| // © 2016 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| /* |
| ******************************************************************************* |
| * |
| * Copyright (C) 2003-2013, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| * |
| ******************************************************************************* |
| * file name: uarrsort.c |
| * encoding: UTF-8 |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * created on: 2003aug04 |
| * created by: Markus W. Scherer |
| * |
| * Internal function for sorting arrays. |
| */ |
| |
| #include <cstddef> |
| |
| #include "unicode/utypes.h" |
| #include "cmemory.h" |
| #include "uarrsort.h" |
| |
| enum { |
| /** |
| * "from Knuth" |
| * |
| * A binary search over 8 items performs 4 comparisons: |
| * log2(8)=3 to subdivide, +1 to check for equality. |
| * A linear search over 8 items on average also performs 4 comparisons. |
| */ |
| MIN_QSORT=9, |
| STACK_ITEM_SIZE=200 |
| }; |
| |
| static constexpr int32_t sizeInMaxAlignTs(int32_t sizeInBytes) { |
| return (sizeInBytes + sizeof(std::max_align_t) - 1) / sizeof(std::max_align_t); |
| } |
| |
| /* UComparator convenience implementations ---------------------------------- */ |
| |
| U_CAPI int32_t U_EXPORT2 |
| uprv_uint16Comparator(const void *context, const void *left, const void *right) { |
| (void)context; |
| return (int32_t)*(const uint16_t *)left - (int32_t)*(const uint16_t *)right; |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| uprv_int32Comparator(const void *context, const void *left, const void *right) { |
| (void)context; |
| return *(const int32_t *)left - *(const int32_t *)right; |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| uprv_uint32Comparator(const void *context, const void *left, const void *right) { |
| (void)context; |
| uint32_t l=*(const uint32_t *)left, r=*(const uint32_t *)right; |
| |
| /* compare directly because (l-r) would overflow the int32_t result */ |
| if(l<r) { |
| return -1; |
| } else if(l==r) { |
| return 0; |
| } else /* l>r */ { |
| return 1; |
| } |
| } |
| |
| /* Insertion sort using binary search --------------------------------------- */ |
| |
| U_CAPI int32_t U_EXPORT2 |
| uprv_stableBinarySearch(char *array, int32_t limit, void *item, int32_t itemSize, |
| UComparator *cmp, const void *context) { |
| int32_t start=0; |
| UBool found=FALSE; |
| |
| /* Binary search until we get down to a tiny sub-array. */ |
| while((limit-start)>=MIN_QSORT) { |
| int32_t i=(start+limit)/2; |
| int32_t diff=cmp(context, item, array+i*itemSize); |
| if(diff==0) { |
| /* |
| * Found the item. We look for the *last* occurrence of such |
| * an item, for stable sorting. |
| * If we knew that there will be only few equal items, |
| * we could break now and enter the linear search. |
| * However, if there are many equal items, then it should be |
| * faster to continue with the binary search. |
| * It seems likely that we either have all unique items |
| * (where found will never become TRUE in the insertion sort) |
| * or potentially many duplicates. |
| */ |
| found=TRUE; |
| start=i+1; |
| } else if(diff<0) { |
| limit=i; |
| } else { |
| start=i; |
| } |
| } |
| |
| /* Linear search over the remaining tiny sub-array. */ |
| while(start<limit) { |
| int32_t diff=cmp(context, item, array+start*itemSize); |
| if(diff==0) { |
| found=TRUE; |
| } else if(diff<0) { |
| break; |
| } |
| ++start; |
| } |
| return found ? (start-1) : ~start; |
| } |
| |
| static void |
| doInsertionSort(char *array, int32_t length, int32_t itemSize, |
| UComparator *cmp, const void *context, void *pv) { |
| int32_t j; |
| |
| for(j=1; j<length; ++j) { |
| char *item=array+j*itemSize; |
| int32_t insertionPoint=uprv_stableBinarySearch(array, j, item, itemSize, cmp, context); |
| if(insertionPoint<0) { |
| insertionPoint=~insertionPoint; |
| } else { |
| ++insertionPoint; /* one past the last equal item */ |
| } |
| if(insertionPoint<j) { |
| char *dest=array+insertionPoint*itemSize; |
| uprv_memcpy(pv, item, itemSize); /* v=array[j] */ |
| uprv_memmove(dest+itemSize, dest, (j-insertionPoint)*(size_t)itemSize); |
| uprv_memcpy(dest, pv, itemSize); /* array[insertionPoint]=v */ |
| } |
| } |
| } |
| |
| static void |
| insertionSort(char *array, int32_t length, int32_t itemSize, |
| UComparator *cmp, const void *context, UErrorCode *pErrorCode) { |
| |
| icu::MaybeStackArray<std::max_align_t, sizeInMaxAlignTs(STACK_ITEM_SIZE)> v; |
| if (sizeInMaxAlignTs(itemSize) > v.getCapacity() && |
| v.resize(sizeInMaxAlignTs(itemSize)) == nullptr) { |
| *pErrorCode = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| |
| doInsertionSort(array, length, itemSize, cmp, context, v.getAlias()); |
| } |
| |
| /* QuickSort ---------------------------------------------------------------- */ |
| |
| /* |
| * This implementation is semi-recursive: |
| * It recurses for the smaller sub-array to shorten the recursion depth, |
| * and loops for the larger sub-array. |
| * |
| * Loosely after QuickSort algorithms in |
| * Niklaus Wirth |
| * Algorithmen und Datenstrukturen mit Modula-2 |
| * B.G. Teubner Stuttgart |
| * 4. Auflage 1986 |
| * ISBN 3-519-02260-5 |
| */ |
| static void |
| subQuickSort(char *array, int32_t start, int32_t limit, int32_t itemSize, |
| UComparator *cmp, const void *context, |
| void *px, void *pw) { |
| int32_t left, right; |
| |
| /* start and left are inclusive, limit and right are exclusive */ |
| do { |
| if((start+MIN_QSORT)>=limit) { |
| doInsertionSort(array+start*itemSize, limit-start, itemSize, cmp, context, px); |
| break; |
| } |
| |
| left=start; |
| right=limit; |
| |
| /* x=array[middle] */ |
| uprv_memcpy(px, array+(size_t)((start+limit)/2)*itemSize, itemSize); |
| |
| do { |
| while(/* array[left]<x */ |
| cmp(context, array+left*itemSize, px)<0 |
| ) { |
| ++left; |
| } |
| while(/* x<array[right-1] */ |
| cmp(context, px, array+(right-1)*itemSize)<0 |
| ) { |
| --right; |
| } |
| |
| /* swap array[left] and array[right-1] via w; ++left; --right */ |
| if(left<right) { |
| --right; |
| |
| if(left<right) { |
| uprv_memcpy(pw, array+(size_t)left*itemSize, itemSize); |
| uprv_memcpy(array+(size_t)left*itemSize, array+(size_t)right*itemSize, itemSize); |
| uprv_memcpy(array+(size_t)right*itemSize, pw, itemSize); |
| } |
| |
| ++left; |
| } |
| } while(left<right); |
| |
| /* sort sub-arrays */ |
| if((right-start)<(limit-left)) { |
| /* sort [start..right[ */ |
| if(start<(right-1)) { |
| subQuickSort(array, start, right, itemSize, cmp, context, px, pw); |
| } |
| |
| /* sort [left..limit[ */ |
| start=left; |
| } else { |
| /* sort [left..limit[ */ |
| if(left<(limit-1)) { |
| subQuickSort(array, left, limit, itemSize, cmp, context, px, pw); |
| } |
| |
| /* sort [start..right[ */ |
| limit=right; |
| } |
| } while(start<(limit-1)); |
| } |
| |
| static void |
| quickSort(char *array, int32_t length, int32_t itemSize, |
| UComparator *cmp, const void *context, UErrorCode *pErrorCode) { |
| /* allocate two intermediate item variables (x and w) */ |
| icu::MaybeStackArray<std::max_align_t, sizeInMaxAlignTs(STACK_ITEM_SIZE) * 2> xw; |
| if(sizeInMaxAlignTs(itemSize)*2 > xw.getCapacity() && |
| xw.resize(sizeInMaxAlignTs(itemSize) * 2) == nullptr) { |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| |
| subQuickSort(array, 0, length, itemSize, cmp, context, |
| xw.getAlias(), xw.getAlias() + sizeInMaxAlignTs(itemSize)); |
| } |
| |
| /* uprv_sortArray() API ----------------------------------------------------- */ |
| |
| /* |
| * Check arguments, select an appropriate implementation, |
| * cast the array to char * so that array+i*itemSize works. |
| */ |
| U_CAPI void U_EXPORT2 |
| uprv_sortArray(void *array, int32_t length, int32_t itemSize, |
| UComparator *cmp, const void *context, |
| UBool sortStable, UErrorCode *pErrorCode) { |
| if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| return; |
| } |
| if((length>0 && array==NULL) || length<0 || itemSize<=0 || cmp==NULL) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| |
| if(length<=1) { |
| return; |
| } else if(length<MIN_QSORT || sortStable) { |
| insertionSort((char *)array, length, itemSize, cmp, context, pErrorCode); |
| } else { |
| quickSort((char *)array, length, itemSize, cmp, context, pErrorCode); |
| } |
| } |