blob: 6282e87fa1ed74aacd07bfd639cdc38d4e74dca4 [file] [log] [blame]
// © 2020 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "number_usageprefs.h"
#include "cstring.h"
#include "number_decimalquantity.h"
#include "number_microprops.h"
#include "number_roundingutils.h"
#include "number_skeletons.h"
#include "unicode/char16ptr.h"
#include "unicode/currunit.h"
#include "unicode/fmtable.h"
#include "unicode/measure.h"
#include "unicode/numberformatter.h"
#include "unicode/platform.h"
#include "unicode/unum.h"
#include "unicode/urename.h"
#include "units_data.h"
using namespace icu;
using namespace icu::number;
using namespace icu::number::impl;
using icu::StringSegment;
using icu::units::ConversionRates;
// Copy constructor
Usage::Usage(const Usage &other) : Usage() {
this->operator=(other);
}
// Copy assignment operator
Usage &Usage::operator=(const Usage &other) {
fLength = 0;
fError = other.fError;
if (fUsage != nullptr) {
uprv_free(fUsage);
fUsage = nullptr;
}
if (other.fUsage == nullptr) {
return *this;
}
if (U_FAILURE(other.fError)) {
// We don't bother trying to allocating memory if we're in any case busy
// copying an errored Usage.
return *this;
}
fUsage = (char *)uprv_malloc(other.fLength + 1);
if (fUsage == nullptr) {
fError = U_MEMORY_ALLOCATION_ERROR;
return *this;
}
fLength = other.fLength;
uprv_strncpy(fUsage, other.fUsage, fLength + 1);
return *this;
}
// Move constructor
Usage::Usage(Usage &&src) U_NOEXCEPT : fUsage(src.fUsage), fLength(src.fLength), fError(src.fError) {
// Take ownership away from src if necessary
src.fUsage = nullptr;
}
// Move assignment operator
Usage &Usage::operator=(Usage &&src) U_NOEXCEPT {
if (this == &src) {
return *this;
}
if (fUsage != nullptr) {
uprv_free(fUsage);
}
fUsage = src.fUsage;
fLength = src.fLength;
fError = src.fError;
// Take ownership away from src if necessary
src.fUsage = nullptr;
return *this;
}
Usage::~Usage() {
if (fUsage != nullptr) {
uprv_free(fUsage);
fUsage = nullptr;
}
}
void Usage::set(StringPiece value) {
if (fUsage != nullptr) {
uprv_free(fUsage);
fUsage = nullptr;
}
fLength = value.length();
fUsage = (char *)uprv_malloc(fLength + 1);
if (fUsage == nullptr) {
fLength = 0;
fError = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_strncpy(fUsage, value.data(), fLength);
fUsage[fLength] = 0;
}
void mixedMeasuresToMicros(const MaybeStackVector<Measure> &measures, DecimalQuantity *quantity,
MicroProps *micros, UErrorCode status) {
micros->mixedMeasuresCount = measures.length() - 1;
if (micros->mixedMeasuresCount > 0) {
#ifdef U_DEBUG
U_ASSERT(micros->outputUnit.getComplexity(status) == UMEASURE_UNIT_MIXED);
U_ASSERT(U_SUCCESS(status));
// Check that we received measurements with the expected MeasureUnits:
MeasureUnitImpl temp;
const MeasureUnitImpl& impl = MeasureUnitImpl::forMeasureUnit(micros->outputUnit, temp, status);
U_ASSERT(U_SUCCESS(status));
U_ASSERT(measures.length() == impl.units.length());
for (int32_t i = 0; i < measures.length(); i++) {
U_ASSERT(measures[i]->getUnit() == impl.units[i]->build(status));
}
(void)impl;
#endif
// Mixed units: except for the last value, we pass all values to the
// LongNameHandler via micros->mixedMeasures.
if (micros->mixedMeasures.getCapacity() < micros->mixedMeasuresCount) {
if (micros->mixedMeasures.resize(micros->mixedMeasuresCount) == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
for (int32_t i = 0; i < micros->mixedMeasuresCount; i++) {
micros->mixedMeasures[i] = measures[i]->getNumber().getInt64();
}
} else {
micros->mixedMeasuresCount = 0;
}
// The last value (potentially the only value) gets passed on via quantity.
quantity->setToDouble(measures[measures.length() - 1]->getNumber().getDouble());
}
UsagePrefsHandler::UsagePrefsHandler(const Locale &locale,
const MeasureUnit &inputUnit,
const StringPiece usage,
const MicroPropsGenerator *parent,
UErrorCode &status)
: fUnitsRouter(inputUnit, StringPiece(locale.getCountry()), usage, status),
fParent(parent) {
}
void UsagePrefsHandler::processQuantity(DecimalQuantity &quantity, MicroProps &micros,
UErrorCode &status) const {
fParent->processQuantity(quantity, micros, status);
if (U_FAILURE(status)) {
return;
}
quantity.roundToInfinity(); // Enables toDouble
const auto routed = fUnitsRouter.route(quantity.toDouble(), status);
if (U_FAILURE(status)) {
return;
}
const MaybeStackVector<Measure>& routedUnits = routed.measures;
micros.outputUnit = routed.outputUnit.copy(status).build(status);
if (U_FAILURE(status)) {
return;
}
mixedMeasuresToMicros(routedUnits, &quantity, &micros, status);
UnicodeString precisionSkeleton = routed.precision;
if (micros.rounder.fPrecision.isBogus()) {
if (precisionSkeleton.length() > 0) {
micros.rounder.fPrecision = parseSkeletonToPrecision(precisionSkeleton, status);
} else {
// We use the same rounding mode as COMPACT notation: known to be a
// human-friendly rounding mode: integers, but add a decimal digit
// as needed to ensure we have at least 2 significant digits.
micros.rounder.fPrecision = Precision::integer().withMinDigits(2);
}
}
}
Precision UsagePrefsHandler::parseSkeletonToPrecision(icu::UnicodeString precisionSkeleton,
UErrorCode status) {
if (U_FAILURE(status)) {
// As a member of UsagePrefsHandler, which is a friend of Precision, we
// get access to the default constructor.
return {};
}
constexpr int32_t kSkelPrefixLen = 20;
if (!precisionSkeleton.startsWith(UNICODE_STRING_SIMPLE("precision-increment/"))) {
status = U_INVALID_FORMAT_ERROR;
return {};
}
U_ASSERT(precisionSkeleton[kSkelPrefixLen - 1] == u'/');
StringSegment segment(precisionSkeleton, false);
segment.adjustOffset(kSkelPrefixLen);
MacroProps macros;
blueprint_helpers::parseIncrementOption(segment, macros, status);
return macros.precision;
}
UnitConversionHandler::UnitConversionHandler(const MeasureUnit &unit, const MicroPropsGenerator *parent,
UErrorCode &status)
: fOutputUnit(unit), fParent(parent) {
MeasureUnitImpl temp;
const MeasureUnitImpl &outputUnit = MeasureUnitImpl::forMeasureUnit(unit, temp, status);
const MeasureUnitImpl *inputUnit = &outputUnit;
MaybeStackVector<MeasureUnitImpl> singleUnits;
U_ASSERT(outputUnit.complexity == UMEASURE_UNIT_MIXED);
// When we wish to support unit conversion, replace the above assert with this if:
// if (outputUnit.complexity == UMEASURE_UNIT_MIXED) {
{
singleUnits = outputUnit.extractIndividualUnits(status);
U_ASSERT(singleUnits.length() > 0);
inputUnit = singleUnits[0];
}
// TODO: this should become an initOnce thing? Review with other
// ConversionRates usages.
ConversionRates conversionRates(status);
if (U_FAILURE(status)) {
return;
}
fUnitConverter.adoptInsteadAndCheckErrorCode(
new ComplexUnitsConverter(*inputUnit, outputUnit, conversionRates, status), status);
}
void UnitConversionHandler::processQuantity(DecimalQuantity &quantity, MicroProps &micros,
UErrorCode &status) const {
fParent->processQuantity(quantity, micros, status);
if (U_FAILURE(status)) {
return;
}
quantity.roundToInfinity(); // Enables toDouble
MaybeStackVector<Measure> measures = fUnitConverter->convert(quantity.toDouble(), status);
micros.outputUnit = fOutputUnit;
if (U_FAILURE(status)) {
return;
}
mixedMeasuresToMicros(measures, &quantity, &micros, status);
// TODO: add tests to explore behaviour that may suggest a more
// human-centric default rounder?
// if (micros.rounder.fPrecision.isBogus()) {
// micros.rounder.fPrecision = Precision::integer().withMinDigits(2);
// }
}
#endif /* #if !UCONFIG_NO_FORMATTING */