| * redundant with the mbcsIndex and will be reconstituted from that (also using the |
| * stage 1 table which contains the information about how stage 2 was compacted). |
| * |
| * The rest of the stage 2 table, the part for code points above maxFastUChar, |
| * is stored in the file and will be appended to the reconstituted part. |
| * |
| * The entire fromUBytes array is omitted from the file and will be reconstitued. |
| * This is done by enumerating all toUnicode roundtrip mappings, performing |
| * each mapping (using the stage 1 and reconstituted stage 2 tables) and |
| * writing instead of reading the byte values. |
| * |
| * _MBCSHeader version 4.3 |
| * |
| * Change from version 4.2: |
| * - Optional utf8Friendly data structures, with 64-entry stage 3 block |
| * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS |
| * files which can be used instead of stages 1 & 2. |
| * Faster lookups for roundtrips from most commonly used characters, |
| * and lookups from UTF-8 byte sequences with a natural bit distribution. |
| * See ucnvmbcs.h for more details. |
| * |
| * Change from version 4.1: |
| * - Added an optional extension table structure at the end of the .cnv file. |
| * It is present if the upper bits of the header flags field contains a non-zero |
| * byte offset to it. |
| * Files that contain only a conversion table and no base table |
| * use the special outputType MBCS_OUTPUT_EXT_ONLY. |
| * These contain the base table name between the MBCS header and the extension |
| * data. |
| * |
| * Change from version 4.0: |
| * - Replace header.reserved with header.fromUBytesLength so that all |
| * fields in the data have length. |
| * |
| * Changes from version 3 (for performance improvements): |
| * - new bit distribution for state table entries |
| * - reordered action codes |
| * - new data structure for single-byte fromUnicode |
| * + stage 2 only contains indexes |
| * + stage 3 stores 16 bits per character with classification bits 15..8 |
| * - no multiplier for stage 1 entries |
| * - stage 2 for non-single-byte codepages contains the index and the flags in |
| * one 32-bit value |
| * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers |
| * |
| * For more details about old versions of the MBCS data structure, see |
| * the corresponding versions of this file. |
| * |
| * Converting stateless codepage data ---------------------------------------*** |
| * (or codepage data with simple states) to Unicode. |
| * |
| * Data structure and algorithm for converting from complex legacy codepages |
| * to Unicode. (Designed before 2000-may-22.) |
| * |
| * The basic idea is that the structure of legacy codepages can be described |
| * with state tables. |
| * When reading a byte stream, each input byte causes a state transition. |
| * Some transitions result in the output of a code point, some result in |
| * "unassigned" or "illegal" output. |
| * This is used here for character conversion. |
| * |
| * The data structure begins with a state table consisting of a row |
| * per state, with 256 entries (columns) per row for each possible input |
| * byte value. |
| * Each entry is 32 bits wide, with two formats distinguished by |
| * the sign bit (bit 31): |
| * |
| * One format for transitional entries (bit 31 not set) for non-final bytes, and |
| * one format for final entries (bit 31 set). |
| * Both formats contain the number of the next state in the same bit |
| * positions. |
| * State 0 is the initial state. |
| * |
| * Most of the time, the offset values of subsequent states are added |
| * up to a scalar value. This value will eventually be the index of |
| * the Unicode code point in a table that follows the state table. |
| * The effect is that the code points for final state table rows |
| * are contiguous. The code points of final state rows follow each other |
| * in the order of the references to those final states by previous |
| * states, etc. |
| * |
| * For some terminal states, the offset is itself the output Unicode |
| * code point (16 bits for a BMP code point or 20 bits for a supplementary |
| * code point (stored as code point minus 0x10000 so that 20 bits are enough). |
| * For others, the code point in the Unicode table is stored with either |
| * one or two code units: one for BMP code points, two for a pair of |
| * surrogates. |
| * All code points for a final state entry take up the same number of code |
| * units, regardless of whether they all actually _use_ the same number |
| * of code units. This is necessary for simple array access. |
| * |
| * An additional feature comes in with what in ICU is called "fallback" |
| * mappings: |
| * |
| * In addition to round-trippable, precise, 1:1 mappings, there are often |
| * mappings defined between similar, though not the same, characters. |
| * Typically, such mappings occur only in fromUnicode mapping tables because |
| * Unicode has a superset repertoire of most other codepages. However, it |
| * is possible to provide such mappings in the toUnicode tables, too. |
| * In this case, the fallback mappings are partly integrated into the |
| * general state tables because the structure of the encoding includes their |
| * byte sequences. |
| * For final entries in an initial state, fallback mappings are stored in |
| * the entry itself like with roundtrip mappings. |
| * For other final entries, they are stored in the code units table if |
| * the entry is for a pair of code units. |
| * For single-unit results in the code units table, there is no space to |
| * alternatively hold a fallback mapping; in this case, the code unit |
| * is stored as U+fffe (unassigned), and the fallback mapping needs to |
| * be looked up by the scalar offset value in a separate table. |
| * |
| * "Unassigned" state entries really mean "structurally unassigned", |
| * i.e., such a byte sequence will never have a mapping result. |
| * |
| * The interpretation of the bits in each entry is as follows: |
| * |
| * Bit 31 not set, not a terminal entry ("transitional"): |
| * 30..24 next state |
| * 23..0 offset delta, to be added up |
| * |
| * Bit 31 set, terminal ("final") entry: |
| * 30..24 next state (regardless of action code) |
| * 23..20 action code: |
| * action codes 0 and 1 result in precise-mapping Unicode code points |
| * 0 valid byte sequence |
| * 19..16 not used, 0 |
| * 15..0 16-bit Unicode BMP code point |
| * never U+fffe or U+ffff |
| * 1 valid byte sequence |
| * 19..0 20-bit Unicode supplementary code point |
| * never U+fffe or U+ffff |
| * |
| * action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points |
| * 2 valid byte sequence (fallback) |
| * 19..16 not used, 0 |
| * 15..0 16-bit Unicode BMP code point as fallback result |
| * 3 valid byte sequence (fallback) |
| * 19..0 20-bit Unicode supplementary code point as fallback result |
| * |
| * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results |
| * depending on the code units they result in |
| * 4 valid byte sequence |
| * 19..9 not used, 0 |
| * 8..0 final offset delta |
| * pointing to one 16-bit code unit which may be |
| * fffe unassigned -- look for a fallback for this offset |
| * ffff illegal |
| * 5 valid byte sequence |
| * 19..9 not used, 0 |
| * 8..0 final offset delta |
| * pointing to two 16-bit code units |
| * (typically UTF-16 surrogates) |
| * the result depends on the first code unit as follows: |
| * 0000..d7ff roundtrip BMP code point (1st alone) |
| * d800..dbff roundtrip surrogate pair (1st, 2nd) |
| * dc00..dfff fallback surrogate pair (1st-400, 2nd) |
| * e000 roundtrip BMP code point (2nd alone) |
| * e001 fallback BMP code point (2nd alone) |
| * fffe unassigned |
| * ffff illegal |
| * (the final offset deltas are at most 255 * 2, |
| * times 2 because of storing code unit pairs) |
| * |
| * 6 unassigned byte sequence |
| * 19..16 not used, 0 |
| * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2) |
| * this does not contain a final offset delta because the main |
| * purpose of this action code is to save scalar offset values; |
| * therefore, fallback values cannot be assigned to byte |
| * sequences that result in this action code |
| * 7 illegal byte sequence |
| * 19..16 not used, 0 |
| * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2) |
| * 8 state change only |
| * 19..0 not used, 0 |
| * useful for state changes in simple stateful encodings, |
| * at Shift-In/Shift-Out codes |
| * |
| * |
| * 9..15 reserved for future use |
| * current implementations will only perform a state change |
| * and ignore bits 19..0 |
| * |
| * An encoding with contiguous ranges of unassigned byte sequences, like |
| * Shift-JIS and especially EUC-TW, can be stored efficiently by having |
| * at least two states for the trail bytes: |
| * One trail byte state that results in code points, and one that only |
| * has "unassigned" and "illegal" terminal states. |
| * |
| * Note: partly by accident, this data structure supports simple stateful |
| * encodings without any additional logic. |
| * Currently, only simple Shift-In/Shift-Out schemes are handled with |
| * appropriate state tables (especially EBCDIC_STATEFUL!). |
| * |
| * MBCS version 2 added: |
| * unassigned and illegal action codes have U+fffe and U+ffff |
| * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP() |
| * |
| * Converting from Unicode to codepage bytes --------------------------------*** |
| * |
| * The conversion data structure for fromUnicode is designed for the known |
| * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to |
| * a sequence of 1..4 bytes, in addition to a flag that indicates if there is |
| * a roundtrip mapping. |
| * |
| * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3 |
| * like in the character properties table. |
| * The beginning of the trie is at offsetFromUTable, the beginning of stage 3 |
| * with the resulting bytes is at offsetFromUBytes. |
| * |
| * Beginning with version 4, single-byte codepages have a significantly different |
| * trie compared to other codepages. |
| * In all cases, the entry in stage 1 is directly the index of the block of |
| * 64 entries in stage 2. |
| * |
| * Single-byte lookup: |
| * |
| * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3. |
| * Stage 3 contains one 16-bit word per result: |
| * Bits 15..8 indicate the kind of result: |
| * f roundtrip result |
| * c fallback result from private-use code point |
| * 8 fallback result from other code points |
| * 0 unassigned |
| * Bits 7..0 contain the codepage byte. A zero byte is always possible. |
| * |
| * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly |
| * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup |
| * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. |
| * ASCII code points can be looked up with a linear array access into stage 3. |
| * See maxFastUChar and other details in ucnvmbcs.h. |
| * |
| * Multi-byte lookup: |
| * |
| * Stage 2 contains a 32-bit word for each 16-block in stage 3: |
| * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results |
| * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) |
| * If this test is false, then a non-zero result will be interpreted as |
| * a fallback mapping. |
| * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char) |
| * |
| * Stage 3 contains 2, 3, or 4 bytes per result. |
| * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness, |
| * while 3 bytes are stored as bytes in big-endian order. |
| * Leading zero bytes are ignored, and the number of bytes is counted. |
| * A zero byte mapping result is possible as a roundtrip result. |
| * For some output types, the actual result is processed from this; |
| * see ucnv_MBCSFromUnicodeWithOffsets(). |
| * |
| * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10), |
| * or (version 3 and up) for BMP-only codepages, it contains 64 entries. |
| * |
| * In version 4.3, a utf8Friendly file contains an mbcsIndex table. |
| * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup |
| * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. |
| * ASCII code points can be looked up with a linear array access into stage 3. |
| * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h. |
| * |
| * In version 3, stage 2 blocks may overlap by multiples of the multiplier |
| * for compaction. |
| * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks) |
| * may overlap by any number of entries. |
| * |
| * MBCS version 2 added: |
| * the converter checks for known output types, which allows |
| * adding new ones without crashing an unaware converter |
| */ |
| |
| /** |
| * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from |
| * consecutive sequences of bytes, starting from the one encoded in value, |
| * to Unicode code points. (Multiple mappings to reduce per-function call overhead.) |
| * Does not currently support m:n mappings or reverse fallbacks. |
| * This function will not be called for sequences of bytes with leading zeros. |
| * |
| * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode() |
| * @param value contains 1..4 bytes of the first byte sequence, right-aligned |
| * @param codePoints resulting Unicode code points, or negative if a byte sequence does |
| * not map to anything |
| * @return TRUE to continue enumeration, FALSE to stop |
| */ |
| typedef UBool U_CALLCONV |
| UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]); |
| |
| static void U_CALLCONV |
| ucnv_MBCSLoad(UConverterSharedData *sharedData, |
| UConverterLoadArgs *pArgs, |
| const uint8_t *raw, |
| UErrorCode *pErrorCode); |
| |
| static void U_CALLCONV |
| ucnv_MBCSUnload(UConverterSharedData *sharedData); |
| |
| static void U_CALLCONV |
| ucnv_MBCSOpen(UConverter *cnv, |
| UConverterLoadArgs *pArgs, |
| UErrorCode *pErrorCode); |
| |
| static UChar32 U_CALLCONV |
| ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, |
| UErrorCode *pErrorCode); |
| |
| static void U_CALLCONV |
| ucnv_MBCSGetStarters(const UConverter* cnv, |
| UBool starters[256], |
| UErrorCode *pErrorCode); |
| |
| U_CDECL_BEGIN |
| static const char* U_CALLCONV |
| ucnv_MBCSGetName(const UConverter *cnv); |
| U_CDECL_END |
| |
| static void U_CALLCONV |
| ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs, |
| int32_t offsetIndex, |
| UErrorCode *pErrorCode); |
| |
| static UChar32 U_CALLCONV |
| ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, |
| UErrorCode *pErrorCode); |
| |
| static void U_CALLCONV |
| ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, |
| UConverterToUnicodeArgs *pToUArgs, |
| UErrorCode *pErrorCode); |
| |
| static void U_CALLCONV |
| ucnv_MBCSGetUnicodeSet(const UConverter *cnv, |
| const USetAdder *sa, |
| UConverterUnicodeSet which, |
| UErrorCode *pErrorCode); |
| |
| static void U_CALLCONV |
| ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, |
| UConverterToUnicodeArgs *pToUArgs, |
| UErrorCode *pErrorCode); |
| |
| static const UConverterImpl _SBCSUTF8Impl={ |
| UCNV_MBCS, |
| |
| ucnv_MBCSLoad, |
| ucnv_MBCSUnload, |
| |
| ucnv_MBCSOpen, |
| NULL, |
| NULL, |
| |
| ucnv_MBCSToUnicodeWithOffsets, |
| ucnv_MBCSToUnicodeWithOffsets, |
| ucnv_MBCSFromUnicodeWithOffsets, |
| ucnv_MBCSFromUnicodeWithOffsets, |
| ucnv_MBCSGetNextUChar, |
| |
| ucnv_MBCSGetStarters, |
| ucnv_MBCSGetName, |
| ucnv_MBCSWriteSub, |
| NULL, |
| ucnv_MBCSGetUnicodeSet, |
| |
| NULL, |
| ucnv_SBCSFromUTF8 |
| }; |
| |
| static const UConverterImpl _DBCSUTF8Impl={ |
| UCNV_MBCS, |
| |
| ucnv_MBCSLoad, |
| ucnv_MBCSUnload, |
| |
| ucnv_MBCSOpen, |
| NULL, |
| NULL, |
| |
| ucnv_MBCSToUnicodeWithOffsets, |
| ucnv_MBCSToUnicodeWithOffsets, |
| ucnv_MBCSFromUnicodeWithOffsets, |
| ucnv_MBCSFromUnicodeWithOffsets, |
| ucnv_MBCSGetNextUChar, |
| |
| ucnv_MBCSGetStarters, |
| ucnv_MBCSGetName, |
| ucnv_MBCSWriteSub, |
| NULL, |
| ucnv_MBCSGetUnicodeSet, |
| |
| NULL, |
| ucnv_DBCSFromUTF8 |
| }; |
| |
| static const UConverterImpl _MBCSImpl={ |
| UCNV_MBCS, |
| |
| ucnv_MBCSLoad, |
| ucnv_MBCSUnload, |
| |
| ucnv_MBCSOpen, |
| NULL, |
| NULL, |
| |
| ucnv_MBCSToUnicodeWithOffsets, |
| ucnv_MBCSToUnicodeWithOffsets, |
| ucnv_MBCSFromUnicodeWithOffsets, |
| ucnv_MBCSFromUnicodeWithOffsets, |
| ucnv_MBCSGetNextUChar, |
| |
| ucnv_MBCSGetStarters, |
| ucnv_MBCSGetName, |
| ucnv_MBCSWriteSub, |
| NULL, |
| ucnv_MBCSGetUnicodeSet, |
| NULL, |
| NULL |
| }; |
| |
| /* Static data is in tools/makeconv/ucnvstat.c for data-based |
| * converters. Be sure to update it as well. |
| */ |
| |
| const UConverterSharedData _MBCSData={ |
| sizeof(UConverterSharedData), 1, |
| NULL, NULL, FALSE, TRUE, &_MBCSImpl, |
| 0, UCNV_MBCS_TABLE_INITIALIZER |
| }; |
| |
| |
| /* GB 18030 data ------------------------------------------------------------ */ |
| |
| /* helper macros for linear values for GB 18030 four-byte sequences */ |
| #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d)) |
| |
| #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30) |
| |
| #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff) |
| |
| /* |
| * Some ranges of GB 18030 where both the Unicode code points and the |
| * GB four-byte sequences are contiguous and are handled algorithmically by |
| * the special callback functions below. |
| * The values are start & end of Unicode & GB codes. |
| * |
| * Note that single surrogates are not mapped by GB 18030 |
| * as of the re-released mapping tables from 2000-nov-30. |
| */ |
| static const uint32_t |
| gb18030Ranges[14][4]={ |
| {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)}, |
| {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)}, |
| {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)}, |
| {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)}, |
| {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)}, |
| {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)}, |
| {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)}, |
| {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)}, |
| {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)}, |
| {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)}, |
| {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)}, |
| {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)}, |
| {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)}, |
| {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)} |
| }; |
| |
| /* bit flag for UConverter.options indicating GB 18030 special handling */ |
| #define _MBCS_OPTION_GB18030 0x8000 |
| |
| /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */ |
| #define _MBCS_OPTION_KEIS 0x01000 |
| #define _MBCS_OPTION_JEF 0x02000 |
| #define _MBCS_OPTION_JIPS 0x04000 |
| |
| #define KEIS_SO_CHAR_1 0x0A |
| #define KEIS_SO_CHAR_2 0x42 |
| #define KEIS_SI_CHAR_1 0x0A |
| #define KEIS_SI_CHAR_2 0x41 |
| |
| #define JEF_SO_CHAR 0x28 |
| #define JEF_SI_CHAR 0x29 |
| |
| #define JIPS_SO_CHAR_1 0x1A |
| #define JIPS_SO_CHAR_2 0x70 |
| #define JIPS_SI_CHAR_1 0x1A |
| #define JIPS_SI_CHAR_2 0x71 |
| |
| enum SISO_Option { |
| SI, |
| SO |
| }; |
| typedef enum SISO_Option SISO_Option; |
| |
| static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) { |
| int32_t SISOLength = 0; |
| |
| switch (option) { |
| case SI: |
| if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { |
| value[0] = KEIS_SI_CHAR_1; |
| value[1] = KEIS_SI_CHAR_2; |
| SISOLength = 2; |
| } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { |
| value[0] = JEF_SI_CHAR; |
| SISOLength = 1; |
| } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { |
| value[0] = JIPS_SI_CHAR_1; |
| value[1] = JIPS_SI_CHAR_2; |
| SISOLength = 2; |
| } else { |
| value[0] = UCNV_SI; |
| SISOLength = 1; |
| } |
| break; |
| case SO: |
| if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { |
| value[0] = KEIS_SO_CHAR_1; |
| value[1] = KEIS_SO_CHAR_2; |
| SISOLength = 2; |
| } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { |
| value[0] = JEF_SO_CHAR; |
| SISOLength = 1; |
| } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { |
| value[0] = JIPS_SO_CHAR_1; |
| value[1] = JIPS_SO_CHAR_2; |
| SISOLength = 2; |
| } else { |
| value[0] = UCNV_SO; |
| SISOLength = 1; |
| } |
| break; |
| default: |
| /* Should never happen. */ |
| break; |
| } |
| |
| return SISOLength; |
| } |
| |
| /* Miscellaneous ------------------------------------------------------------ */ |
| |
| /* similar to ucnv_MBCSGetNextUChar() but recursive */ |
| static UBool |
| enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[], |
| int32_t state, uint32_t offset, |
| uint32_t value, |
| UConverterEnumToUCallback *callback, const void *context, |
| UErrorCode *pErrorCode) { |
| UChar32 codePoints[32]; |
| const int32_t *row; |
| const uint16_t *unicodeCodeUnits; |
| UChar32 anyCodePoints; |
| int32_t b, limit; |
| |
| row=mbcsTable->stateTable[state]; |
| unicodeCodeUnits=mbcsTable->unicodeCodeUnits; |
| |
| value<<=8; |
| anyCodePoints=-1; /* becomes non-negative if there is a mapping */ |
| |
| b=(stateProps[state]&0x38)<<2; |
| if(b==0 && stateProps[state]>=0x40) { |
| /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */ |
| codePoints[0]=U_SENTINEL; |
| b=1; |
| } |
| limit=((stateProps[state]&7)+1)<<5; |
| while(b<limit) { |
| int32_t entry=row[b]; |
| if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry); |
| if(stateProps[nextState]>=0) { |
| /* recurse to a state with non-ignorable actions */ |
| if(!enumToU( |
| mbcsTable, stateProps, nextState, |
| offset+MBCS_ENTRY_TRANSITION_OFFSET(entry), |
| value|(uint32_t)b, |
| callback, context, |
| pErrorCode)) { |
| return FALSE; |
| } |
| } |
| codePoints[b&0x1f]=U_SENTINEL; |
| } else { |
| UChar32 c; |
| int32_t action; |
| |
| /* |
| * An if-else-if chain provides more reliable performance for |
| * the most common cases compared to a switch. |
| */ |
| action=MBCS_ENTRY_FINAL_ACTION(entry); |
| if(action==MBCS_STATE_VALID_DIRECT_16) { |
| /* output BMP code point */ |
| c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| } else if(action==MBCS_STATE_VALID_16) { |
| int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); |
| c=unicodeCodeUnits[finalOffset]; |
| if(c<0xfffe) { |
| /* output BMP code point */ |
| } else { |
| c=U_SENTINEL; |
| } |
| } else if(action==MBCS_STATE_VALID_16_PAIR) { |
| int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); |
| c=unicodeCodeUnits[finalOffset++]; |
| if(c<0xd800) { |
| /* output BMP code point below 0xd800 */ |
| } else if(c<=0xdbff) { |
| /* output roundtrip or fallback supplementary code point */ |
| c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00); |
| } else if(c==0xe000) { |
| /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ |
| c=unicodeCodeUnits[finalOffset]; |
| } else { |
| c=U_SENTINEL; |
| } |
| } else if(action==MBCS_STATE_VALID_DIRECT_20) { |
| /* output supplementary code point */ |
| c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
| } else { |
| c=U_SENTINEL; |
| } |
| |
| codePoints[b&0x1f]=c; |
| anyCodePoints&=c; |
| } |
| if(((++b)&0x1f)==0) { |
| if(anyCodePoints>=0) { |
| if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) { |
| return FALSE; |
| } |
| anyCodePoints=-1; |
| } |
| } |
| } |
| return TRUE; |
| } |
| |
| /* |
| * Only called if stateProps[state]==-1. |
| * A recursive call may do stateProps[state]|=0x40 if this state is the target of an |
| * MBCS_STATE_CHANGE_ONLY. |
| */ |
| static int8_t |
| getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) { |
| const int32_t *row; |
| int32_t min, max, entry, nextState; |
| |
| row=stateTable[state]; |
| stateProps[state]=0; |
| |
| /* find first non-ignorable state */ |
| for(min=0;; ++min) { |
| entry=row[min]; |
| nextState=MBCS_ENTRY_STATE(entry); |
| if(stateProps[nextState]==-1) { |
| getStateProp(stateTable, stateProps, nextState); |
| } |
| if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| if(stateProps[nextState]>=0) { |
| break; |
| } |
| } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { |
| break; |
| } |
| if(min==0xff) { |
| stateProps[state]=-0x40; /* (int8_t)0xc0 */ |
| return stateProps[state]; |
| } |
| } |
| stateProps[state]|=(int8_t)((min>>5)<<3); |
| |
| /* find last non-ignorable state */ |
| for(max=0xff; min<max; --max) { |
| entry=row[max]; |
| nextState=MBCS_ENTRY_STATE(entry); |
| if(stateProps[nextState]==-1) { |
| getStateProp(stateTable, stateProps, nextState); |
| } |
| if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| if(stateProps[nextState]>=0) { |
| break; |
| } |
| } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { |
| break; |
| } |
| } |
| stateProps[state]|=(int8_t)(max>>5); |
| |
| /* recurse further and collect direct-state information */ |
| while(min<=max) { |
| entry=row[min]; |
| nextState=MBCS_ENTRY_STATE(entry); |
| if(stateProps[nextState]==-1) { |
| getStateProp(stateTable, stateProps, nextState); |
| } |
| if(MBCS_ENTRY_IS_FINAL(entry)) { |
| stateProps[nextState]|=0x40; |
| if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) { |
| stateProps[state]|=0x40; |
| } |
| } |
| ++min; |
| } |
| return stateProps[state]; |
| } |
| |
| /* |
| * Internal function enumerating the toUnicode data of an MBCS converter. |
| * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U |
| * table, but could also be used for a future ucnv_getUnicodeSet() option |
| * that includes reverse fallbacks (after updating this function's implementation). |
| * Currently only handles roundtrip mappings. |
| * Does not currently handle extensions. |
| */ |
| static void |
| ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable, |
| UConverterEnumToUCallback *callback, const void *context, |
| UErrorCode *pErrorCode) { |
| /* |
| * Properties for each state, to speed up the enumeration. |
| * Ignorable actions are unassigned/illegal/state-change-only: |
| * They do not lead to mappings. |
| * |
| * Bits 7..6: |
| * 1 direct/initial state (stateful converters have multiple) |
| * 0 non-initial state with transitions or with non-ignorable result actions |
| * -1 final state with only ignorable actions |
| * |
| * Bits 5..3: |
| * The lowest byte value with non-ignorable actions is |
| * value<<5 (rounded down). |
| * |
| * Bits 2..0: |
| * The highest byte value with non-ignorable actions is |
| * (value<<5)&0x1f (rounded up). |
| */ |
| int8_t stateProps[MBCS_MAX_STATE_COUNT]; |
| int32_t state; |
| |
| uprv_memset(stateProps, -1, sizeof(stateProps)); |
| |
| /* recurse from state 0 and set all stateProps */ |
| getStateProp(mbcsTable->stateTable, stateProps, 0); |
| |
| for(state=0; state<mbcsTable->countStates; ++state) { |
| /*if(stateProps[state]==-1) { |
| printf("unused/unreachable <icu:state> %d\n", state); |
| }*/ |
| if(stateProps[state]>=0x40) { |
| /* start from each direct state */ |
| enumToU( |
| mbcsTable, stateProps, state, 0, 0, |
| callback, context, |
| pErrorCode); |
| } |
| } |
| } |
| |
| U_CFUNC void |
| ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData, |
| const USetAdder *sa, |
| UConverterUnicodeSet which, |
| UConverterSetFilter filter, |
| UErrorCode *pErrorCode) { |
| const UConverterMBCSTable *mbcsTable; |
| const uint16_t *table; |
| |
| uint32_t st3; |
| uint16_t st1, maxStage1, st2; |
| |
| UChar32 c; |
| |
| /* enumerate the from-Unicode trie table */ |
| mbcsTable=&sharedData->mbcs; |
| table=mbcsTable->fromUnicodeTable; |
| if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { |
| maxStage1=0x440; |
| } else { |
| maxStage1=0x40; |
| } |
| |
| c=0; /* keep track of the current code point while enumerating */ |
| |
| if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
| const uint16_t *stage2, *stage3, *results; |
| uint16_t minValue; |
| |
| results=(const uint16_t *)mbcsTable->fromUnicodeBytes; |
| |
| /* |
| * Set a threshold variable for selecting which mappings to use. |
| * See ucnv_MBCSSingleFromBMPWithOffsets() and |
| * MBCS_SINGLE_RESULT_FROM_U() for details. |
| */ |
| if(which==UCNV_ROUNDTRIP_SET) { |
| /* use only roundtrips */ |
| minValue=0xf00; |
| } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ { |
| /* use all roundtrip and fallback results */ |
| minValue=0x800; |
| } |
| |
| for(st1=0; st1<maxStage1; ++st1) { |
| st2=table[st1]; |
| if(st2>maxStage1) { |
| stage2=table+st2; |
| for(st2=0; st2<64; ++st2) { |
| if((st3=stage2[st2])!=0) { |
| /* read the stage 3 block */ |
| stage3=results+st3; |
| |
| do { |
| if(*stage3++>=minValue) { |
| sa->add(sa->set, c); |
| } |
| } while((++c&0xf)!=0); |
| } else { |
| c+=16; /* empty stage 3 block */ |
| } |
| } |
| } else { |
| c+=1024; /* empty stage 2 block */ |
| } |
| } |
| } else { |
| const uint32_t *stage2; |
| const uint8_t *stage3, *bytes; |
| uint32_t st3Multiplier; |
| uint32_t value; |
| UBool useFallback; |
| |
| bytes=mbcsTable->fromUnicodeBytes; |
| |
| useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET); |
| |
| switch(mbcsTable->outputType) { |
| case MBCS_OUTPUT_3: |
| case MBCS_OUTPUT_4_EUC: |
| st3Multiplier=3; |
| break; |
| case MBCS_OUTPUT_4: |
| st3Multiplier=4; |
| break; |
| default: |
| st3Multiplier=2; |
| break; |
| } |
| |
| for(st1=0; st1<maxStage1; ++st1) { |
| st2=table[st1]; |
| if(st2>(maxStage1>>1)) { |
| stage2=(const uint32_t *)table+st2; |
| for(st2=0; st2<64; ++st2) { |
| if((st3=stage2[st2])!=0) { |
| /* read the stage 3 block */ |
| stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3; |
| |
| /* get the roundtrip flags for the stage 3 block */ |
| st3>>=16; |
| |
| /* |
| * Add code points for which the roundtrip flag is set, |
| * or which map to non-zero bytes if we use fallbacks. |
| * See ucnv_MBCSFromUnicodeWithOffsets() for details. |
| */ |
| switch(filter) { |
| case UCNV_SET_FILTER_NONE: |
| do { |
| if(st3&1) { |
| sa->add(sa->set, c); |
| stage3+=st3Multiplier; |
| } else if(useFallback) { |
| uint8_t b=0; |
| switch(st3Multiplier) { |
| case 4: |
| b|=*stage3++; |
| U_FALLTHROUGH; |
| case 3: |
| b|=*stage3++; |
| U_FALLTHROUGH; |
| case 2: |
| b|=stage3[0]|stage3[1]; |
| stage3+=2; |
| U_FALLTHROUGH; |
| default: |
| break; |
| } |
| if(b!=0) { |
| sa->add(sa->set, c); |
| } |
| } |
| st3>>=1; |
| } while((++c&0xf)!=0); |
| break; |
| case UCNV_SET_FILTER_DBCS_ONLY: |
| /* Ignore single-byte results (<0x100). */ |
| do { |
| if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) { |
| sa->add(sa->set, c); |
| } |
| st3>>=1; |
| stage3+=2; /* +=st3Multiplier */ |
| } while((++c&0xf)!=0); |
| break; |
| case UCNV_SET_FILTER_2022_CN: |
| /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */ |
| do { |
| if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) { |
| sa->add(sa->set, c); |
| } |
| st3>>=1; |
| stage3+=3; /* +=st3Multiplier */ |
| } while((++c&0xf)!=0); |
| break; |
| case UCNV_SET_FILTER_SJIS: |
| /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */ |
| do { |
| if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) { |
| sa->add(sa->set, c); |
| } |
| st3>>=1; |
| stage3+=2; /* +=st3Multiplier */ |
| } while((++c&0xf)!=0); |
| break; |
| case UCNV_SET_FILTER_GR94DBCS: |
| /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */ |
| do { |
| if( ((st3&1)!=0 || useFallback) && |
| (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) && |
| (uint8_t)(value-0xa1)<=(0xfe - 0xa1) |
| ) { |
| sa->add(sa->set, c); |
| } |
| st3>>=1; |
| stage3+=2; /* +=st3Multiplier */ |
| } while((++c&0xf)!=0); |
| break; |
| case UCNV_SET_FILTER_HZ: |
| /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */ |
| do { |
| if( ((st3&1)!=0 || useFallback) && |
| (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) && |
| (uint8_t)(value-0xa1)<=(0xfe - 0xa1) |
| ) { |
| sa->add(sa->set, c); |
| } |
| st3>>=1; |
| stage3+=2; /* +=st3Multiplier */ |
| } while((++c&0xf)!=0); |
| break; |
| default: |
| *pErrorCode=U_INTERNAL_PROGRAM_ERROR; |
| return; |
| } |
| } else { |
| c+=16; /* empty stage 3 block */ |
| } |
| } |
| } else { |
| c+=1024; /* empty stage 2 block */ |
| } |
| } |
| } |
| |
| ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode); |
| } |
| |
| U_CFUNC void |
| ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData, |
| const USetAdder *sa, |
| UConverterUnicodeSet which, |
| UErrorCode *pErrorCode) { |
| ucnv_MBCSGetFilteredUnicodeSetForUnicode( |
| sharedData, sa, which, |
| sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ? |
| UCNV_SET_FILTER_DBCS_ONLY : |
| UCNV_SET_FILTER_NONE, |
| pErrorCode); |
| } |
| |
| static void U_CALLCONV |
| ucnv_MBCSGetUnicodeSet(const UConverter *cnv, |
| const USetAdder *sa, |
| UConverterUnicodeSet which, |
| UErrorCode *pErrorCode) { |
| if(cnv->options&_MBCS_OPTION_GB18030) { |
| sa->addRange(sa->set, 0, 0xd7ff); |
| sa->addRange(sa->set, 0xe000, 0x10ffff); |
| } else { |
| ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode); |
| } |
| } |
| |
| /* conversion extensions for input not in the main table -------------------- */ |
| |
| /* |
| * Hardcoded extension handling for GB 18030. |
| * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file. |
| * |
| * In the future, conversion extensions may handle m:n mappings and delta tables, |
| * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html |
| * |
| * If an input character cannot be mapped, then these functions set an error |
| * code. The framework will then call the callback function. |
| */ |
| |
| /* |
| * @return if(U_FAILURE) return the code point for cnv->fromUChar32 |
| * else return 0 after output has been written to the target |
| */ |
| static UChar32 |
| _extFromU(UConverter *cnv, const UConverterSharedData *sharedData, |
| UChar32 cp, |
| const UChar **source, const UChar *sourceLimit, |
| uint8_t **target, const uint8_t *targetLimit, |
| int32_t **offsets, int32_t sourceIndex, |
| UBool flush, |
| UErrorCode *pErrorCode) { |
| const int32_t *cx; |
| |
| cnv->useSubChar1=FALSE; |
| |
| if( (cx=sharedData->mbcs.extIndexes)!=NULL && |
| ucnv_extInitialMatchFromU( |
| cnv, cx, |
| cp, source, sourceLimit, |
| (char **)target, (char *)targetLimit, |
| offsets, sourceIndex, |
| flush, |
| pErrorCode) |
| ) { |
| return 0; /* an extension mapping handled the input */ |
| } |
| |
| /* GB 18030 */ |
| if((cnv->options&_MBCS_OPTION_GB18030)!=0) { |
| const uint32_t *range; |
| int32_t i; |
| |
| range=gb18030Ranges[0]; |
| for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) { |
| if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) { |
| /* found the Unicode code point, output the four-byte sequence for it */ |
| uint32_t linear; |
| char bytes[4]; |
| |
| /* get the linear value of the first GB 18030 code in this range */ |
| linear=range[2]-LINEAR_18030_BASE; |
| |
| /* add the offset from the beginning of the range */ |
| linear+=((uint32_t)cp-range[0]); |
| |
| /* turn this into a four-byte sequence */ |
| bytes[3]=(char)(0x30+linear%10); linear/=10; |
| bytes[2]=(char)(0x81+linear%126); linear/=126; |
| bytes[1]=(char)(0x30+linear%10); linear/=10; |
| bytes[0]=(char)(0x81+linear); |
| |
| /* output this sequence */ |
| ucnv_fromUWriteBytes(cnv, |
| bytes, 4, (char **)target, (char *)targetLimit, |
| offsets, sourceIndex, pErrorCode); |
| return 0; |
| } |
| } |
| } |
| |
| /* no mapping */ |
| *pErrorCode=U_INVALID_CHAR_FOUND; |
| return cp; |
| } |
| |
| /* |
| * Input sequence: cnv->toUBytes[0..length[ |
| * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input |
| * else return 0 after output has been written to the target |
| */ |
| static int8_t |
| _extToU(UConverter *cnv, const UConverterSharedData *sharedData, |
| int8_t length, |
| const uint8_t **source, const uint8_t *sourceLimit, |
| UChar **target, const UChar *targetLimit, |
| int32_t **offsets, int32_t sourceIndex, |
| UBool flush, |
| UErrorCode *pErrorCode) { |
| const int32_t *cx; |
| |
| if( (cx=sharedData->mbcs.extIndexes)!=NULL && |
| ucnv_extInitialMatchToU( |
| cnv, cx, |
| length, (const char **)source, (const char *)sourceLimit, |
| target, targetLimit, |
| offsets, sourceIndex, |
| flush, |
| pErrorCode) |
| ) { |
| return 0; /* an extension mapping handled the input */ |
| } |
| |
| /* GB 18030 */ |
| if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) { |
| const uint32_t *range; |
| uint32_t linear; |
| int32_t i; |
| |
| linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]); |
| range=gb18030Ranges[0]; |
| for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) { |
| if(range[2]<=linear && linear<=range[3]) { |
| /* found the sequence, output the Unicode code point for it */ |
| *pErrorCode=U_ZERO_ERROR; |
| |
| /* add the linear difference between the input and start sequences to the start code point */ |
| linear=range[0]+(linear-range[2]); |
| |
| /* output this code point */ |
| ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode); |
| |
| return 0; |
| } |
| } |
| } |
| |
| /* no mapping */ |
| *pErrorCode=U_INVALID_CHAR_FOUND; |
| return length; |
| } |
| |
| /* EBCDIC swap LF<->NL ------------------------------------------------------ */ |
| |
| /* |
| * This code modifies a standard EBCDIC<->Unicode mapping table for |
| * OS/390 (z/OS) Unix System Services (Open Edition). |
| * The difference is in the mapping of Line Feed and New Line control codes: |
| * Standard EBCDIC maps |
| * |
| * <U000A> \x25 |0 |
| * <U0085> \x15 |0 |
| * |
| * but OS/390 USS EBCDIC swaps the control codes for LF and NL, |
| * mapping |
| * |
| * <U000A> \x15 |0 |
| * <U0085> \x25 |0 |
| * |
| * This code modifies a loaded standard EBCDIC<->Unicode mapping table |
| * by copying it into allocated memory and swapping the LF and NL values. |
| * It allows to support the same EBCDIC charset in both versions without |
| * duplicating the entire installed table. |
| */ |
| |
| /* standard EBCDIC codes */ |
| #define EBCDIC_LF 0x25 |
| #define EBCDIC_NL 0x15 |
| |
| /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */ |
| #define EBCDIC_RT_LF 0xf25 |
| #define EBCDIC_RT_NL 0xf15 |
| |
| /* Unicode code points */ |
| #define U_LF 0x0a |
| #define U_NL 0x85 |
| |
| static UBool |
| _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) { |
| UConverterMBCSTable *mbcsTable; |
| |
| const uint16_t *table, *results; |
| const uint8_t *bytes; |
| |
| int32_t (*newStateTable)[256]; |
| uint16_t *newResults; |
| uint8_t *p; |
| char *name; |
| |
| uint32_t stage2Entry; |
| uint32_t size, sizeofFromUBytes; |
| |
| mbcsTable=&sharedData->mbcs; |
| |
| table=mbcsTable->fromUnicodeTable; |
| bytes=mbcsTable->fromUnicodeBytes; |
| results=(const uint16_t *)bytes; |
| |
| /* |
| * Check that this is an EBCDIC table with SBCS portion - |
| * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings. |
| * |
| * If not, ignore the option. Options are always ignored if they do not apply. |
| */ |
| if(!( |
| (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) && |
| mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) && |
| mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL) |
| )) { |
| return FALSE; |
| } |
| |
| if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
| if(!( |
| EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) && |
| EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL) |
| )) { |
| return FALSE; |
| } |
| } else /* MBCS_OUTPUT_2_SISO */ { |
| stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); |
| if(!( |
| MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 && |
| EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF) |
| )) { |
| return FALSE; |
| } |
| |
| stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); |
| if(!( |
| MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 && |
| EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL) |
| )) { |
| return FALSE; |
| } |
| } |
| |
| if(mbcsTable->fromUBytesLength>0) { |
| /* |
| * We _know_ the number of bytes in the fromUnicodeBytes array |
| * starting with header.version 4.1. |
| */ |
| sizeofFromUBytes=mbcsTable->fromUBytesLength; |
| } else { |
| /* |
| * Otherwise: |
| * There used to be code to enumerate the fromUnicode |
| * trie and find the highest entry, but it was removed in ICU 3.2 |
| * because it was not tested and caused a low code coverage number. |
| * See Jitterbug 3674. |
| * This affects only some .cnv file formats with a header.version |
| * below 4.1, and only when swaplfnl is requested. |
| * |
| * ucnvmbcs.c revision 1.99 is the last one with the |
| * ucnv_MBCSSizeofFromUBytes() function. |
| */ |
| *pErrorCode=U_INVALID_FORMAT_ERROR; |
| return FALSE; |
| } |
| |
| /* |
| * The table has an appropriate format. |
| * Allocate and build |
| * - a modified to-Unicode state table |
| * - a modified from-Unicode output array |
| * - a converter name string with the swap option appended |
| */ |
| size= |
| mbcsTable->countStates*1024+ |
| sizeofFromUBytes+ |
| UCNV_MAX_CONVERTER_NAME_LENGTH+20; |
| p=(uint8_t *)uprv_malloc(size); |
| if(p==NULL) { |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return FALSE; |
| } |
| |
| /* copy and modify the to-Unicode state table */ |
| newStateTable=(int32_t (*)[256])p; |
| uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024); |
| |
| newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL); |
| newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF); |
| |
| /* copy and modify the from-Unicode result table */ |
| newResults=(uint16_t *)newStateTable[mbcsTable->countStates]; |
| uprv_memcpy(newResults, bytes, sizeofFromUBytes); |
| |
| /* conveniently, the table access macros work on the left side of expressions */ |
| if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
| MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL; |
| MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF; |
| } else /* MBCS_OUTPUT_2_SISO */ { |
| stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); |
| MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL; |
| |
| stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); |
| MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF; |
| } |
| |
| /* set the canonical converter name */ |
| name=(char *)newResults+sizeofFromUBytes; |
| uprv_strcpy(name, sharedData->staticData->name); |
| uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING); |
| |
| /* set the pointers */ |
| icu::umtx_lock(NULL); |
| if(mbcsTable->swapLFNLStateTable==NULL) { |
| mbcsTable->swapLFNLStateTable=newStateTable; |
| mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults; |
| mbcsTable->swapLFNLName=name; |
| |
| newStateTable=NULL; |
| } |
| icu::umtx_unlock(NULL); |
| |
| /* release the allocated memory if another thread beat us to it */ |
| if(newStateTable!=NULL) { |
| uprv_free(newStateTable); |
| } |
| return TRUE; |
| } |
| |
| /* reconstitute omitted fromUnicode data ------------------------------------ */ |
| |
| /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */ |
| static UBool U_CALLCONV |
| writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) { |
| UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context; |
| const uint16_t *table; |
| uint32_t *stage2; |
| uint8_t *bytes, *p; |
| UChar32 c; |
| int32_t i, st3; |
| |
| table=mbcsTable->fromUnicodeTable; |
| bytes=(uint8_t *)mbcsTable->fromUnicodeBytes; |
| |
| /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */ |
| switch(mbcsTable->outputType) { |
| case MBCS_OUTPUT_3_EUC: |
| if(value<=0xffff) { |
| /* short sequences are stored directly */ |
| /* code set 0 or 1 */ |
| } else if(value<=0x8effff) { |
| /* code set 2 */ |
| value&=0x7fff; |
| } else /* first byte is 0x8f */ { |
| /* code set 3 */ |
| value&=0xff7f; |
| } |
| break; |
| case MBCS_OUTPUT_4_EUC: |
| if(value<=0xffffff) { |
| /* short sequences are stored directly */ |
| /* code set 0 or 1 */ |
| } else if(value<=0x8effffff) { |
| /* code set 2 */ |
| value&=0x7fffff; |
| } else /* first byte is 0x8f */ { |
| /* code set 3 */ |
| value&=0xff7fff; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| for(i=0; i<=0x1f; ++value, ++i) { |
| c=codePoints[i]; |
| if(c<0) { |
| continue; |
| } |
| |
| /* locate the stage 2 & 3 data */ |
| stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f); |
| p=bytes; |
| st3=(int32_t)(uint16_t)*stage2*16+(c&0xf); |
| |
| /* write the codepage bytes into stage 3 */ |
| switch(mbcsTable->outputType) { |
| case MBCS_OUTPUT_3: |
| case MBCS_OUTPUT_4_EUC: |
| p+=st3*3; |
| p[0]=(uint8_t)(value>>16); |
| p[1]=(uint8_t)(value>>8); |
| p[2]=(uint8_t)value; |
| break; |
| case MBCS_OUTPUT_4: |
| ((uint32_t *)p)[st3]=value; |
| break; |
| default: |
| /* 2 bytes per character */ |
| ((uint16_t *)p)[st3]=(uint16_t)value; |
| break; |
| } |
| |
| /* set the roundtrip flag */ |
| *stage2|=(1UL<<(16+(c&0xf))); |
| } |
| return TRUE; |
| } |
| |
| static void |
| reconstituteData(UConverterMBCSTable *mbcsTable, |
| uint32_t stage1Length, uint32_t stage2Length, |
| uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */ |
| UErrorCode *pErrorCode) { |
| uint16_t *stage1; |
| uint32_t *stage2; |
| uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength; |
| mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength); |
| if(mbcsTable->reconstitutedData==NULL) { |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| uprv_memset(mbcsTable->reconstitutedData, 0, dataLength); |
| |
| /* copy existing data and reroute the pointers */ |
| stage1=(uint16_t *)mbcsTable->reconstitutedData; |
| uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2); |
| |
| stage2=(uint32_t *)(stage1+stage1Length); |
| uprv_memcpy(stage2+(fullStage2Length-stage2Length), |
| mbcsTable->fromUnicodeTable+stage1Length, |
| stage2Length*4); |
| |
| mbcsTable->fromUnicodeTable=stage1; |
| mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length); |
| |
| /* indexes into stage 2 count from the bottom of the fromUnicodeTable */ |
| stage2=(uint32_t *)stage1; |
| |
| /* reconstitute the initial part of stage 2 from the mbcsIndex */ |
| { |
| int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6; |
| int32_t stageUTF8Index=0; |
| int32_t st1, st2, st3, i; |
| |
| for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) { |
| st2=stage1[st1]; |
| if(st2!=(int32_t)stage1Length/2) { |
| /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */ |
| for(i=0; i<16; ++i) { |
| st3=mbcsTable->mbcsIndex[stageUTF8Index++]; |
| if(st3!=0) { |
| /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */ |
| st3>>=4; |
| /* |
| * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are |
| * allocated together as a single 64-block for access from the mbcsIndex |
| */ |
| stage2[st2++]=st3++; |
| stage2[st2++]=st3++; |
| stage2[st2++]=st3++; |
| stage2[st2++]=st3; |
| } else { |
| /* no stage 3 block, skip */ |
| st2+=4; |
| } |
| } |
| } else { |
| /* no stage 2 block, skip */ |
| stageUTF8Index+=16; |
| } |
| } |
| } |
| |
| /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */ |
| ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode); |
| } |
| |
| /* MBCS setup functions ----------------------------------------------------- */ |
| |
| static void U_CALLCONV |
| ucnv_MBCSLoad(UConverterSharedData *sharedData, |
| UConverterLoadArgs *pArgs, |
| const uint8_t *raw, |
| UErrorCode *pErrorCode) { |
| UDataInfo info; |
| UConverterMBCSTable *mbcsTable=&sharedData->mbcs; |
| _MBCSHeader *header=(_MBCSHeader *)raw; |
| uint32_t offset; |
| uint32_t headerLength; |
| UBool noFromU=FALSE; |
| |
| if(header->version[0]==4) { |
| headerLength=MBCS_HEADER_V4_LENGTH; |
| } else if(header->version[0]==5 && header->version[1]>=3 && |
| (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) { |
| headerLength=header->options&MBCS_OPT_LENGTH_MASK; |
| noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0); |
| } else { |
| *pErrorCode=U_INVALID_TABLE_FORMAT; |
| return; |
| } |
| |
| mbcsTable->outputType=(uint8_t)header->flags; |
| if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) { |
| *pErrorCode=U_INVALID_TABLE_FORMAT; |
| return; |
| } |
| |
| /* extension data, header version 4.2 and higher */ |
| offset=header->flags>>8; |
| if(offset!=0) { |
| mbcsTable->extIndexes=(const int32_t *)(raw+offset); |
| } |
| |
| if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) { |
| UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER; |
| UConverterSharedData *baseSharedData; |
| const int32_t *extIndexes; |
| const char *baseName; |
| |
| /* extension-only file, load the base table and set values appropriately */ |
| if((extIndexes=mbcsTable->extIndexes)==NULL) { |
| /* extension-only file without extension */ |
| *pErrorCode=U_INVALID_TABLE_FORMAT; |
| return; |
| } |
| |
| if(pArgs->nestedLoads!=1) { |
| /* an extension table must not be loaded as a base table */ |
| *pErrorCode=U_INVALID_TABLE_FILE; |
| return; |
| } |
| |
| /* load the base table */ |
| baseName=(const char *)header+headerLength*4; |
| if(0==uprv_strcmp(baseName, sharedData->staticData->name)) { |
| /* forbid loading this same extension-only file */ |
| *pErrorCode=U_INVALID_TABLE_FORMAT; |
| return; |
| } |
| |
| /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */ |
| args.size=sizeof(UConverterLoadArgs); |
| args.nestedLoads=2; |
| args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable; |
| args.reserved=pArgs->reserved; |
| args.options=pArgs->options; |
| args.pkg=pArgs->pkg; |
| args.name=baseName; |
| baseSharedData=ucnv_load(&args, pErrorCode); |
| if(U_FAILURE(*pErrorCode)) { |
| return; |
| } |
| if( baseSharedData->staticData->conversionType!=UCNV_MBCS || |
| baseSharedData->mbcs.baseSharedData!=NULL |
| ) { |
| ucnv_unload(baseSharedData); |
| *pErrorCode=U_INVALID_TABLE_FORMAT; |
| return; |
| } |
| if(pArgs->onlyTestIsLoadable) { |
| /* |
| * Exit as soon as we know that we can load the converter |
| * and the format is valid and supported. |
| * The worst that can happen in the following code is a memory |
| * allocation error. |
| */ |
| ucnv_unload(baseSharedData); |
| return; |
| } |
| |
| /* copy the base table data */ |
| uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable)); |
| |
| /* overwrite values with relevant ones for the extension converter */ |
| mbcsTable->baseSharedData=baseSharedData; |
| mbcsTable->extIndexes=extIndexes; |
| |
| /* |
| * It would be possible to share the swapLFNL data with a base converter, |
| * but the generated name would have to be different, and the memory |
| * would have to be free'd only once. |
| * It is easier to just create the data for the extension converter |
| * separately when it is requested. |
| */ |
| mbcsTable->swapLFNLStateTable=NULL; |
| mbcsTable->swapLFNLFromUnicodeBytes=NULL; |
| mbcsTable->swapLFNLName=NULL; |
| |
| /* |
| * The reconstitutedData must be deleted only when the base converter |
| * is unloaded. |
| */ |
| mbcsTable->reconstitutedData=NULL; |
| |
| /* |
| * Set a special, runtime-only outputType if the extension converter |
| * is a DBCS version of a base converter that also maps single bytes. |
| */ |
| if( sharedData->staticData->conversionType==UCNV_DBCS || |
| (sharedData->staticData->conversionType==UCNV_MBCS && |
| sharedData->staticData->minBytesPerChar>=2) |
| ) { |
| if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) { |
| /* the base converter is SI/SO-stateful */ |
| int32_t entry; |
| |
| /* get the dbcs state from the state table entry for SO=0x0e */ |
| entry=mbcsTable->stateTable[0][0xe]; |
| if( MBCS_ENTRY_IS_FINAL(entry) && |
| MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY && |
| MBCS_ENTRY_FINAL_STATE(entry)!=0 |
| ) { |
| mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); |
| |
| mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; |
| } |
| } else if( |
| baseSharedData->staticData->conversionType==UCNV_MBCS && |
| baseSharedData->staticData->minBytesPerChar==1 && |
| baseSharedData->staticData->maxBytesPerChar==2 && |
| mbcsTable->countStates<=127 |
| ) { |
| /* non-stateful base converter, need to modify the state table */ |
| int32_t (*newStateTable)[256]; |
| int32_t *state; |
| int32_t i, count; |
| |
| /* allocate a new state table and copy the base state table contents */ |
| count=mbcsTable->countStates; |
| newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024); |
| if(newStateTable==NULL) { |
| ucnv_unload(baseSharedData); |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| |
| uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024); |
| |
| /* change all final single-byte entries to go to a new all-illegal state */ |
| state=newStateTable[0]; |
| for(i=0; i<256; ++i) { |
| if(MBCS_ENTRY_IS_FINAL(state[i])) { |
| state[i]=MBCS_ENTRY_TRANSITION(count, 0); |
| } |
| } |
| |
| /* build the new all-illegal state */ |
| state=newStateTable[count]; |
| for(i=0; i<256; ++i) { |
| state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0); |
| } |
| mbcsTable->stateTable=(const int32_t (*)[256])newStateTable; |
| mbcsTable->countStates=(uint8_t)(count+1); |
| mbcsTable->stateTableOwned=TRUE; |
| |
| mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; |
| } |
| } |
| |
| /* |
| * unlike below for files with base tables, do not get the unicodeMask |
| * from the sharedData; instead, use the base table's unicodeMask, |
| * which we copied in the memcpy above; |
| * this is necessary because the static data unicodeMask, especially |
| * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data |
| */ |
| } else { |
| /* conversion file with a base table; an additional extension table is optional */ |
| /* make sure that the output type is known */ |
| switch(mbcsTable->outputType) { |
| case MBCS_OUTPUT_1: |
| case MBCS_OUTPUT_2: |
| case MBCS_OUTPUT_3: |
| case MBCS_OUTPUT_4: |
| case MBCS_OUTPUT_3_EUC: |
| case MBCS_OUTPUT_4_EUC: |
| case MBCS_OUTPUT_2_SISO: |
| /* OK */ |
| break; |
| default: |
| *pErrorCode=U_INVALID_TABLE_FORMAT; |
| return; |
| } |
| if(pArgs->onlyTestIsLoadable) { |
| /* |
| * Exit as soon as we know that we can load the converter |
| * and the format is valid and supported. |
| * The worst that can happen in the following code is a memory |
| * allocation error. |
| */ |
| return; |
| } |
| |
| mbcsTable->countStates=(uint8_t)header->countStates; |
| mbcsTable->countToUFallbacks=header->countToUFallbacks; |
| mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4); |
| mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates); |
| mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits); |
| |
| mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable); |
| mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes); |
| mbcsTable->fromUBytesLength=header->fromUBytesLength; |
| |
| /* |
| * converter versions 6.1 and up contain a unicodeMask that is |
| * used here to select the most efficient function implementations |
| */ |
| info.size=sizeof(UDataInfo); |
| udata_getInfo((UDataMemory *)sharedData->dataMemory, &info); |
| if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) { |
| /* mask off possible future extensions to be safe */ |
| mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3); |
| } else { |
| /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */ |
| mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES; |
| } |
| |
| /* |
| * _MBCSHeader.version 4.3 adds utf8Friendly data structures. |
| * Check for the header version, SBCS vs. MBCS, and for whether the |
| * data structures are optimized for code points as high as what the |
| * runtime code is designed for. |
| * The implementation does not handle mapping tables with entries for |
| * unpaired surrogates. |
| */ |
| if( header->version[1]>=3 && |
| (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 && |
| (mbcsTable->countStates==1 ? |
| (header->version[2]>=(SBCS_FAST_MAX>>8)) : |
| (header->version[2]>=(MBCS_FAST_MAX>>8)) |
| ) |
| ) { |
| mbcsTable->utf8Friendly=TRUE; |
| |
| if(mbcsTable->countStates==1) { |
| /* |
| * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher. |
| * Build a table with indexes to each block, to be used instead of |
| * the regular stage 1/2 table. |
| */ |
| int32_t i; |
| for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) { |
| mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)]; |
| } |
| /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */ |
| mbcsTable->maxFastUChar=SBCS_FAST_MAX; |
| } else { |
| /* |
| * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher. |
| * The .cnv file is prebuilt with an additional stage table with indexes |
| * to each block. |
| */ |
| mbcsTable->mbcsIndex=(const uint16_t *) |
| (mbcsTable->fromUnicodeBytes+ |
| (noFromU ? 0 : mbcsTable->fromUBytesLength)); |
| mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff; |
| } |
| } |
| |
| /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */ |
| { |
| uint32_t asciiRoundtrips=0xffffffff; |
| int32_t i; |
| |
| for(i=0; i<0x80; ++i) { |
| if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) { |
| asciiRoundtrips&=~((uint32_t)1<<(i>>2)); |
| } |
| } |
| mbcsTable->asciiRoundtrips=asciiRoundtrips; |
| } |
| |
| if(noFromU) { |
| uint32_t stage1Length= |
| mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ? |
| 0x440 : 0x40; |
| uint32_t stage2Length= |
| (header->offsetFromUBytes-header->offsetFromUTable)/4- |
| stage1Length/2; |
| reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode); |
| } |
| } |
| |
| /* Set the impl pointer here so that it is set for both extension-only and base tables. */ |
| if(mbcsTable->utf8Friendly) { |
| if(mbcsTable->countStates==1) { |
| sharedData->impl=&_SBCSUTF8Impl; |
| } else { |
| if(mbcsTable->outputType==MBCS_OUTPUT_2) { |
| sharedData->impl=&_DBCSUTF8Impl; |
| } |
| } |
| } |
| |
| if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) { |
| /* |
| * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip. |
| * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly. |
| */ |
| mbcsTable->asciiRoundtrips=0; |
| } |
| } |
| |
| static void U_CALLCONV |
| ucnv_MBCSUnload(UConverterSharedData *sharedData) { |
| UConverterMBCSTable *mbcsTable=&sharedData->mbcs; |
| |
| if(mbcsTable->swapLFNLStateTable!=NULL) { |
| uprv_free(mbcsTable->swapLFNLStateTable); |
| } |
| if(mbcsTable->stateTableOwned) { |
| uprv_free((void *)mbcsTable->stateTable); |
| } |
| if(mbcsTable->baseSharedData!=NULL) { |
| ucnv_unload(mbcsTable->baseSharedData); |
| } |
| if(mbcsTable->reconstitutedData!=NULL) { |
| uprv_free(mbcsTable->reconstitutedData); |
| } |
| } |
| |
| static void U_CALLCONV |
| ucnv_MBCSOpen(UConverter *cnv, |
| UConverterLoadArgs *pArgs, |
| UErrorCode *pErrorCode) { |
| UConverterMBCSTable *mbcsTable; |
| const int32_t *extIndexes; |
| uint8_t outputType; |
| int8_t maxBytesPerUChar; |
| |
| if(pArgs->onlyTestIsLoadable) { |
| return; |
| } |
| |
| mbcsTable=&cnv->sharedData->mbcs; |
| outputType=mbcsTable->outputType; |
| |
| if(outputType==MBCS_OUTPUT_DBCS_ONLY) { |
| /* the swaplfnl option does not apply, remove it */ |
| cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; |
| } |
| |
| if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| /* do this because double-checked locking is broken */ |
| UBool isCached; |
| |
| icu::umtx_lock(NULL); |
| isCached=mbcsTable->swapLFNLStateTable!=NULL; |
| icu::umtx_unlock(NULL); |
| |
| if(!isCached) { |
| if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) { |
| if(U_FAILURE(*pErrorCode)) { |
| return; /* something went wrong */ |
| } |
| |
| /* the option does not apply, remove it */ |
| cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; |
| } |
| } |
| } |
| |
| if(uprv_strstr(pArgs->name, "18030")!=NULL) { |
| if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) { |
| /* set a flag for GB 18030 mode, which changes the callback behavior */ |
| cnv->options|=_MBCS_OPTION_GB18030; |
| } |
| } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) { |
| /* set a flag for KEIS converter, which changes the SI/SO character sequence */ |
| cnv->options|=_MBCS_OPTION_KEIS; |
| } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) { |
| /* set a flag for JEF converter, which changes the SI/SO character sequence */ |
| cnv->options|=_MBCS_OPTION_JEF; |
| } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) { |
| /* set a flag for JIPS converter, which changes the SI/SO character sequence */ |
| cnv->options|=_MBCS_OPTION_JIPS; |
| } |
| |
| /* fix maxBytesPerUChar depending on outputType and options etc. */ |
| if(outputType==MBCS_OUTPUT_2_SISO) { |
| cnv->maxBytesPerUChar=3; /* SO+DBCS */ |
| } |
| |
| extIndexes=mbcsTable->extIndexes; |
| if(extIndexes!=NULL) { |
| maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes); |
| if(outputType==MBCS_OUTPUT_2_SISO) { |
| ++maxBytesPerUChar; /* SO + multiple DBCS */ |
| } |
| |
| if(maxBytesPerUChar>cnv->maxBytesPerUChar) { |
| cnv->maxBytesPerUChar=maxBytesPerUChar; |
| } |
| } |
| |
| #if 0 |
| /* |
| * documentation of UConverter fields used for status |
| * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset() |
| */ |
| |
| /* toUnicode */ |
| cnv->toUnicodeStatus=0; /* offset */ |
| cnv->mode=0; /* state */ |
| cnv->toULength=0; /* byteIndex */ |
| |
| /* fromUnicode */ |
| cnv->fromUChar32=0; |
| cnv->fromUnicodeStatus=1; /* prevLength */ |
| #endif |
| } |
| |
| U_CDECL_BEGIN |
| |
| static const char* U_CALLCONV |
| ucnv_MBCSGetName(const UConverter *cnv) { |
| if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) { |
| return cnv->sharedData->mbcs.swapLFNLName; |
| } else { |
| return cnv->sharedData->staticData->name; |
| } |
| } |
| U_CDECL_END |
| |
| |
| /* MBCS-to-Unicode conversion functions ------------------------------------- */ |
| |
| static UChar32 U_CALLCONV |
| ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) { |
| const _MBCSToUFallback *toUFallbacks; |
| uint32_t i, start, limit; |
| |
| limit=mbcsTable->countToUFallbacks; |
| if(limit>0) { |
| /* do a binary search for the fallback mapping */ |
| toUFallbacks=mbcsTable->toUFallbacks; |
| start=0; |
| while(start<limit-1) { |
| i=(start+limit)/2; |
| if(offset<toUFallbacks[i].offset) { |
| limit=i; |
| } else { |
| start=i; |
| } |
| } |
| |
| /* did we really find it? */ |
| if(offset==toUFallbacks[start].offset) { |
| return toUFallbacks[start].codePoint; |
| } |
| } |
| |
| return 0xfffe; |
| } |
| |
| /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */ |
| static void |
| ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, |
| UErrorCode *pErrorCode) { |
| UConverter *cnv; |
| const uint8_t *source, *sourceLimit; |
| UChar *target; |
| const UChar *targetLimit; |
| int32_t *offsets; |
| |
| const int32_t (*stateTable)[256]; |
| |
| int32_t sourceIndex; |
| |
| int32_t entry; |
| UChar c; |
| uint8_t action; |
| |
| /* set up the local pointers */ |
| cnv=pArgs->converter; |
| source=(const uint8_t *)pArgs->source; |
| sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| target=pArgs->target; |
| targetLimit=pArgs->targetLimit; |
| offsets=pArgs->offsets; |
| |
| if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
| } else { |
| stateTable=cnv->sharedData->mbcs.stateTable; |
| } |
| |
| /* sourceIndex=-1 if the current character began in the previous buffer */ |
| sourceIndex=0; |
| |
| /* conversion loop */ |
| while(source<sourceLimit) { |
| /* |
| * This following test is to see if available input would overflow the output. |
| * It does not catch output of more than one code unit that |
| * overflows as a result of a surrogate pair or callback output |
| * from the last source byte. |
| * Therefore, those situations also test for overflows and will |
| * then break the loop, too. |
| */ |
| if(target>=targetLimit) { |
| /* target is full */ |
| *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| break; |
| } |
| |
| entry=stateTable[0][*source++]; |
| /* MBCS_ENTRY_IS_FINAL(entry) */ |
| |
| /* test the most common case first */ |
| if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| /* output BMP code point */ |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| |
| /* normal end of action codes: prepare for a new character */ |
| ++sourceIndex; |
| continue; |
| } |
| |
| /* |
| * An if-else-if chain provides more reliable performance for |
| * the most common cases compared to a switch. |
| */ |
| action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| if(action==MBCS_STATE_VALID_DIRECT_20 || |
| (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) |
| ) { |
| entry=MBCS_ENTRY_FINAL_VALUE(entry); |
| /* output surrogate pair */ |
| *target++=(UChar)(0xd800|(UChar)(entry>>10)); |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); |
| if(target<targetLimit) { |
| *target++=c; |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| } else { |
| /* target overflow */ |
| cnv->UCharErrorBuffer[0]=c; |
| cnv->UCharErrorBufferLength=1; |
| *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| break; |
| } |
| |
| ++sourceIndex; |
| continue; |
| } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| /* output BMP code point */ |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| |
| ++sourceIndex; |
| continue; |
| } |
| } else if(action==MBCS_STATE_UNASSIGNED) { |
| /* just fall through */ |
| } else if(action==MBCS_STATE_ILLEGAL) { |
| /* callback(illegal) */ |
| *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| } else { |
| /* reserved, must never occur */ |
| ++sourceIndex; |
| continue; |
| } |
| |
| if(U_FAILURE(*pErrorCode)) { |
| /* callback(illegal) */ |
| break; |
| } else /* unassigned sequences indicated with byteIndex>0 */ { |
| /* try an extension mapping */ |
| pArgs->source=(const char *)source; |
| cnv->toUBytes[0]=*(source-1); |
| cnv->toULength=_extToU(cnv, cnv->sharedData, |
| 1, &source, sourceLimit, |
| &target, targetLimit, |
| &offsets, sourceIndex, |
| pArgs->flush, |
| pErrorCode); |
| sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source); |
| |
| if(U_FAILURE(*pErrorCode)) { |
| /* not mappable or buffer overflow */ |
| break; |
| } |
| } |
| } |
| |
| /* write back the updated pointers */ |
| pArgs->source=(const char *)source; |
| pArgs->target=target; |
| pArgs->offsets=offsets; |
| } |
| |
| /* |
| * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages |
| * that only map to and from the BMP. |
| * In addition to single-byte optimizations, the offset calculations |
| * become much easier. |
| */ |
| static void |
| ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs, |
| UErrorCode *pErrorCode) { |
| UConverter *cnv; |
| const uint8_t *source, *sourceLimit, *lastSource; |
| UChar *target; |
| int32_t targetCapacity, length; |
| int32_t *offsets; |
| |
| const int32_t (*stateTable)[256]; |
| |
| int32_t sourceIndex; |
| |
| int32_t entry; |
| uint8_t action; |
| |
| /* set up the local pointers */ |
| cnv=pArgs->converter; |
| source=(const uint8_t *)pArgs->source; |
| sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| target=pArgs->target; |
| targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
| offsets=pArgs->offsets; |
| |
| if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
| } else { |
| stateTable=cnv->sharedData->mbcs.stateTable; |
| } |
| |
| /* sourceIndex=-1 if the current character began in the previous buffer */ |
| sourceIndex=0; |
| lastSource=source; |
| |
| /* |
| * since the conversion here is 1:1 UChar:uint8_t, we need only one counter |
| * for the minimum of the sourceLength and targetCapacity |
| */ |
| length=(int32_t)(sourceLimit-source); |
| if(length<targetCapacity) { |
| targetCapacity=length; |
| } |
| |
| #if MBCS_UNROLL_SINGLE_TO_BMP |
| /* unrolling makes it faster on Pentium III/Windows 2000 */ |
| /* unroll the loop with the most common case */ |
| unrolled: |
| if(targetCapacity>=16) { |
| int32_t count, loops, oredEntries; |
| |
| loops=count=targetCapacity>>4; |
| do { |
| oredEntries=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| oredEntries|=entry=stateTable[0][*source++]; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| |
| /* were all 16 entries really valid? */ |
| if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) { |
| /* no, return to the first of these 16 */ |
| source-=16; |
| target-=16; |
| break; |
| } |
| } while(--count>0); |
| count=loops-count; |
| targetCapacity-=16*count; |
| |
| if(offsets!=NULL) { |
| lastSource+=16*count; |
| while(count>0) { |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| *offsets++=sourceIndex++; |
| --count; |
| } |
| } |
| } |
| #endif |
| |
| /* conversion loop */ |
| while(targetCapacity > 0 && source < sourceLimit) { |
| entry=stateTable[0][*source++]; |
| /* MBCS_ENTRY_IS_FINAL(entry) */ |
| |
| /* test the most common case first */ |
| if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| /* output BMP code point */ |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| --targetCapacity; |
| continue; |
| } |
| |
| /* |
| * An if-else-if chain provides more reliable performance for |
| * the most common cases compared to a switch. |
| */ |
| action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| /* output BMP code point */ |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| --targetCapacity; |
| continue; |
| } |
| } else if(action==MBCS_STATE_UNASSIGNED) { |
| /* just fall through */ |
| } else if(action==MBCS_STATE_ILLEGAL) { |
| /* callback(illegal) */ |
| *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| } else { |
| /* reserved, must never occur */ |
| continue; |
| } |
| |
| /* set offsets since the start or the last extension */ |
| if(offsets!=NULL) { |
| int32_t count=(int32_t)(source-lastSource); |
| |
| /* predecrement: do not set the offset for the callback-causing character */ |
| while(--count>0) { |
| *offsets++=sourceIndex++; |
| } |
| /* offset and sourceIndex are now set for the current character */ |
| } |
| |
| if(U_FAILURE(*pErrorCode)) { |
| /* callback(illegal) */ |
| break; |
| } else /* unassigned sequences indicated with byteIndex>0 */ { |
| /* try an extension mapping */ |
| lastSource=source; |
| cnv->toUBytes[0]=*(source-1); |
| cnv->toULength=_extToU(cnv, cnv->sharedData, |
| 1, &source, sourceLimit, |
| &target, pArgs->targetLimit, |
| &offsets, sourceIndex, |
| pArgs->flush, |
| pErrorCode); |
| sourceIndex+=1+(int32_t)(source-lastSource); |
| |
| if(U_FAILURE(*pErrorCode)) { |
| /* not mappable or buffer overflow */ |
| break; |
| } |
| |
| /* recalculate the targetCapacity after an extension mapping */ |
| targetCapacity=(int32_t)(pArgs->targetLimit-target); |
| length=(int32_t)(sourceLimit-source); |
| if(length<targetCapacity) { |
| targetCapacity=length; |
| } |
| } |
| |
| #if MBCS_UNROLL_SINGLE_TO_BMP |
| /* unrolling makes it faster on Pentium III/Windows 2000 */ |
| goto unrolled; |
| #endif |
| } |
| |
| if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) { |
| /* target is full */ |
| *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| } |
| |
| /* set offsets since the start or the last callback */ |
| if(offsets!=NULL) { |
| size_t count=source-lastSource; |
| while(count>0) { |
| *offsets++=sourceIndex++; |
| --count; |
| } |
| } |
| |
| /* write back the updated pointers */ |
| pArgs->source=(const char *)source; |
| pArgs->target=target; |
| pArgs->offsets=offsets; |
| } |
| |
| static UBool |
| hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) { |
| const int32_t *row=stateTable[state]; |
| int32_t b, entry; |
| /* First test for final entries in this state for some commonly valid byte values. */ |
| entry=row[0xa1]; |
| if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
| MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
| ) { |
| return TRUE; |
| } |
| entry=row[0x41]; |
| if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
| MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
| ) { |
| return TRUE; |
| } |
| /* Then test for final entries in this state. */ |
| for(b=0; b<=0xff; ++b) { |
| entry=row[b]; |
| if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
| MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
| ) { |
| return TRUE; |
| } |
| } |
| /* Then recurse for transition entries. */ |
| for(b=0; b<=0xff; ++b) { |
| entry=row[b]; |
| if( MBCS_ENTRY_IS_TRANSITION(entry) && |
| hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)) |
| ) { |
| return TRUE; |
| } |
| } |
| return FALSE; |
| } |
| |
| /* |
| * Is byte b a single/lead byte in this state? |
| * Recurse for transition states, because here we don't want to say that |
| * b is a lead byte if all byte sequences that start with b are illegal. |
| */ |
| static UBool |
| isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) { |
| const int32_t *row=stateTable[state]; |
| int32_t entry=row[b]; |
| if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */ |
| return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)); |
| } else { |
| uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) { |
| return FALSE; /* SI/SO are illegal for DBCS-only conversion */ |
| } else { |
| return action!=MBCS_STATE_ILLEGAL; |
| } |
| } |
| } |
| |
| U_CFUNC void |
| ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, |
| UErrorCode *pErrorCode) { |
| UConverter *cnv; |
| const uint8_t *source, *sourceLimit; |
| UChar *target; |
| const UChar *targetLimit; |
| int32_t *offsets; |
| |
| const int32_t (*stateTable)[256]; |
| const uint16_t *unicodeCodeUnits; |
| |
| uint32_t offset; |
| uint8_t state; |
| int8_t byteIndex; |
| uint8_t *bytes; |
| |
| int32_t sourceIndex, nextSourceIndex; |
| |
| int32_t entry; |
| UChar c; |
| uint8_t action; |
| |
| /* use optimized function if possible */ |
| cnv=pArgs->converter; |
| |
| if(cnv->preToULength>0) { |
| /* |
| * pass sourceIndex=-1 because we continue from an earlier buffer |
| * in the future, this may change with continuous offsets |
| */ |
| ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode); |
| |
| if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) { |
| return; |
| } |
| } |
| |
| if(cnv->sharedData->mbcs.countStates==1) { |
| if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode); |
| } else { |
| ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode); |
| } |
| return; |
| } |
| |
| /* set up the local pointers */ |
| source=(const uint8_t *)pArgs->source; |
| sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| target=pArgs->target; |
| targetLimit=pArgs->targetLimit; |
| offsets=pArgs->offsets; |
| |
| if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
| } else { |
| stateTable=cnv->sharedData->mbcs.stateTable; |
| } |
| unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; |
| |
| /* get the converter state from UConverter */ |
| offset=cnv->toUnicodeStatus; |
| byteIndex=cnv->toULength; |
| bytes=cnv->toUBytes; |
| |
| /* |
| * if we are in the SBCS state for a DBCS-only converter, |
| * then load the DBCS state from the MBCS data |
| * (dbcsOnlyState==0 if it is not a DBCS-only converter) |
| */ |
| if((state=(uint8_t)(cnv->mode))==0) { |
| state=cnv->sharedData->mbcs.dbcsOnlyState; |
| } |
| |
| /* sourceIndex=-1 if the current character began in the previous buffer */ |
| sourceIndex=byteIndex==0 ? 0 : -1; |
| nextSourceIndex=0; |
| |
| /* conversion loop */ |
| while(source<sourceLimit) { |
| /* |
| * This following test is to see if available input would overflow the output. |
| * It does not catch output of more than one code unit that |
| * overflows as a result of a surrogate pair or callback output |
| * from the last source byte. |
| * Therefore, those situations also test for overflows and will |
| * then break the loop, too. |
| */ |
| if(target>=targetLimit) { |
| /* target is full */ |
| *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| break; |
| } |
| |
| if(byteIndex==0) { |
| /* optimized loop for 1/2-byte input and BMP output */ |
| if(offsets==NULL) { |
| do { |
| entry=stateTable[state][*source]; |
| if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| |
| ++source; |
| if( source<sourceLimit && |
| MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && |
| MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && |
| (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe |
| ) { |
| ++source; |
| *target++=c; |
| state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| offset=0; |
| } else { |
| /* set the state and leave the optimized loop */ |
| bytes[0]=*(source-1); |
| byteIndex=1; |
| break; |
| } |
| } else { |
| if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| /* output BMP code point */ |
| ++source; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| } else { |
| /* leave the optimized loop */ |
| break; |
| } |
| } |
| } while(source<sourceLimit && target<targetLimit); |
| } else /* offsets!=NULL */ { |
| do { |
| entry=stateTable[state][*source]; |
| if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| |
| ++source; |
| if( source<sourceLimit && |
| MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && |
| MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && |
| (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe |
| ) { |
| ++source; |
| *target++=c; |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| sourceIndex=(nextSourceIndex+=2); |
| } |
| state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| offset=0; |
| } else { |
| /* set the state and leave the optimized loop */ |
| ++nextSourceIndex; |
| bytes[0]=*(source-1); |
| byteIndex=1; |
| break; |
| } |
| } else { |
| if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| /* output BMP code point */ |
| ++source; |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| sourceIndex=++nextSourceIndex; |
| } |
| state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| } else { |
| /* leave the optimized loop */ |
| break; |
| } |
| } |
| } while(source<sourceLimit && target<targetLimit); |
| } |
| |
| /* |
| * these tests and break statements could be put inside the loop |
| * if C had "break outerLoop" like Java |
| */ |
| if(source>=sourceLimit) { |
| break; |
| } |
| if(target>=targetLimit) { |
| /* target is full */ |
| *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| break; |
| } |
| |
| ++nextSourceIndex; |
| bytes[byteIndex++]=*source++; |
| } else /* byteIndex>0 */ { |
| ++nextSourceIndex; |
| entry=stateTable[state][bytes[byteIndex++]=*source++]; |
| } |
| |
| if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| continue; |
| } |
| |
| /* save the previous state for proper extension mapping with SI/SO-stateful converters */ |
| cnv->mode=state; |
| |
| /* set the next state early so that we can reuse the entry variable */ |
| state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| |
| /* |
| * An if-else-if chain provides more reliable performance for |
| * the most common cases compared to a switch. |
| */ |
| action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| if(action==MBCS_STATE_VALID_16) { |
| offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| c=unicodeCodeUnits[offset]; |
| if(c<0xfffe) { |
| /* output BMP code point */ |
| *target++=c; |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| byteIndex=0; |
| } else if(c==0xfffe) { |
| if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { |
| /* output fallback BMP code point */ |
| *target++=(UChar)entry; |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| byteIndex=0; |
| } |
| } else { |
| /* callback(illegal) */ |
| *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| } |
| } else if(action==MBCS_STATE_VALID_DIRECT_16) { |
| /* output BMP code point */ |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| byteIndex=0; |
| } else if(action==MBCS_STATE_VALID_16_PAIR) { |
| offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| c=unicodeCodeUnits[offset++]; |
| if(c<0xd800) { |
| /* output BMP code point below 0xd800 */ |
| *target++=c; |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| byteIndex=0; |
| } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { |
| /* output roundtrip or fallback surrogate pair */ |
| *target++=(UChar)(c&0xdbff); |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| byteIndex=0; |
| if(target<targetLimit) { |
| *target++=unicodeCodeUnits[offset]; |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| } else { |
| /* target overflow */ |
| cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset]; |
| cnv->UCharErrorBufferLength=1; |
| *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| |
| offset=0; |
| break; |
| } |
| } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { |
| /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ |
| *target++=unicodeCodeUnits[offset]; |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| byteIndex=0; |
| } else if(c==0xffff) { |
| /* callback(illegal) */ |
| *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| } |
| } else if(action==MBCS_STATE_VALID_DIRECT_20 || |
| (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) |
| ) { |
| entry=MBCS_ENTRY_FINAL_VALUE(entry); |
| /* output surrogate pair */ |
| *target++=(UChar)(0xd800|(UChar)(entry>>10)); |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| byteIndex=0; |
| c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); |
| if(target<targetLimit) { |
| *target++=c; |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| } else { |
| /* target overflow */ |
| cnv->UCharErrorBuffer[0]=c; |
| cnv->UCharErrorBufferLength=1; |
| *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| |
| offset=0; |
| break; |
| } |
| } else if(action==MBCS_STATE_CHANGE_ONLY) { |
| /* |
| * This serves as a state change without any output. |
| * It is useful for reading simple stateful encodings, |
| * for example using just Shift-In/Shift-Out codes. |
| * The 21 unused bits may later be used for more sophisticated |
| * state transitions. |
| */ |
| if(cnv->sharedData->mbcs.dbcsOnlyState==0) { |
| byteIndex=0; |
| } else { |
| /* SI/SO are illegal for DBCS-only conversion */ |
| state=(uint8_t)(cnv->mode); /* restore the previous state */ |
| |
| /* callback(illegal) */ |
| *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| } |
| } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| /* output BMP code point */ |
| *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| if(offsets!=NULL) { |
| *offsets++=sourceIndex; |
| } |
| byteIndex=0; |
| } |
| } else if(action==MBCS_STATE_UNASSIGNED) { |
| /* just fall through */ |
| } else if(action==MBCS_STATE_ILLEGAL) { |
| /* callback(illegal) */ |
| *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| } else { |
| /* reserved, must never occur */ |
| byteIndex=0; |
| } |
| |
| /* end of action codes: prepare for a new character */ |
| offset=0; |
| |
| if(byteIndex==0) { |
| sourceIndex=nextSourceIndex; |
| } else if(U_FAILURE(*pErrorCode)) { |
| /* callback(illegal) */ |
| if(byteIndex>1) { |
| /* |
| * Ticket 5691: consistent illegal sequences: |
| * - We include at least the first byte in the illegal sequence. |
| * - If any of the non-initial bytes could be the start of a character, |
| * we stop the illegal sequence before the first one of those. |
| */ |
| UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); |
| int8_t i; |
| for(i=1; |
| i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]); |
| ++i) {} |
| if(i<byteIndex) { |
| /* Back out some bytes. */ |
| int8_t backOutDistance=byteIndex-i; |
| int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source); |
| byteIndex=i; /* length of reported illegal byte sequence */ |
| if(backOutDistance<=bytesFromThisBuffer) { |
| source-=backOutDistance; |
| } else { |
| /* Back out bytes from the previous buffer: Need to replay them. */ |
| cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance); |
| /* preToULength is negative! */ |
| uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength); |
| source=(const uint8_t *)pArgs->source; |
| } |
| } |
| } |
| break; |
| } else /* unassigned sequences indicated with byteIndex>0 */ { |
| /* try an extension mapping */ |
| pArgs->source=(const char *)source; |
| byteIndex=_extToU(cnv, cnv->sharedData, |
| byteIndex, &source, sourceLimit, |
| &target, targetLimit, |
| &offsets, sourceIndex, |
| pArgs->flush, |
| pErrorCode); |
| sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source); |
| |
| if(U_FAILURE(*pErrorCode)) { |
| /* not mappable or buffer overflow */ |
| break; |
| } |
| } |
| } |
| |
| /* set the converter state back into UConverter */ |
| cnv->toUnicodeStatus=offset; |
| cnv->mode=state; |
| cnv->toULength=byteIndex; |
| |
| /* write back the updated pointers */ |
| pArgs->source=(const char *)source; |
| pArgs->target=target; |
| pArgs->offsets=offsets; |
| } |
| |
| /* |
| * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages. |
| * We still need a conversion loop in case we find reserved action codes, which are to be ignored. |
| */ |
| static UChar32 |
| ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs, |
| UErrorCode *pErrorCode) { |
| UConverter *cnv; |
| const int32_t (*stateTable)[256]; |
| const uint8_t *source, *sourceLimit; |
| |
| int32_t entry; |
| uint8_t action; |
| |
| /* set up the local pointers */ |
| cnv=pArgs->converter; |
| source=(const uint8_t *)pArgs->source; |
| sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
| } else { |
| stateTable=cnv->sharedData->mbcs.stateTable; |
| } |
| |
| /* conversion loop */ |
| while(source<sourceLimit) { |
| entry=stateTable[0][*source++]; |
| /* MBCS_ENTRY_IS_FINAL(entry) */ |
| |
| /* write back the updated pointer early so that we can return directly */ |
| pArgs->source=(const char *)source; |
| |
| if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| /* output BMP code point */ |
| return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| } |
| |
| /* |
| * An if-else-if chain provides more reliable performance for |
| * the most common cases compared to a switch. |
| */ |
| action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| if( action==MBCS_STATE_VALID_DIRECT_20 || |
| (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) |
| ) { |
| /* output supplementary code point */ |
| return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
| } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| /* output BMP code point */ |
| return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| } |
| } else if(action==MBCS_STATE_UNASSIGNED) { |
| /* just fall through */ |
| } else if(action==MBCS_STATE_ILLEGAL) { |
| /* callback(illegal) */ |
| *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| } else { |
| /* reserved, must never occur */ |
| continue; |
| } |
| |
| if(U_FAILURE(*pErrorCode)) { |
| /* callback(illegal) */ |
| break; |
| } else /* unassigned sequence */ { |
| /* defer to the generic implementation */ |
| pArgs->source=(const char *)source-1; |
| return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
| } |
| } |
| |
| /* no output because of empty input or only state changes */ |
| *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| return 0xffff; |
| } |
| |
| /* |
| * Version of _MBCSToUnicodeWithOffsets() optimized for single-character |
| * conversion without offset handling. |
| * |
| * When a character does not have a mapping to Unicode, then we return to the |
| * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback |
| * handling. |
| * We also defer to the generic code in other complicated cases and have them |
| * ultimately handled by _MBCSToUnicodeWithOffsets() itself. |
| * |
| * All normal mappings and errors are handled here. |
| */ |
| static UChar32 U_CALLCONV |
| ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, |
| UErrorCode *pErrorCode) { |
| UConverter *cnv; |
| const uint8_t *source, *sourceLimit, *lastSource; |
| |
| const int32_t (*stateTable)[256]; |
| const uint16_t *unicodeCodeUnits; |
| |
| uint32_t offset; |
| uint8_t state; |
| |
| int32_t entry; |
| UChar32 c; |
| uint8_t action; |
| |
| /* use optimized function if possible */ |
| cnv=pArgs->converter; |
| |
| if(cnv->preToULength>0) { |
| /* use the generic code in ucnv_getNextUChar() to continue with a partial match */ |
| return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
| } |
| |
| if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) { |
| /* |
| * Using the generic ucnv_getNextUChar() code lets us deal correctly |
| * with the rare case of a codepage that maps single surrogates |
| * without adding the complexity to this already complicated function here. |
| */ |
| return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
| } else if(cnv->sharedData->mbcs.countStates==1) { |
| return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode); |
| } |
| |
| /* set up the local pointers */ |
| source=lastSource=(const uint8_t *)pArgs->source; |
| sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| |
| if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
| } else { |
| stateTable=cnv->sharedData->mbcs.stateTable; |
| } |
| unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; |
| |
| /* get the converter state from UConverter */ |
| offset=cnv->toUnicodeStatus; |
| |
| /* |
| * if we are in the SBCS state for a DBCS-only converter, |
| * then load the DBCS state from the MBCS data |
| * (dbcsOnlyState==0 if it is not a DBCS-only converter) |
| */ |
| if((state=(uint8_t)(cnv->mode))==0) { |
| state=cnv->sharedData->mbcs.dbcsOnlyState; |
| } |
| |
| /* conversion loop */ |
| c=U_SENTINEL; |
| while(source<sourceLimit) { |
| entry=stateTable[state][*source++]; |
| if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| |
| /* optimization for 1/2-byte input and BMP output */ |
| if( source<sourceLimit && |
| MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && |
| MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && |
| (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe |
| ) { |
| ++source; |
| state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| /* output BMP code point */ |
| break; |
| } |
| } else { |
| /* save the previous state for proper extension mapping with SI/SO-stateful converters */ |
| cnv->mode=state; |
| |
| /* set the next state early so that we can reuse the entry variable */ |
| state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| |
| /* |
| * An if-else-if chain provides more reliable performance for |
| * the most common cases compared to a switch. |
| */ |
| action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| if(action==MBCS_STATE_VALID_DIRECT_16) { |
| /* output BMP code point */ |
| c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| break; |
| } else if(action==MBCS_STATE_VALID_16) { |
| offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| c=unicodeCodeUnits[offset]; |
| if(c<0xfffe) { |
| /* output BMP code point */ |
| break; |
| } else if(c==0xfffe) { |
| if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { |
| break; |
| } |
| } else { |
| /* callback(illegal) */ |
| *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| } |
|
|