| /* |
| ****************************************************************************** |
| * Copyright (C) 1999-2010, International Business Machines Corporation and * |
| * others. All Rights Reserved. * |
| ****************************************************************************** |
| * Date Name Description |
| * 10/22/99 alan Creation. |
| ********************************************************************** |
| */ |
| |
| #include "uvectr32.h" |
| #include "cmemory.h" |
| #include "putilimp.h" |
| |
| U_NAMESPACE_BEGIN |
| |
| #define DEFAULT_CAPACITY 8 |
| |
| /* |
| * Constants for hinting whether a key is an integer |
| * or a pointer. If a hint bit is zero, then the associated |
| * token is assumed to be an integer. This is needed for iSeries |
| */ |
| |
| UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector32) |
| |
| UVector32::UVector32(UErrorCode &status) : |
| count(0), |
| capacity(0), |
| maxCapacity(0), |
| elements(NULL) |
| { |
| _init(DEFAULT_CAPACITY, status); |
| } |
| |
| UVector32::UVector32(int32_t initialCapacity, UErrorCode &status) : |
| count(0), |
| capacity(0), |
| maxCapacity(0), |
| elements(0) |
| { |
| _init(initialCapacity, status); |
| } |
| |
| |
| |
| void UVector32::_init(int32_t initialCapacity, UErrorCode &status) { |
| // Fix bogus initialCapacity values; avoid malloc(0) |
| if (initialCapacity < 1) { |
| initialCapacity = DEFAULT_CAPACITY; |
| } |
| if (maxCapacity>0 && maxCapacity<initialCapacity) { |
| initialCapacity = maxCapacity; |
| } |
| if (initialCapacity > (int32_t)(INT32_MAX / sizeof(int32_t))) { |
| initialCapacity = uprv_min(DEFAULT_CAPACITY, maxCapacity); |
| } |
| elements = (int32_t *)uprv_malloc(sizeof(int32_t)*initialCapacity); |
| if (elements == 0) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| } else { |
| capacity = initialCapacity; |
| } |
| } |
| |
| UVector32::~UVector32() { |
| uprv_free(elements); |
| elements = 0; |
| } |
| |
| /** |
| * Assign this object to another (make this a copy of 'other'). |
| */ |
| void UVector32::assign(const UVector32& other, UErrorCode &ec) { |
| if (ensureCapacity(other.count, ec)) { |
| setSize(other.count); |
| for (int32_t i=0; i<other.count; ++i) { |
| elements[i] = other.elements[i]; |
| } |
| } |
| } |
| |
| |
| UBool UVector32::operator==(const UVector32& other) { |
| int32_t i; |
| if (count != other.count) return FALSE; |
| for (i=0; i<count; ++i) { |
| if (elements[i] != other.elements[i]) { |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| |
| |
| void UVector32::setElementAt(int32_t elem, int32_t index) { |
| if (0 <= index && index < count) { |
| elements[index] = elem; |
| } |
| /* else index out of range */ |
| } |
| |
| void UVector32::insertElementAt(int32_t elem, int32_t index, UErrorCode &status) { |
| // must have 0 <= index <= count |
| if (0 <= index && index <= count && ensureCapacity(count + 1, status)) { |
| for (int32_t i=count; i>index; --i) { |
| elements[i] = elements[i-1]; |
| } |
| elements[index] = elem; |
| ++count; |
| } |
| /* else index out of range */ |
| } |
| |
| UBool UVector32::containsAll(const UVector32& other) const { |
| for (int32_t i=0; i<other.size(); ++i) { |
| if (indexOf(other.elements[i]) < 0) { |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| |
| UBool UVector32::containsNone(const UVector32& other) const { |
| for (int32_t i=0; i<other.size(); ++i) { |
| if (indexOf(other.elements[i]) >= 0) { |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| |
| UBool UVector32::removeAll(const UVector32& other) { |
| UBool changed = FALSE; |
| for (int32_t i=0; i<other.size(); ++i) { |
| int32_t j = indexOf(other.elements[i]); |
| if (j >= 0) { |
| removeElementAt(j); |
| changed = TRUE; |
| } |
| } |
| return changed; |
| } |
| |
| UBool UVector32::retainAll(const UVector32& other) { |
| UBool changed = FALSE; |
| for (int32_t j=size()-1; j>=0; --j) { |
| int32_t i = other.indexOf(elements[j]); |
| if (i < 0) { |
| removeElementAt(j); |
| changed = TRUE; |
| } |
| } |
| return changed; |
| } |
| |
| void UVector32::removeElementAt(int32_t index) { |
| if (index >= 0) { |
| for (int32_t i=index; i<count-1; ++i) { |
| elements[i] = elements[i+1]; |
| } |
| --count; |
| } |
| } |
| |
| void UVector32::removeAllElements(void) { |
| count = 0; |
| } |
| |
| UBool UVector32::equals(const UVector32 &other) const { |
| int i; |
| |
| if (this->count != other.count) { |
| return FALSE; |
| } |
| for (i=0; i<count; i++) { |
| if (elements[i] != other.elements[i]) { |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| |
| |
| |
| |
| int32_t UVector32::indexOf(int32_t key, int32_t startIndex) const { |
| int32_t i; |
| for (i=startIndex; i<count; ++i) { |
| if (key == elements[i]) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| |
| UBool UVector32::expandCapacity(int32_t minimumCapacity, UErrorCode &status) { |
| if (minimumCapacity < 0) { |
| status = U_ILLEGAL_ARGUMENT_ERROR; |
| return FALSE; |
| } |
| if (capacity >= minimumCapacity) { |
| return TRUE; |
| } |
| if (maxCapacity>0 && minimumCapacity>maxCapacity) { |
| status = U_BUFFER_OVERFLOW_ERROR; |
| return FALSE; |
| } |
| if (capacity > (INT32_MAX - 1) / 2) { // integer overflow check |
| status = U_ILLEGAL_ARGUMENT_ERROR; |
| return FALSE; |
| } |
| int32_t newCap = capacity * 2; |
| if (newCap < minimumCapacity) { |
| newCap = minimumCapacity; |
| } |
| if (maxCapacity > 0 && newCap > maxCapacity) { |
| newCap = maxCapacity; |
| } |
| if (newCap > (int32_t)(INT32_MAX / sizeof(int32_t))) { // integer overflow check |
| // We keep the original memory contents on bad minimumCapacity/maxCapacity. |
| status = U_ILLEGAL_ARGUMENT_ERROR; |
| return FALSE; |
| } |
| int32_t* newElems = (int32_t *)uprv_realloc(elements, sizeof(int32_t)*newCap); |
| if (newElems == NULL) { |
| // We keep the original contents on the memory failure on realloc. |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return FALSE; |
| } |
| elements = newElems; |
| capacity = newCap; |
| return TRUE; |
| } |
| |
| void UVector32::setMaxCapacity(int32_t limit) { |
| U_ASSERT(limit >= 0); |
| if (limit < 0) { |
| limit = 0; |
| } |
| if (limit > (int32_t)(INT32_MAX / sizeof(int32_t))) { // integer overflow check for realloc |
| // Something is very wrong, don't realloc, leave capacity and maxCapacity unchanged |
| return; |
| } |
| maxCapacity = limit; |
| if (capacity <= maxCapacity || maxCapacity == 0) { |
| // Current capacity is within the new limit. |
| return; |
| } |
| |
| // New maximum capacity is smaller than the current size. |
| // Realloc the storage to the new, smaller size. |
| int32_t* newElems = (int32_t *)uprv_realloc(elements, sizeof(int32_t)*maxCapacity); |
| if (newElems == NULL) { |
| // Realloc to smaller failed. |
| // Just keep what we had. No need to call it a failure. |
| return; |
| } |
| elements = newElems; |
| capacity = maxCapacity; |
| if (count > capacity) { |
| count = capacity; |
| } |
| } |
| |
| /** |
| * Change the size of this vector as follows: If newSize is smaller, |
| * then truncate the array, possibly deleting held elements for i >= |
| * newSize. If newSize is larger, grow the array, filling in new |
| * slots with NULL. |
| */ |
| void UVector32::setSize(int32_t newSize) { |
| int32_t i; |
| if (newSize < 0) { |
| return; |
| } |
| if (newSize > count) { |
| UErrorCode ec = U_ZERO_ERROR; |
| if (!ensureCapacity(newSize, ec)) { |
| return; |
| } |
| for (i=count; i<newSize; ++i) { |
| elements[i] = 0; |
| } |
| } |
| count = newSize; |
| } |
| |
| |
| |
| |
| /** |
| * Insert the given integer into this vector at its sorted position |
| * as defined by 'compare'. The current elements are assumed to |
| * be sorted already. |
| */ |
| void UVector32::sortedInsert(int32_t tok, UErrorCode& ec) { |
| // Perform a binary search for the location to insert tok at. Tok |
| // will be inserted between two elements a and b such that a <= |
| // tok && tok < b, where there is a 'virtual' elements[-1] always |
| // less than tok and a 'virtual' elements[count] always greater |
| // than tok. |
| int32_t min = 0, max = count; |
| while (min != max) { |
| int32_t probe = (min + max) / 2; |
| //int8_t c = (*compare)(elements[probe], tok); |
| //if (c > 0) { |
| if (elements[probe] > tok) { |
| max = probe; |
| } else { |
| // assert(c <= 0); |
| min = probe + 1; |
| } |
| } |
| if (ensureCapacity(count + 1, ec)) { |
| for (int32_t i=count; i>min; --i) { |
| elements[i] = elements[i-1]; |
| } |
| elements[min] = tok; |
| ++count; |
| } |
| } |
| |
| |
| |
| |
| |
| U_NAMESPACE_END |
| |