| /* |
| * Copyright 2020 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| * |
| * Initial import from skia:src/gpu/tessellate/WangsFormula.h |
| * |
| * Copyright 2023 Rive |
| */ |
| |
| #pragma once |
| |
| #include "rive/math/simd.hpp" |
| #include "rive/math/vec2d.hpp" |
| #include "rive/math/mat2d.hpp" |
| #include <math.h> |
| |
| #define AI RIVE_MAYBE_UNUSED RIVE_ALWAYS_INLINE |
| |
| // Wang's formula gives the minimum number of evenly spaced (in the parametric sense) line segments |
| // that a bezier curve must be chopped into in order to guarantee all lines stay within a distance |
| // of "1/precision" pixels from the true curve. Its definition for a bezier curve of degree "n" is |
| // as follows: |
| // |
| // maxLength = max([length(p[i+2] - 2p[i+1] + p[i]) for (0 <= i <= n-2)]) |
| // numParametricSegments = sqrt(maxLength * precision * n*(n - 1)/8) |
| // |
| // (Goldman, Ron. (2003). 5.6.3 Wang's Formula. "Pyramid Algorithms: A Dynamic Programming Approach |
| // to Curves and Surfaces for Geometric Modeling". Morgan Kaufmann Publishers.) |
| namespace rive |
| { |
| namespace wangs_formula |
| { |
| // Returns the value by which to multiply length in Wang's formula. (See above.) |
| template <int Degree> constexpr float length_term(float precision) |
| { |
| return (Degree * (Degree - 1) / 8.f) * precision; |
| } |
| template <int Degree> constexpr float length_term_pow2(float precision) |
| { |
| return ((Degree * Degree) * ((Degree - 1) * (Degree - 1)) / 64.f) * (precision * precision); |
| } |
| |
| AI static float root4(float x) { return sqrtf(sqrtf(x)); } |
| |
| // Returns the log2 of the provided value, were that value to be rounded up to the next power of 2. |
| // Returns 0 if value <= 0: |
| // Never returns a negative number, even if value is NaN. |
| // |
| // sk_float_nextlog2((-inf..1]) -> 0 |
| // sk_float_nextlog2((1..2]) -> 1 |
| // sk_float_nextlog2((2..4]) -> 2 |
| // sk_float_nextlog2((4..8]) -> 3 |
| // ... |
| AI static int sk_float_nextlog2(float x) |
| { |
| uint32_t bits; |
| RIVE_INLINE_MEMCPY(&bits, &x, 4); |
| bits += (1u << 23) - 1u; // Increment the exponent for non-powers-of-2. |
| int exp = ((int32_t)bits >> 23) - 127; |
| return exp & ~(exp >> 31); // Return 0 for negative or denormalized floats, and exponents < 0. |
| } |
| |
| // Returns nextlog2(sqrt(x)): |
| // |
| // log2(sqrt(x)) == log2(x^(1/2)) == log2(x)/2 == log2(x)/log2(4) == log4(x) |
| // |
| AI static int nextlog4(float x) { return (sk_float_nextlog2(x) + 1) >> 1; } |
| |
| // Returns nextlog2(sqrt(sqrt(x))): |
| // |
| // log2(sqrt(sqrt(x))) == log2(x^(1/4)) == log2(x)/4 == log2(x)/log2(16) == log16(x) |
| // |
| AI static int nextlog16(float x) { return (sk_float_nextlog2(x) + 3) >> 2; } |
| |
| // Represents the upper-left 2x2 matrix of an affine transform for applying to vectors: |
| // |
| // VectorXform(p1 - p0) == M * float3(p1, 1) - M * float3(p0, 1) |
| // |
| class alignas(32) VectorXform |
| { |
| public: |
| AI VectorXform() : m_scale(1), m_skew(0) {} |
| AI explicit VectorXform(const Mat2D& m) { *this = m; } |
| |
| AI VectorXform& operator=(const Mat2D& m) |
| { |
| m_scale = float2{m[0], m[3]}.xyxy; |
| m_skew = simd::load2f(&m[1]).yxyx; |
| return *this; |
| } |
| |
| AI float2 operator()(float2 vector) const |
| { |
| return m_scale.xy * vector + m_skew.xy * vector.yx; |
| } |
| AI float4 operator()(float4 vectors) const { return m_scale * vectors + m_skew * vectors.yxwz; } |
| |
| private: |
| float4 m_scale; |
| float4 m_skew; |
| }; |
| |
| // Returns Wang's formula, raised to the 4th power, specialized for a quadratic curve. |
| AI static float quadratic_pow4(float2 p0, |
| float2 p1, |
| float2 p2, |
| float precision, |
| const VectorXform& vectorXform = VectorXform()) |
| { |
| float2 v = -2.f * p1 + p0 + p2; |
| v = vectorXform(v); |
| float2 vv = v * v; |
| return (vv[0] + vv[1]) * length_term_pow2<2>(precision); |
| } |
| AI static float quadratic_pow4(const Vec2D pts[], |
| float precision, |
| const VectorXform& vectorXform = VectorXform()) |
| { |
| return quadratic_pow4(simd::load2f(&pts[0].x), |
| simd::load2f(&pts[1].x), |
| simd::load2f(&pts[2].x), |
| precision, |
| vectorXform); |
| } |
| |
| // Returns Wang's formula specialized for a quadratic curve. |
| AI static float quadratic(const Vec2D pts[], |
| float precision, |
| const VectorXform& vectorXform = VectorXform()) |
| { |
| return root4(quadratic_pow4(pts, precision, vectorXform)); |
| } |
| |
| // Returns the log2 value of Wang's formula specialized for a quadratic curve, rounded up to the |
| // next int. |
| AI static int quadratic_log2(const Vec2D pts[], |
| float precision, |
| const VectorXform& vectorXform = VectorXform()) |
| { |
| // nextlog16(x) == ceil(log2(sqrt(sqrt(x)))) |
| return nextlog16(quadratic_pow4(pts, precision, vectorXform)); |
| } |
| |
| // Returns Wang's formula, raised to the 4th power, specialized for a cubic curve. |
| AI static float cubic_pow4(const Vec2D pts[], |
| float precision, |
| const VectorXform& vectorXform = VectorXform()) |
| { |
| float4 p01 = simd::load4f(pts); |
| float4 p12 = simd::load4f(pts + 1); |
| float4 p23 = simd::load4f(pts + 2); |
| float4 v = -2.f * p12 + p01 + p23; |
| v = vectorXform(v); |
| float4 vv = v * v; |
| return std::max(vv[0] + vv[1], vv[2] + vv[3]) * length_term_pow2<3>(precision); |
| } |
| |
| // Returns Wang's formula specialized for a cubic curve. |
| AI static float cubic(const Vec2D pts[], |
| float precision, |
| const VectorXform& vectorXform = VectorXform()) |
| { |
| return root4(cubic_pow4(pts, precision, vectorXform)); |
| } |
| |
| // Returns the log2 value of Wang's formula specialized for a cubic curve, rounded up to the next |
| // int. |
| AI static int cubic_log2(const Vec2D pts[], |
| float precision, |
| const VectorXform& vectorXform = VectorXform()) |
| { |
| // nextlog16(x) == ceil(log2(sqrt(sqrt(x)))) |
| return nextlog16(cubic_pow4(pts, precision, vectorXform)); |
| } |
| |
| // Returns the maximum number of line segments a cubic with the given device-space bounding box size |
| // would ever need to be divided into, raised to the 4th power. This is simply a special case of the |
| // cubic formula where we maximize its value by placing control points on specific corners of the |
| // bounding box. |
| AI static float worst_case_cubic_pow4(float devWidth, float devHeight, float precision) |
| { |
| float kk = length_term_pow2<3>(precision); |
| return 4 * kk * (devWidth * devWidth + devHeight * devHeight); |
| } |
| |
| // Returns the maximum number of line segments a cubic with the given device-space bounding box size |
| // would ever need to be divided into. |
| AI static float worst_case_cubic(float devWidth, float devHeight, float precision) |
| { |
| return root4(worst_case_cubic_pow4(devWidth, devHeight, precision)); |
| } |
| |
| // Returns the maximum log2 number of line segments a cubic with the given device-space bounding box |
| // size would ever need to be divided into. |
| AI static int worst_case_cubic_log2(float devWidth, float devHeight, float precision) |
| { |
| // nextlog16(x) == ceil(log2(sqrt(sqrt(x)))) |
| return nextlog16(worst_case_cubic_pow4(devWidth, devHeight, precision)); |
| } |
| |
| // Returns Wang's formula specialized for a conic curve, raised to the second power. |
| // Input points should be in projected space. |
| // |
| // This is not actually due to Wang, but is an analogue from (Theorem 3, corollary 1): |
| // J. Zheng, T. Sederberg. "Estimating Tessellation Parameter Intervals for |
| // Rational Curves and Surfaces." ACM Transactions on Graphics 19(1). 2000. |
| AI static float conic_pow2(float precision, |
| float2 p0, |
| float2 p1, |
| float2 p2, |
| float w, |
| const VectorXform& vectorXform = VectorXform()) |
| { |
| p0 = vectorXform(p0); |
| p1 = vectorXform(p1); |
| p2 = vectorXform(p2); |
| |
| // Compute center of bounding box in projected space |
| const float2 C = 0.5f * (simd::min(simd::min(p0, p1), p2) + simd::max(simd::max(p0, p1), p2)); |
| |
| // Translate by -C. This improves translation-invariance of the formula, |
| // see Sec. 3.3 of cited paper |
| p0 -= C; |
| p1 -= C; |
| p2 -= C; |
| |
| // Compute max length |
| const float max_len = |
| sqrtf(std::max(simd::dot(p0, p0), std::max(simd::dot(p1, p1), simd::dot(p2, p2)))); |
| |
| // Compute forward differences |
| const float2 dp = -2.f * w * p1 + p0 + p2; |
| const float dw = fabsf(-2.f * w + 2); |
| |
| // Compute numerator and denominator for parametric step size of linearization. Here, the |
| // epsilon referenced from the cited paper is 1/precision. |
| const float rp_minus_1 = std::max(0.f, max_len * precision - 1); |
| const float numer = sqrtf(simd::dot(dp, dp)) * precision + rp_minus_1 * dw; |
| const float denom = 4 * std::min(w, 1.f); |
| |
| // Number of segments = sqrt(numer / denom). |
| // This assumes parametric interval of curve being linearized is [t0,t1] = [0, 1]. |
| // If not, the number of segments is (tmax - tmin) / sqrt(denom / numer). |
| return numer / denom; |
| } |
| AI static float conic_pow2(float precision, |
| const Vec2D pts[], |
| float w, |
| const VectorXform& vectorXform = VectorXform()) |
| { |
| return conic_pow2(precision, |
| simd::load2f(&pts[0].x), |
| simd::load2f(&pts[1].x), |
| simd::load2f(&pts[2].x), |
| w, |
| vectorXform); |
| } |
| |
| // Returns the value of Wang's formula specialized for a conic curve. |
| AI static float conic(float tolerance, |
| const Vec2D pts[], |
| float w, |
| const VectorXform& vectorXform = VectorXform()) |
| { |
| return sqrtf(conic_pow2(tolerance, pts, w, vectorXform)); |
| } |
| |
| // Returns the log2 value of Wang's formula specialized for a conic curve, rounded up to the next |
| // int. |
| AI static int conic_log2(float tolerance, |
| const Vec2D pts[], |
| float w, |
| const VectorXform& vectorXform = VectorXform()) |
| { |
| // nextlog4(x) == ceil(log2(sqrt(x))) |
| return nextlog4(conic_pow2(tolerance, pts, w, vectorXform)); |
| } |
| } // namespace wangs_formula |
| } // namespace rive |
| |
| #undef AI |