blob: 9d977f0056597f570aabf81840917c04a45cd514 [file] [log] [blame]
// dear imgui: Renderer for Vulkan
// This needs to be used along with a Platform Binding (e.g. GLFW, SDL, Win32, custom..)
// Implemented features:
// [X] Renderer: Support for large meshes (64k+ vertices) with 16-bits indices.
// Missing features:
// [ ] Renderer: User texture binding. Changes of ImTextureID aren't supported by this binding! See https://github.com/ocornut/imgui/pull/914
// You can copy and use unmodified imgui_impl_* files in your project. See main.cpp for an example of using this.
// If you are new to dear imgui, read examples/README.txt and read the documentation at the top of imgui.cpp.
// https://github.com/ocornut/imgui
// The aim of imgui_impl_vulkan.h/.cpp is to be usable in your engine without any modification.
// IF YOU FEEL YOU NEED TO MAKE ANY CHANGE TO THIS CODE, please share them and your feedback at https://github.com/ocornut/imgui/
// Important note to the reader who wish to integrate imgui_impl_vulkan.cpp/.h in their own engine/app.
// - Common ImGui_ImplVulkan_XXX functions and structures are used to interface with imgui_impl_vulkan.cpp/.h.
// You will use those if you want to use this rendering back-end in your engine/app.
// - Helper ImGui_ImplVulkanH_XXX functions and structures are only used by this example (main.cpp) and by
// the back-end itself (imgui_impl_vulkan.cpp), but should PROBABLY NOT be used by your own engine/app code.
// Read comments in imgui_impl_vulkan.h.
// CHANGELOG
// (minor and older changes stripped away, please see git history for details)
// 2019-08-01: Vulkan: Added support for specifying multisample count. Set ImGui_ImplVulkan_InitInfo::MSAASamples to one of the VkSampleCountFlagBits values to use, default is non-multisampled as before.
// 2019-05-29: Vulkan: Added support for large mesh (64K+ vertices), enable ImGuiBackendFlags_RendererHasVtxOffset flag.
// 2019-04-30: Vulkan: Added support for special ImDrawCallback_ResetRenderState callback to reset render state.
// 2019-04-04: *BREAKING CHANGE*: Vulkan: Added ImageCount/MinImageCount fields in ImGui_ImplVulkan_InitInfo, required for initialization (was previously a hard #define IMGUI_VK_QUEUED_FRAMES 2). Added ImGui_ImplVulkan_SetMinImageCount().
// 2019-04-04: Vulkan: Added VkInstance argument to ImGui_ImplVulkanH_CreateWindow() optional helper.
// 2019-04-04: Vulkan: Avoid passing negative coordinates to vkCmdSetScissor, which debug validation layers do not like.
// 2019-04-01: Vulkan: Support for 32-bit index buffer (#define ImDrawIdx unsigned int).
// 2019-02-16: Vulkan: Viewport and clipping rectangles correctly using draw_data->FramebufferScale to allow retina display.
// 2018-11-30: Misc: Setting up io.BackendRendererName so it can be displayed in the About Window.
// 2018-08-25: Vulkan: Fixed mishandled VkSurfaceCapabilitiesKHR::maxImageCount=0 case.
// 2018-06-22: Inverted the parameters to ImGui_ImplVulkan_RenderDrawData() to be consistent with other bindings.
// 2018-06-08: Misc: Extracted imgui_impl_vulkan.cpp/.h away from the old combined GLFW+Vulkan example.
// 2018-06-08: Vulkan: Use draw_data->DisplayPos and draw_data->DisplaySize to setup projection matrix and clipping rectangle.
// 2018-03-03: Vulkan: Various refactor, created a couple of ImGui_ImplVulkanH_XXX helper that the example can use and that viewport support will use.
// 2018-03-01: Vulkan: Renamed ImGui_ImplVulkan_Init_Info to ImGui_ImplVulkan_InitInfo and fields to match more closely Vulkan terminology.
// 2018-02-16: Misc: Obsoleted the io.RenderDrawListsFn callback, ImGui_ImplVulkan_Render() calls ImGui_ImplVulkan_RenderDrawData() itself.
// 2018-02-06: Misc: Removed call to ImGui::Shutdown() which is not available from 1.60 WIP, user needs to call CreateContext/DestroyContext themselves.
// 2017-05-15: Vulkan: Fix scissor offset being negative. Fix new Vulkan validation warnings. Set required depth member for buffer image copy.
// 2016-11-13: Vulkan: Fix validation layer warnings and errors and redeclare gl_PerVertex.
// 2016-10-18: Vulkan: Add location decorators & change to use structs as in/out in glsl, update embedded spv (produced with glslangValidator -x). Null the released resources.
// 2016-08-27: Vulkan: Fix Vulkan example for use when a depth buffer is active.
#include "imgui.h"
#include "imgui_impl_vulkan.h"
#include <stdio.h>
// Reusable buffers used for rendering 1 current in-flight frame, for ImGui_ImplVulkan_RenderDrawData()
// [Please zero-clear before use!]
struct ImGui_ImplVulkanH_FrameRenderBuffers
{
VkDeviceMemory VertexBufferMemory;
VkDeviceMemory IndexBufferMemory;
VkDeviceSize VertexBufferSize;
VkDeviceSize IndexBufferSize;
VkBuffer VertexBuffer;
VkBuffer IndexBuffer;
};
// Each viewport will hold 1 ImGui_ImplVulkanH_WindowRenderBuffers
// [Please zero-clear before use!]
struct ImGui_ImplVulkanH_WindowRenderBuffers
{
uint32_t Index;
uint32_t Count;
ImGui_ImplVulkanH_FrameRenderBuffers* FrameRenderBuffers;
};
// Vulkan data
static ImGui_ImplVulkan_InitInfo g_VulkanInitInfo = {};
static VkRenderPass g_RenderPass = VK_NULL_HANDLE;
static VkDeviceSize g_BufferMemoryAlignment = 256;
static VkPipelineCreateFlags g_PipelineCreateFlags = 0x00;
static VkDescriptorSetLayout g_DescriptorSetLayout = VK_NULL_HANDLE;
static VkPipelineLayout g_PipelineLayout = VK_NULL_HANDLE;
static VkDescriptorSet g_DescriptorSet = VK_NULL_HANDLE;
static VkPipeline g_Pipeline = VK_NULL_HANDLE;
// Font data
static VkSampler g_FontSampler = VK_NULL_HANDLE;
static VkDeviceMemory g_FontMemory = VK_NULL_HANDLE;
static VkImage g_FontImage = VK_NULL_HANDLE;
static VkImageView g_FontView = VK_NULL_HANDLE;
static VkDeviceMemory g_UploadBufferMemory = VK_NULL_HANDLE;
static VkBuffer g_UploadBuffer = VK_NULL_HANDLE;
// Render buffers
static ImGui_ImplVulkanH_WindowRenderBuffers g_MainWindowRenderBuffers;
// Forward Declarations
bool ImGui_ImplVulkan_CreateDeviceObjects();
void ImGui_ImplVulkan_DestroyDeviceObjects();
void ImGui_ImplVulkanH_DestroyFrame(VkDevice device, ImGui_ImplVulkanH_Frame* fd, const VkAllocationCallbacks* allocator);
void ImGui_ImplVulkanH_DestroyFrameSemaphores(VkDevice device, ImGui_ImplVulkanH_FrameSemaphores* fsd, const VkAllocationCallbacks* allocator);
void ImGui_ImplVulkanH_DestroyFrameRenderBuffers(VkDevice device, ImGui_ImplVulkanH_FrameRenderBuffers* buffers, const VkAllocationCallbacks* allocator);
void ImGui_ImplVulkanH_DestroyWindowRenderBuffers(VkDevice device, ImGui_ImplVulkanH_WindowRenderBuffers* buffers, const VkAllocationCallbacks* allocator);
void ImGui_ImplVulkanH_CreateWindowSwapChain(VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_Window* wd, const VkAllocationCallbacks* allocator, int w, int h, uint32_t min_image_count);
void ImGui_ImplVulkanH_CreateWindowCommandBuffers(VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_Window* wd, uint32_t queue_family, const VkAllocationCallbacks* allocator);
//-----------------------------------------------------------------------------
// SHADERS
//-----------------------------------------------------------------------------
// glsl_shader.vert, compiled with:
// # glslangValidator -V -x -o glsl_shader.vert.u32 glsl_shader.vert
/*
#version 450 core
layout(location = 0) in vec2 aPos;
layout(location = 1) in vec2 aUV;
layout(location = 2) in vec4 aColor;
layout(push_constant) uniform uPushConstant { vec2 uScale; vec2 uTranslate; } pc;
out gl_PerVertex { vec4 gl_Position; };
layout(location = 0) out struct { vec4 Color; vec2 UV; } Out;
void main()
{
Out.Color = aColor;
Out.UV = aUV;
gl_Position = vec4(aPos * pc.uScale + pc.uTranslate, 0, 1);
}
*/
static uint32_t __glsl_shader_vert_spv[] =
{
0x07230203,0x00010000,0x00080001,0x0000002e,0x00000000,0x00020011,0x00000001,0x0006000b,
0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001,
0x000a000f,0x00000000,0x00000004,0x6e69616d,0x00000000,0x0000000b,0x0000000f,0x00000015,
0x0000001b,0x0000001c,0x00030003,0x00000002,0x000001c2,0x00040005,0x00000004,0x6e69616d,
0x00000000,0x00030005,0x00000009,0x00000000,0x00050006,0x00000009,0x00000000,0x6f6c6f43,
0x00000072,0x00040006,0x00000009,0x00000001,0x00005655,0x00030005,0x0000000b,0x0074754f,
0x00040005,0x0000000f,0x6c6f4361,0x0000726f,0x00030005,0x00000015,0x00565561,0x00060005,
0x00000019,0x505f6c67,0x65567265,0x78657472,0x00000000,0x00060006,0x00000019,0x00000000,
0x505f6c67,0x7469736f,0x006e6f69,0x00030005,0x0000001b,0x00000000,0x00040005,0x0000001c,
0x736f5061,0x00000000,0x00060005,0x0000001e,0x73755075,0x6e6f4368,0x6e617473,0x00000074,
0x00050006,0x0000001e,0x00000000,0x61635375,0x0000656c,0x00060006,0x0000001e,0x00000001,
0x61725475,0x616c736e,0x00006574,0x00030005,0x00000020,0x00006370,0x00040047,0x0000000b,
0x0000001e,0x00000000,0x00040047,0x0000000f,0x0000001e,0x00000002,0x00040047,0x00000015,
0x0000001e,0x00000001,0x00050048,0x00000019,0x00000000,0x0000000b,0x00000000,0x00030047,
0x00000019,0x00000002,0x00040047,0x0000001c,0x0000001e,0x00000000,0x00050048,0x0000001e,
0x00000000,0x00000023,0x00000000,0x00050048,0x0000001e,0x00000001,0x00000023,0x00000008,
0x00030047,0x0000001e,0x00000002,0x00020013,0x00000002,0x00030021,0x00000003,0x00000002,
0x00030016,0x00000006,0x00000020,0x00040017,0x00000007,0x00000006,0x00000004,0x00040017,
0x00000008,0x00000006,0x00000002,0x0004001e,0x00000009,0x00000007,0x00000008,0x00040020,
0x0000000a,0x00000003,0x00000009,0x0004003b,0x0000000a,0x0000000b,0x00000003,0x00040015,
0x0000000c,0x00000020,0x00000001,0x0004002b,0x0000000c,0x0000000d,0x00000000,0x00040020,
0x0000000e,0x00000001,0x00000007,0x0004003b,0x0000000e,0x0000000f,0x00000001,0x00040020,
0x00000011,0x00000003,0x00000007,0x0004002b,0x0000000c,0x00000013,0x00000001,0x00040020,
0x00000014,0x00000001,0x00000008,0x0004003b,0x00000014,0x00000015,0x00000001,0x00040020,
0x00000017,0x00000003,0x00000008,0x0003001e,0x00000019,0x00000007,0x00040020,0x0000001a,
0x00000003,0x00000019,0x0004003b,0x0000001a,0x0000001b,0x00000003,0x0004003b,0x00000014,
0x0000001c,0x00000001,0x0004001e,0x0000001e,0x00000008,0x00000008,0x00040020,0x0000001f,
0x00000009,0x0000001e,0x0004003b,0x0000001f,0x00000020,0x00000009,0x00040020,0x00000021,
0x00000009,0x00000008,0x0004002b,0x00000006,0x00000028,0x00000000,0x0004002b,0x00000006,
0x00000029,0x3f800000,0x00050036,0x00000002,0x00000004,0x00000000,0x00000003,0x000200f8,
0x00000005,0x0004003d,0x00000007,0x00000010,0x0000000f,0x00050041,0x00000011,0x00000012,
0x0000000b,0x0000000d,0x0003003e,0x00000012,0x00000010,0x0004003d,0x00000008,0x00000016,
0x00000015,0x00050041,0x00000017,0x00000018,0x0000000b,0x00000013,0x0003003e,0x00000018,
0x00000016,0x0004003d,0x00000008,0x0000001d,0x0000001c,0x00050041,0x00000021,0x00000022,
0x00000020,0x0000000d,0x0004003d,0x00000008,0x00000023,0x00000022,0x00050085,0x00000008,
0x00000024,0x0000001d,0x00000023,0x00050041,0x00000021,0x00000025,0x00000020,0x00000013,
0x0004003d,0x00000008,0x00000026,0x00000025,0x00050081,0x00000008,0x00000027,0x00000024,
0x00000026,0x00050051,0x00000006,0x0000002a,0x00000027,0x00000000,0x00050051,0x00000006,
0x0000002b,0x00000027,0x00000001,0x00070050,0x00000007,0x0000002c,0x0000002a,0x0000002b,
0x00000028,0x00000029,0x00050041,0x00000011,0x0000002d,0x0000001b,0x0000000d,0x0003003e,
0x0000002d,0x0000002c,0x000100fd,0x00010038
};
// glsl_shader.frag, compiled with:
// # glslangValidator -V -x -o glsl_shader.frag.u32 glsl_shader.frag
/*
#version 450 core
layout(location = 0) out vec4 fColor;
layout(set=0, binding=0) uniform sampler2D sTexture;
layout(location = 0) in struct { vec4 Color; vec2 UV; } In;
void main()
{
fColor = In.Color * texture(sTexture, In.UV.st);
}
*/
static uint32_t __glsl_shader_frag_spv[] =
{
0x07230203,0x00010000,0x00080001,0x0000001e,0x00000000,0x00020011,0x00000001,0x0006000b,
0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001,
0x0007000f,0x00000004,0x00000004,0x6e69616d,0x00000000,0x00000009,0x0000000d,0x00030010,
0x00000004,0x00000007,0x00030003,0x00000002,0x000001c2,0x00040005,0x00000004,0x6e69616d,
0x00000000,0x00040005,0x00000009,0x6c6f4366,0x0000726f,0x00030005,0x0000000b,0x00000000,
0x00050006,0x0000000b,0x00000000,0x6f6c6f43,0x00000072,0x00040006,0x0000000b,0x00000001,
0x00005655,0x00030005,0x0000000d,0x00006e49,0x00050005,0x00000016,0x78655473,0x65727574,
0x00000000,0x00040047,0x00000009,0x0000001e,0x00000000,0x00040047,0x0000000d,0x0000001e,
0x00000000,0x00040047,0x00000016,0x00000022,0x00000000,0x00040047,0x00000016,0x00000021,
0x00000000,0x00020013,0x00000002,0x00030021,0x00000003,0x00000002,0x00030016,0x00000006,
0x00000020,0x00040017,0x00000007,0x00000006,0x00000004,0x00040020,0x00000008,0x00000003,
0x00000007,0x0004003b,0x00000008,0x00000009,0x00000003,0x00040017,0x0000000a,0x00000006,
0x00000002,0x0004001e,0x0000000b,0x00000007,0x0000000a,0x00040020,0x0000000c,0x00000001,
0x0000000b,0x0004003b,0x0000000c,0x0000000d,0x00000001,0x00040015,0x0000000e,0x00000020,
0x00000001,0x0004002b,0x0000000e,0x0000000f,0x00000000,0x00040020,0x00000010,0x00000001,
0x00000007,0x00090019,0x00000013,0x00000006,0x00000001,0x00000000,0x00000000,0x00000000,
0x00000001,0x00000000,0x0003001b,0x00000014,0x00000013,0x00040020,0x00000015,0x00000000,
0x00000014,0x0004003b,0x00000015,0x00000016,0x00000000,0x0004002b,0x0000000e,0x00000018,
0x00000001,0x00040020,0x00000019,0x00000001,0x0000000a,0x00050036,0x00000002,0x00000004,
0x00000000,0x00000003,0x000200f8,0x00000005,0x00050041,0x00000010,0x00000011,0x0000000d,
0x0000000f,0x0004003d,0x00000007,0x00000012,0x00000011,0x0004003d,0x00000014,0x00000017,
0x00000016,0x00050041,0x00000019,0x0000001a,0x0000000d,0x00000018,0x0004003d,0x0000000a,
0x0000001b,0x0000001a,0x00050057,0x00000007,0x0000001c,0x00000017,0x0000001b,0x00050085,
0x00000007,0x0000001d,0x00000012,0x0000001c,0x0003003e,0x00000009,0x0000001d,0x000100fd,
0x00010038
};
//-----------------------------------------------------------------------------
// FUNCTIONS
//-----------------------------------------------------------------------------
static uint32_t ImGui_ImplVulkan_MemoryType(VkMemoryPropertyFlags properties, uint32_t type_bits)
{
ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
VkPhysicalDeviceMemoryProperties prop;
vkGetPhysicalDeviceMemoryProperties(v->PhysicalDevice, &prop);
for (uint32_t i = 0; i < prop.memoryTypeCount; i++)
if ((prop.memoryTypes[i].propertyFlags & properties) == properties && type_bits & (1<<i))
return i;
return 0xFFFFFFFF; // Unable to find memoryType
}
static void check_vk_result(VkResult err)
{
ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
if (v->CheckVkResultFn)
v->CheckVkResultFn(err);
}
static void CreateOrResizeBuffer(VkBuffer& buffer, VkDeviceMemory& buffer_memory, VkDeviceSize& p_buffer_size, size_t new_size, VkBufferUsageFlagBits usage)
{
ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
VkResult err;
if (buffer != VK_NULL_HANDLE)
vkDestroyBuffer(v->Device, buffer, v->Allocator);
if (buffer_memory != VK_NULL_HANDLE)
vkFreeMemory(v->Device, buffer_memory, v->Allocator);
VkDeviceSize vertex_buffer_size_aligned = ((new_size - 1) / g_BufferMemoryAlignment + 1) * g_BufferMemoryAlignment;
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = vertex_buffer_size_aligned;
buffer_info.usage = usage;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
err = vkCreateBuffer(v->Device, &buffer_info, v->Allocator, &buffer);
check_vk_result(err);
VkMemoryRequirements req;
vkGetBufferMemoryRequirements(v->Device, buffer, &req);
g_BufferMemoryAlignment = (g_BufferMemoryAlignment > req.alignment) ? g_BufferMemoryAlignment : req.alignment;
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = req.size;
alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits);
err = vkAllocateMemory(v->Device, &alloc_info, v->Allocator, &buffer_memory);
check_vk_result(err);
err = vkBindBufferMemory(v->Device, buffer, buffer_memory, 0);
check_vk_result(err);
p_buffer_size = new_size;
}
static void ImGui_ImplVulkan_SetupRenderState(ImDrawData* draw_data, VkCommandBuffer command_buffer, ImGui_ImplVulkanH_FrameRenderBuffers* rb, int fb_width, int fb_height)
{
// Bind pipeline and descriptor sets:
{
vkCmdBindPipeline(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_Pipeline);
VkDescriptorSet desc_set[1] = { g_DescriptorSet };
vkCmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_PipelineLayout, 0, 1, desc_set, 0, NULL);
}
// Bind Vertex And Index Buffer:
{
VkBuffer vertex_buffers[1] = { rb->VertexBuffer };
VkDeviceSize vertex_offset[1] = { 0 };
vkCmdBindVertexBuffers(command_buffer, 0, 1, vertex_buffers, vertex_offset);
vkCmdBindIndexBuffer(command_buffer, rb->IndexBuffer, 0, sizeof(ImDrawIdx) == 2 ? VK_INDEX_TYPE_UINT16 : VK_INDEX_TYPE_UINT32);
}
// Setup viewport:
{
VkViewport viewport;
viewport.x = 0;
viewport.y = 0;
viewport.width = (float)fb_width;
viewport.height = (float)fb_height;
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
vkCmdSetViewport(command_buffer, 0, 1, &viewport);
}
// Setup scale and translation:
// Our visible imgui space lies from draw_data->DisplayPps (top left) to draw_data->DisplayPos+data_data->DisplaySize (bottom right). DisplayPos is (0,0) for single viewport apps.
{
float scale[2];
scale[0] = 2.0f / draw_data->DisplaySize.x;
scale[1] = 2.0f / draw_data->DisplaySize.y;
float translate[2];
translate[0] = -1.0f - draw_data->DisplayPos.x * scale[0];
translate[1] = -1.0f - draw_data->DisplayPos.y * scale[1];
vkCmdPushConstants(command_buffer, g_PipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 0, sizeof(float) * 2, scale);
vkCmdPushConstants(command_buffer, g_PipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 2, sizeof(float) * 2, translate);
}
}
// Render function
// (this used to be set in io.RenderDrawListsFn and called by ImGui::Render(), but you can now call this directly from your main loop)
void ImGui_ImplVulkan_RenderDrawData(ImDrawData* draw_data, VkCommandBuffer command_buffer)
{
// Avoid rendering when minimized, scale coordinates for retina displays (screen coordinates != framebuffer coordinates)
int fb_width = (int)(draw_data->DisplaySize.x * draw_data->FramebufferScale.x);
int fb_height = (int)(draw_data->DisplaySize.y * draw_data->FramebufferScale.y);
if (fb_width <= 0 || fb_height <= 0 || draw_data->TotalVtxCount == 0)
return;
ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
// Allocate array to store enough vertex/index buffers
ImGui_ImplVulkanH_WindowRenderBuffers* wrb = &g_MainWindowRenderBuffers;
if (wrb->FrameRenderBuffers == NULL)
{
wrb->Index = 0;
wrb->Count = v->ImageCount;
wrb->FrameRenderBuffers = (ImGui_ImplVulkanH_FrameRenderBuffers*)IM_ALLOC(sizeof(ImGui_ImplVulkanH_FrameRenderBuffers) * wrb->Count);
memset(wrb->FrameRenderBuffers, 0, sizeof(ImGui_ImplVulkanH_FrameRenderBuffers) * wrb->Count);
}
IM_ASSERT(wrb->Count == v->ImageCount);
wrb->Index = (wrb->Index + 1) % wrb->Count;
ImGui_ImplVulkanH_FrameRenderBuffers* rb = &wrb->FrameRenderBuffers[wrb->Index];
VkResult err;
// Create or resize the vertex/index buffers
size_t vertex_size = draw_data->TotalVtxCount * sizeof(ImDrawVert);
size_t index_size = draw_data->TotalIdxCount * sizeof(ImDrawIdx);
if (rb->VertexBuffer == VK_NULL_HANDLE || rb->VertexBufferSize < vertex_size)
CreateOrResizeBuffer(rb->VertexBuffer, rb->VertexBufferMemory, rb->VertexBufferSize, vertex_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
if (rb->IndexBuffer == VK_NULL_HANDLE || rb->IndexBufferSize < index_size)
CreateOrResizeBuffer(rb->IndexBuffer, rb->IndexBufferMemory, rb->IndexBufferSize, index_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
// Upload vertex/index data into a single contiguous GPU buffer
{
ImDrawVert* vtx_dst = NULL;
ImDrawIdx* idx_dst = NULL;
err = vkMapMemory(v->Device, rb->VertexBufferMemory, 0, vertex_size, 0, (void**)(&vtx_dst));
check_vk_result(err);
err = vkMapMemory(v->Device, rb->IndexBufferMemory, 0, index_size, 0, (void**)(&idx_dst));
check_vk_result(err);
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
memcpy(vtx_dst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert));
memcpy(idx_dst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx));
vtx_dst += cmd_list->VtxBuffer.Size;
idx_dst += cmd_list->IdxBuffer.Size;
}
VkMappedMemoryRange range[2] = {};
range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[0].memory = rb->VertexBufferMemory;
range[0].size = VK_WHOLE_SIZE;
range[1].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[1].memory = rb->IndexBufferMemory;
range[1].size = VK_WHOLE_SIZE;
err = vkFlushMappedMemoryRanges(v->Device, 2, range);
check_vk_result(err);
vkUnmapMemory(v->Device, rb->VertexBufferMemory);
vkUnmapMemory(v->Device, rb->IndexBufferMemory);
}
// Setup desired Vulkan state
ImGui_ImplVulkan_SetupRenderState(draw_data, command_buffer, rb, fb_width, fb_height);
// Will project scissor/clipping rectangles into framebuffer space
ImVec2 clip_off = draw_data->DisplayPos; // (0,0) unless using multi-viewports
ImVec2 clip_scale = draw_data->FramebufferScale; // (1,1) unless using retina display which are often (2,2)
// Render command lists
// (Because we merged all buffers into a single one, we maintain our own offset into them)
int global_vtx_offset = 0;
int global_idx_offset = 0;
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++)
{
const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
if (pcmd->UserCallback != NULL)
{
// User callback, registered via ImDrawList::AddCallback()
// (ImDrawCallback_ResetRenderState is a special callback value used by the user to request the renderer to reset render state.)
if (pcmd->UserCallback == ImDrawCallback_ResetRenderState)
ImGui_ImplVulkan_SetupRenderState(draw_data, command_buffer, rb, fb_width, fb_height);
else
pcmd->UserCallback(cmd_list, pcmd);
}
else
{
// Project scissor/clipping rectangles into framebuffer space
ImVec4 clip_rect;
clip_rect.x = (pcmd->ClipRect.x - clip_off.x) * clip_scale.x;
clip_rect.y = (pcmd->ClipRect.y - clip_off.y) * clip_scale.y;
clip_rect.z = (pcmd->ClipRect.z - clip_off.x) * clip_scale.x;
clip_rect.w = (pcmd->ClipRect.w - clip_off.y) * clip_scale.y;
if (clip_rect.x < fb_width && clip_rect.y < fb_height && clip_rect.z >= 0.0f && clip_rect.w >= 0.0f)
{
// Negative offsets are illegal for vkCmdSetScissor
if (clip_rect.x < 0.0f)
clip_rect.x = 0.0f;
if (clip_rect.y < 0.0f)
clip_rect.y = 0.0f;
// Apply scissor/clipping rectangle
VkRect2D scissor;
scissor.offset.x = (int32_t)(clip_rect.x);
scissor.offset.y = (int32_t)(clip_rect.y);
scissor.extent.width = (uint32_t)(clip_rect.z - clip_rect.x);
scissor.extent.height = (uint32_t)(clip_rect.w - clip_rect.y);
vkCmdSetScissor(command_buffer, 0, 1, &scissor);
// Draw
vkCmdDrawIndexed(command_buffer, pcmd->ElemCount, 1, pcmd->IdxOffset + global_idx_offset, pcmd->VtxOffset + global_vtx_offset, 0);
}
}
}
global_idx_offset += cmd_list->IdxBuffer.Size;
global_vtx_offset += cmd_list->VtxBuffer.Size;
}
}
bool ImGui_ImplVulkan_CreateFontsTexture(VkCommandBuffer command_buffer)
{
ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
ImGuiIO& io = ImGui::GetIO();
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
size_t upload_size = width*height*4*sizeof(char);
VkResult err;
// Create the Image:
{
VkImageCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
info.imageType = VK_IMAGE_TYPE_2D;
info.format = VK_FORMAT_R8G8B8A8_UNORM;
info.extent.width = width;
info.extent.height = height;
info.extent.depth = 1;
info.mipLevels = 1;
info.arrayLayers = 1;
info.samples = VK_SAMPLE_COUNT_1_BIT;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
err = vkCreateImage(v->Device, &info, v->Allocator, &g_FontImage);
check_vk_result(err);
VkMemoryRequirements req;
vkGetImageMemoryRequirements(v->Device, g_FontImage, &req);
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = req.size;
alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, req.memoryTypeBits);
err = vkAllocateMemory(v->Device, &alloc_info, v->Allocator, &g_FontMemory);
check_vk_result(err);
err = vkBindImageMemory(v->Device, g_FontImage, g_FontMemory, 0);
check_vk_result(err);
}
// Create the Image View:
{
VkImageViewCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
info.image = g_FontImage;
info.viewType = VK_IMAGE_VIEW_TYPE_2D;
info.format = VK_FORMAT_R8G8B8A8_UNORM;
info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
info.subresourceRange.levelCount = 1;
info.subresourceRange.layerCount = 1;
err = vkCreateImageView(v->Device, &info, v->Allocator, &g_FontView);
check_vk_result(err);
}
// Update the Descriptor Set:
{
VkDescriptorImageInfo desc_image[1] = {};
desc_image[0].sampler = g_FontSampler;
desc_image[0].imageView = g_FontView;
desc_image[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkWriteDescriptorSet write_desc[1] = {};
write_desc[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
write_desc[0].dstSet = g_DescriptorSet;
write_desc[0].descriptorCount = 1;
write_desc[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
write_desc[0].pImageInfo = desc_image;
vkUpdateDescriptorSets(v->Device, 1, write_desc, 0, NULL);
}
// Create the Upload Buffer:
{
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = upload_size;
buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
err = vkCreateBuffer(v->Device, &buffer_info, v->Allocator, &g_UploadBuffer);
check_vk_result(err);
VkMemoryRequirements req;
vkGetBufferMemoryRequirements(v->Device, g_UploadBuffer, &req);
g_BufferMemoryAlignment = (g_BufferMemoryAlignment > req.alignment) ? g_BufferMemoryAlignment : req.alignment;
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = req.size;
alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits);
err = vkAllocateMemory(v->Device, &alloc_info, v->Allocator, &g_UploadBufferMemory);
check_vk_result(err);
err = vkBindBufferMemory(v->Device, g_UploadBuffer, g_UploadBufferMemory, 0);
check_vk_result(err);
}
// Upload to Buffer:
{
char* map = NULL;
err = vkMapMemory(v->Device, g_UploadBufferMemory, 0, upload_size, 0, (void**)(&map));
check_vk_result(err);
memcpy(map, pixels, upload_size);
VkMappedMemoryRange range[1] = {};
range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[0].memory = g_UploadBufferMemory;
range[0].size = upload_size;
err = vkFlushMappedMemoryRanges(v->Device, 1, range);
check_vk_result(err);
vkUnmapMemory(v->Device, g_UploadBufferMemory);
}
// Copy to Image:
{
VkImageMemoryBarrier copy_barrier[1] = {};
copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].image = g_FontImage;
copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_barrier[0].subresourceRange.levelCount = 1;
copy_barrier[0].subresourceRange.layerCount = 1;
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1, copy_barrier);
VkBufferImageCopy region = {};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.width = width;
region.imageExtent.height = height;
region.imageExtent.depth = 1;
vkCmdCopyBufferToImage(command_buffer, g_UploadBuffer, g_FontImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
VkImageMemoryBarrier use_barrier[1] = {};
use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].image = g_FontImage;
use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
use_barrier[0].subresourceRange.levelCount = 1;
use_barrier[0].subresourceRange.layerCount = 1;
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, NULL, 0, NULL, 1, use_barrier);
}
// Store our identifier
io.Fonts->TexID = (ImTextureID)(intptr_t)g_FontImage;
return true;
}
bool ImGui_ImplVulkan_CreateDeviceObjects()
{
ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
VkResult err;
VkShaderModule vert_module;
VkShaderModule frag_module;
// Create The Shader Modules:
{
VkShaderModuleCreateInfo vert_info = {};
vert_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
vert_info.codeSize = sizeof(__glsl_shader_vert_spv);
vert_info.pCode = (uint32_t*)__glsl_shader_vert_spv;
err = vkCreateShaderModule(v->Device, &vert_info, v->Allocator, &vert_module);
check_vk_result(err);
VkShaderModuleCreateInfo frag_info = {};
frag_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
frag_info.codeSize = sizeof(__glsl_shader_frag_spv);
frag_info.pCode = (uint32_t*)__glsl_shader_frag_spv;
err = vkCreateShaderModule(v->Device, &frag_info, v->Allocator, &frag_module);
check_vk_result(err);
}
if (!g_FontSampler)
{
VkSamplerCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
info.magFilter = VK_FILTER_LINEAR;
info.minFilter = VK_FILTER_LINEAR;
info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
info.minLod = -1000;
info.maxLod = 1000;
info.maxAnisotropy = 1.0f;
err = vkCreateSampler(v->Device, &info, v->Allocator, &g_FontSampler);
check_vk_result(err);
}
if (!g_DescriptorSetLayout)
{
VkSampler sampler[1] = {g_FontSampler};
VkDescriptorSetLayoutBinding binding[1] = {};
binding[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
binding[0].descriptorCount = 1;
binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
binding[0].pImmutableSamplers = sampler;
VkDescriptorSetLayoutCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
info.bindingCount = 1;
info.pBindings = binding;
err = vkCreateDescriptorSetLayout(v->Device, &info, v->Allocator, &g_DescriptorSetLayout);
check_vk_result(err);
}
// Create Descriptor Set:
{
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorPool = v->DescriptorPool;
alloc_info.descriptorSetCount = 1;
alloc_info.pSetLayouts = &g_DescriptorSetLayout;
err = vkAllocateDescriptorSets(v->Device, &alloc_info, &g_DescriptorSet);
check_vk_result(err);
}
if (!g_PipelineLayout)
{
// Constants: we are using 'vec2 offset' and 'vec2 scale' instead of a full 3d projection matrix
VkPushConstantRange push_constants[1] = {};
push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
push_constants[0].offset = sizeof(float) * 0;
push_constants[0].size = sizeof(float) * 4;
VkDescriptorSetLayout set_layout[1] = { g_DescriptorSetLayout };
VkPipelineLayoutCreateInfo layout_info = {};
layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
layout_info.setLayoutCount = 1;
layout_info.pSetLayouts = set_layout;
layout_info.pushConstantRangeCount = 1;
layout_info.pPushConstantRanges = push_constants;
err = vkCreatePipelineLayout(v->Device, &layout_info, v->Allocator, &g_PipelineLayout);
check_vk_result(err);
}
VkPipelineShaderStageCreateInfo stage[2] = {};
stage[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
stage[0].module = vert_module;
stage[0].pName = "main";
stage[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
stage[1].module = frag_module;
stage[1].pName = "main";
VkVertexInputBindingDescription binding_desc[1] = {};
binding_desc[0].stride = sizeof(ImDrawVert);
binding_desc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
VkVertexInputAttributeDescription attribute_desc[3] = {};
attribute_desc[0].location = 0;
attribute_desc[0].binding = binding_desc[0].binding;
attribute_desc[0].format = VK_FORMAT_R32G32_SFLOAT;
attribute_desc[0].offset = IM_OFFSETOF(ImDrawVert, pos);
attribute_desc[1].location = 1;
attribute_desc[1].binding = binding_desc[0].binding;
attribute_desc[1].format = VK_FORMAT_R32G32_SFLOAT;
attribute_desc[1].offset = IM_OFFSETOF(ImDrawVert, uv);
attribute_desc[2].location = 2;
attribute_desc[2].binding = binding_desc[0].binding;
attribute_desc[2].format = VK_FORMAT_R8G8B8A8_UNORM;
attribute_desc[2].offset = IM_OFFSETOF(ImDrawVert, col);
VkPipelineVertexInputStateCreateInfo vertex_info = {};
vertex_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertex_info.vertexBindingDescriptionCount = 1;
vertex_info.pVertexBindingDescriptions = binding_desc;
vertex_info.vertexAttributeDescriptionCount = 3;
vertex_info.pVertexAttributeDescriptions = attribute_desc;
VkPipelineInputAssemblyStateCreateInfo ia_info = {};
ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
VkPipelineViewportStateCreateInfo viewport_info = {};
viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewport_info.viewportCount = 1;
viewport_info.scissorCount = 1;
VkPipelineRasterizationStateCreateInfo raster_info = {};
raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
raster_info.polygonMode = VK_POLYGON_MODE_FILL;
raster_info.cullMode = VK_CULL_MODE_NONE;
raster_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
raster_info.lineWidth = 1.0f;
VkPipelineMultisampleStateCreateInfo ms_info = {};
ms_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
if (v->MSAASamples != 0)
ms_info.rasterizationSamples = v->MSAASamples;
else
ms_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineColorBlendAttachmentState color_attachment[1] = {};
color_attachment[0].blendEnable = VK_TRUE;
color_attachment[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
color_attachment[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
color_attachment[0].colorBlendOp = VK_BLEND_OP_ADD;
color_attachment[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
color_attachment[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
color_attachment[0].alphaBlendOp = VK_BLEND_OP_ADD;
color_attachment[0].colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
VkPipelineDepthStencilStateCreateInfo depth_info = {};
depth_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
VkPipelineColorBlendStateCreateInfo blend_info = {};
blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
blend_info.attachmentCount = 1;
blend_info.pAttachments = color_attachment;
VkDynamicState dynamic_states[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamic_state = {};
dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamic_state.dynamicStateCount = (uint32_t)IM_ARRAYSIZE(dynamic_states);
dynamic_state.pDynamicStates = dynamic_states;
VkGraphicsPipelineCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.flags = g_PipelineCreateFlags;
info.stageCount = 2;
info.pStages = stage;
info.pVertexInputState = &vertex_info;
info.pInputAssemblyState = &ia_info;
info.pViewportState = &viewport_info;
info.pRasterizationState = &raster_info;
info.pMultisampleState = &ms_info;
info.pDepthStencilState = &depth_info;
info.pColorBlendState = &blend_info;
info.pDynamicState = &dynamic_state;
info.layout = g_PipelineLayout;
info.renderPass = g_RenderPass;
err = vkCreateGraphicsPipelines(v->Device, v->PipelineCache, 1, &info, v->Allocator, &g_Pipeline);
check_vk_result(err);
vkDestroyShaderModule(v->Device, vert_module, v->Allocator);
vkDestroyShaderModule(v->Device, frag_module, v->Allocator);
return true;
}
void ImGui_ImplVulkan_DestroyFontUploadObjects()
{
ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
if (g_UploadBuffer)
{
vkDestroyBuffer(v->Device, g_UploadBuffer, v->Allocator);
g_UploadBuffer = VK_NULL_HANDLE;
}
if (g_UploadBufferMemory)
{
vkFreeMemory(v->Device, g_UploadBufferMemory, v->Allocator);
g_UploadBufferMemory = VK_NULL_HANDLE;
}
}
void ImGui_ImplVulkan_DestroyDeviceObjects()
{
ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
ImGui_ImplVulkanH_DestroyWindowRenderBuffers(v->Device, &g_MainWindowRenderBuffers, v->Allocator);
ImGui_ImplVulkan_DestroyFontUploadObjects();
if (g_FontView) { vkDestroyImageView(v->Device, g_FontView, v->Allocator); g_FontView = VK_NULL_HANDLE; }
if (g_FontImage) { vkDestroyImage(v->Device, g_FontImage, v->Allocator); g_FontImage = VK_NULL_HANDLE; }
if (g_FontMemory) { vkFreeMemory(v->Device, g_FontMemory, v->Allocator); g_FontMemory = VK_NULL_HANDLE; }
if (g_FontSampler) { vkDestroySampler(v->Device, g_FontSampler, v->Allocator); g_FontSampler = VK_NULL_HANDLE; }
if (g_DescriptorSetLayout) { vkDestroyDescriptorSetLayout(v->Device, g_DescriptorSetLayout, v->Allocator); g_DescriptorSetLayout = VK_NULL_HANDLE; }
if (g_PipelineLayout) { vkDestroyPipelineLayout(v->Device, g_PipelineLayout, v->Allocator); g_PipelineLayout = VK_NULL_HANDLE; }
if (g_Pipeline) { vkDestroyPipeline(v->Device, g_Pipeline, v->Allocator); g_Pipeline = VK_NULL_HANDLE; }
}
bool ImGui_ImplVulkan_Init(ImGui_ImplVulkan_InitInfo* info, VkRenderPass render_pass)
{
// Setup back-end capabilities flags
ImGuiIO& io = ImGui::GetIO();
io.BackendRendererName = "imgui_impl_vulkan";
io.BackendFlags |= ImGuiBackendFlags_RendererHasVtxOffset; // We can honor the ImDrawCmd::VtxOffset field, allowing for large meshes.
IM_ASSERT(info->Instance != VK_NULL_HANDLE);
IM_ASSERT(info->PhysicalDevice != VK_NULL_HANDLE);
IM_ASSERT(info->Device != VK_NULL_HANDLE);
IM_ASSERT(info->Queue != VK_NULL_HANDLE);
IM_ASSERT(info->DescriptorPool != VK_NULL_HANDLE);
IM_ASSERT(info->MinImageCount >= 2);
IM_ASSERT(info->ImageCount >= info->MinImageCount);
IM_ASSERT(render_pass != VK_NULL_HANDLE);
g_VulkanInitInfo = *info;
g_RenderPass = render_pass;
ImGui_ImplVulkan_CreateDeviceObjects();
return true;
}
void ImGui_ImplVulkan_Shutdown()
{
ImGui_ImplVulkan_DestroyDeviceObjects();
}
void ImGui_ImplVulkan_NewFrame()
{
}
void ImGui_ImplVulkan_SetMinImageCount(uint32_t min_image_count)
{
IM_ASSERT(min_image_count >= 2);
if (g_VulkanInitInfo.MinImageCount == min_image_count)
return;
ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
VkResult err = vkDeviceWaitIdle(v->Device);
check_vk_result(err);
ImGui_ImplVulkanH_DestroyWindowRenderBuffers(v->Device, &g_MainWindowRenderBuffers, v->Allocator);
g_VulkanInitInfo.MinImageCount = min_image_count;
}
//-------------------------------------------------------------------------
// Internal / Miscellaneous Vulkan Helpers
// (Used by example's main.cpp. Used by multi-viewport features. PROBABLY NOT used by your own app.)
//-------------------------------------------------------------------------
// You probably do NOT need to use or care about those functions.
// Those functions only exist because:
// 1) they facilitate the readability and maintenance of the multiple main.cpp examples files.
// 2) the upcoming multi-viewport feature will need them internally.
// Generally we avoid exposing any kind of superfluous high-level helpers in the bindings,
// but it is too much code to duplicate everywhere so we exceptionally expose them.
//
// Your engine/app will likely _already_ have code to setup all that stuff (swap chain, render pass, frame buffers, etc.).
// You may read this code to learn about Vulkan, but it is recommended you use you own custom tailored code to do equivalent work.
// (The ImGui_ImplVulkanH_XXX functions do not interact with any of the state used by the regular ImGui_ImplVulkan_XXX functions)
//-------------------------------------------------------------------------
VkSurfaceFormatKHR ImGui_ImplVulkanH_SelectSurfaceFormat(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkFormat* request_formats, int request_formats_count, VkColorSpaceKHR request_color_space)
{
IM_ASSERT(request_formats != NULL);
IM_ASSERT(request_formats_count > 0);
// Per Spec Format and View Format are expected to be the same unless VK_IMAGE_CREATE_MUTABLE_BIT was set at image creation
// Assuming that the default behavior is without setting this bit, there is no need for separate Swapchain image and image view format
// Additionally several new color spaces were introduced with Vulkan Spec v1.0.40,
// hence we must make sure that a format with the mostly available color space, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR, is found and used.
uint32_t avail_count;
vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &avail_count, NULL);
ImVector<VkSurfaceFormatKHR> avail_format;
avail_format.resize((int)avail_count);
vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &avail_count, avail_format.Data);
// First check if only one format, VK_FORMAT_UNDEFINED, is available, which would imply that any format is available
if (avail_count == 1)
{
if (avail_format[0].format == VK_FORMAT_UNDEFINED)
{
VkSurfaceFormatKHR ret;
ret.format = request_formats[0];
ret.colorSpace = request_color_space;
return ret;
}
else
{
// No point in searching another format
return avail_format[0];
}
}
else
{
// Request several formats, the first found will be used
for (int request_i = 0; request_i < request_formats_count; request_i++)
for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++)
if (avail_format[avail_i].format == request_formats[request_i] && avail_format[avail_i].colorSpace == request_color_space)
return avail_format[avail_i];
// If none of the requested image formats could be found, use the first available
return avail_format[0];
}
}
VkPresentModeKHR ImGui_ImplVulkanH_SelectPresentMode(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkPresentModeKHR* request_modes, int request_modes_count)
{
IM_ASSERT(request_modes != NULL);
IM_ASSERT(request_modes_count > 0);
// Request a certain mode and confirm that it is available. If not use VK_PRESENT_MODE_FIFO_KHR which is mandatory
uint32_t avail_count = 0;
vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &avail_count, NULL);
ImVector<VkPresentModeKHR> avail_modes;
avail_modes.resize((int)avail_count);
vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &avail_count, avail_modes.Data);
//for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++)
// printf("[vulkan] avail_modes[%d] = %d\n", avail_i, avail_modes[avail_i]);
for (int request_i = 0; request_i < request_modes_count; request_i++)
for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++)
if (request_modes[request_i] == avail_modes[avail_i])
return request_modes[request_i];
return VK_PRESENT_MODE_FIFO_KHR; // Always available
}
void ImGui_ImplVulkanH_CreateWindowCommandBuffers(VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_Window* wd, uint32_t queue_family, const VkAllocationCallbacks* allocator)
{
IM_ASSERT(physical_device != VK_NULL_HANDLE && device != VK_NULL_HANDLE);
(void)physical_device;
(void)allocator;
// Create Command Buffers
VkResult err;
for (uint32_t i = 0; i < wd->ImageCount; i++)
{
ImGui_ImplVulkanH_Frame* fd = &wd->Frames[i];
ImGui_ImplVulkanH_FrameSemaphores* fsd = &wd->FrameSemaphores[i];
{
VkCommandPoolCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
info.queueFamilyIndex = queue_family;
err = vkCreateCommandPool(device, &info, allocator, &fd->CommandPool);
check_vk_result(err);
}
{
VkCommandBufferAllocateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
info.commandPool = fd->CommandPool;
info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
info.commandBufferCount = 1;
err = vkAllocateCommandBuffers(device, &info, &fd->CommandBuffer);
check_vk_result(err);
}
{
VkFenceCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
info.flags = VK_FENCE_CREATE_SIGNALED_BIT;
err = vkCreateFence(device, &info, allocator, &fd->Fence);
check_vk_result(err);
}
{
VkSemaphoreCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
err = vkCreateSemaphore(device, &info, allocator, &fsd->ImageAcquiredSemaphore);
check_vk_result(err);
err = vkCreateSemaphore(device, &info, allocator, &fsd->RenderCompleteSemaphore);
check_vk_result(err);
}
}
}
int ImGui_ImplVulkanH_GetMinImageCountFromPresentMode(VkPresentModeKHR present_mode)
{
if (present_mode == VK_PRESENT_MODE_MAILBOX_KHR)
return 3;
if (present_mode == VK_PRESENT_MODE_FIFO_KHR || present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR)
return 2;
if (present_mode == VK_PRESENT_MODE_IMMEDIATE_KHR)
return 1;
IM_ASSERT(0);
return 1;
}
// Also destroy old swap chain and in-flight frames data, if any.
void ImGui_ImplVulkanH_CreateWindowSwapChain(VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_Window* wd, const VkAllocationCallbacks* allocator, int w, int h, uint32_t min_image_count)
{
VkResult err;
VkSwapchainKHR old_swapchain = wd->Swapchain;
err = vkDeviceWaitIdle(device);
check_vk_result(err);
// We don't use ImGui_ImplVulkanH_DestroyWindow() because we want to preserve the old swapchain to create the new one.
// Destroy old Framebuffer
for (uint32_t i = 0; i < wd->ImageCount; i++)
{
ImGui_ImplVulkanH_DestroyFrame(device, &wd->Frames[i], allocator);
ImGui_ImplVulkanH_DestroyFrameSemaphores(device, &wd->FrameSemaphores[i], allocator);
}
IM_FREE(wd->Frames);
IM_FREE(wd->FrameSemaphores);
wd->Frames = NULL;
wd->FrameSemaphores = NULL;
wd->ImageCount = 0;
if (wd->RenderPass)
vkDestroyRenderPass(device, wd->RenderPass, allocator);
// If min image count was not specified, request different count of images dependent on selected present mode
if (min_image_count == 0)
min_image_count = ImGui_ImplVulkanH_GetMinImageCountFromPresentMode(wd->PresentMode);
// Create Swapchain
{
VkSwapchainCreateInfoKHR info = {};
info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
info.surface = wd->Surface;
info.minImageCount = min_image_count;
info.imageFormat = wd->SurfaceFormat.format;
info.imageColorSpace = wd->SurfaceFormat.colorSpace;
info.imageArrayLayers = 1;
info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; // Assume that graphics family == present family
info.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
info.presentMode = wd->PresentMode;
info.clipped = VK_TRUE;
info.oldSwapchain = old_swapchain;
VkSurfaceCapabilitiesKHR cap;
err = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physical_device, wd->Surface, &cap);
check_vk_result(err);
if (info.minImageCount < cap.minImageCount)
info.minImageCount = cap.minImageCount;
else if (cap.maxImageCount != 0 && info.minImageCount > cap.maxImageCount)
info.minImageCount = cap.maxImageCount;
if (cap.currentExtent.width == 0xffffffff)
{
info.imageExtent.width = wd->Width = w;
info.imageExtent.height = wd->Height = h;
}
else
{
info.imageExtent.width = wd->Width = cap.currentExtent.width;
info.imageExtent.height = wd->Height = cap.currentExtent.height;
}
err = vkCreateSwapchainKHR(device, &info, allocator, &wd->Swapchain);
check_vk_result(err);
err = vkGetSwapchainImagesKHR(device, wd->Swapchain, &wd->ImageCount, NULL);
check_vk_result(err);
VkImage backbuffers[16] = {};
IM_ASSERT(wd->ImageCount >= min_image_count);
IM_ASSERT(wd->ImageCount < IM_ARRAYSIZE(backbuffers));
err = vkGetSwapchainImagesKHR(device, wd->Swapchain, &wd->ImageCount, backbuffers);
check_vk_result(err);
IM_ASSERT(wd->Frames == NULL);
wd->Frames = (ImGui_ImplVulkanH_Frame*)IM_ALLOC(sizeof(ImGui_ImplVulkanH_Frame) * wd->ImageCount);
wd->FrameSemaphores = (ImGui_ImplVulkanH_FrameSemaphores*)IM_ALLOC(sizeof(ImGui_ImplVulkanH_FrameSemaphores) * wd->ImageCount);
memset(wd->Frames, 0, sizeof(wd->Frames[0]) * wd->ImageCount);
memset(wd->FrameSemaphores, 0, sizeof(wd->FrameSemaphores[0]) * wd->ImageCount);
for (uint32_t i = 0; i < wd->ImageCount; i++)
wd->Frames[i].Backbuffer = backbuffers[i];
}
if (old_swapchain)
vkDestroySwapchainKHR(device, old_swapchain, allocator);
// Create the Render Pass
{
VkAttachmentDescription attachment = {};
attachment.format = wd->SurfaceFormat.format;
attachment.samples = VK_SAMPLE_COUNT_1_BIT;
attachment.loadOp = wd->ClearEnable ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference color_attachment = {};
color_attachment.attachment = 0;
color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_attachment;
VkSubpassDependency dependency = {};
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
dependency.dstSubpass = 0;
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.srcAccessMask = 0;
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkRenderPassCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
info.attachmentCount = 1;
info.pAttachments = &attachment;
info.subpassCount = 1;
info.pSubpasses = &subpass;
info.dependencyCount = 1;
info.pDependencies = &dependency;
err = vkCreateRenderPass(device, &info, allocator, &wd->RenderPass);
check_vk_result(err);
}
// Create The Image Views
{
VkImageViewCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
info.viewType = VK_IMAGE_VIEW_TYPE_2D;
info.format = wd->SurfaceFormat.format;
info.components.r = VK_COMPONENT_SWIZZLE_R;
info.components.g = VK_COMPONENT_SWIZZLE_G;
info.components.b = VK_COMPONENT_SWIZZLE_B;
info.components.a = VK_COMPONENT_SWIZZLE_A;
VkImageSubresourceRange image_range = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
info.subresourceRange = image_range;
for (uint32_t i = 0; i < wd->ImageCount; i++)
{
ImGui_ImplVulkanH_Frame* fd = &wd->Frames[i];
info.image = fd->Backbuffer;
err = vkCreateImageView(device, &info, allocator, &fd->BackbufferView);
check_vk_result(err);
}
}
// Create Framebuffer
{
VkImageView attachment[1];
VkFramebufferCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
info.renderPass = wd->RenderPass;
info.attachmentCount = 1;
info.pAttachments = attachment;
info.width = wd->Width;
info.height = wd->Height;
info.layers = 1;
for (uint32_t i = 0; i < wd->ImageCount; i++)
{
ImGui_ImplVulkanH_Frame* fd = &wd->Frames[i];
attachment[0] = fd->BackbufferView;
err = vkCreateFramebuffer(device, &info, allocator, &fd->Framebuffer);
check_vk_result(err);
}
}
}
void ImGui_ImplVulkanH_CreateWindow(VkInstance instance, VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_Window* wd, uint32_t queue_family, const VkAllocationCallbacks* allocator, int width, int height, uint32_t min_image_count)
{
(void)instance;
ImGui_ImplVulkanH_CreateWindowSwapChain(physical_device, device, wd, allocator, width, height, min_image_count);
ImGui_ImplVulkanH_CreateWindowCommandBuffers(physical_device, device, wd, queue_family, allocator);
}
void ImGui_ImplVulkanH_DestroyWindow(VkInstance instance, VkDevice device, ImGui_ImplVulkanH_Window* wd, const VkAllocationCallbacks* allocator)
{
vkDeviceWaitIdle(device); // FIXME: We could wait on the Queue if we had the queue in wd-> (otherwise VulkanH functions can't use globals)
//vkQueueWaitIdle(g_Queue);
for (uint32_t i = 0; i < wd->ImageCount; i++)
{
ImGui_ImplVulkanH_DestroyFrame(device, &wd->Frames[i], allocator);
ImGui_ImplVulkanH_DestroyFrameSemaphores(device, &wd->FrameSemaphores[i], allocator);
}
IM_FREE(wd->Frames);
IM_FREE(wd->FrameSemaphores);
wd->Frames = NULL;
wd->FrameSemaphores = NULL;
vkDestroyRenderPass(device, wd->RenderPass, allocator);
vkDestroySwapchainKHR(device, wd->Swapchain, allocator);
vkDestroySurfaceKHR(instance, wd->Surface, allocator);
*wd = ImGui_ImplVulkanH_Window();
}
void ImGui_ImplVulkanH_DestroyFrame(VkDevice device, ImGui_ImplVulkanH_Frame* fd, const VkAllocationCallbacks* allocator)
{
vkDestroyFence(device, fd->Fence, allocator);
vkFreeCommandBuffers(device, fd->CommandPool, 1, &fd->CommandBuffer);
vkDestroyCommandPool(device, fd->CommandPool, allocator);
fd->Fence = VK_NULL_HANDLE;
fd->CommandBuffer = VK_NULL_HANDLE;
fd->CommandPool = VK_NULL_HANDLE;
vkDestroyImageView(device, fd->BackbufferView, allocator);
vkDestroyFramebuffer(device, fd->Framebuffer, allocator);
}
void ImGui_ImplVulkanH_DestroyFrameSemaphores(VkDevice device, ImGui_ImplVulkanH_FrameSemaphores* fsd, const VkAllocationCallbacks* allocator)
{
vkDestroySemaphore(device, fsd->ImageAcquiredSemaphore, allocator);
vkDestroySemaphore(device, fsd->RenderCompleteSemaphore, allocator);
fsd->ImageAcquiredSemaphore = fsd->RenderCompleteSemaphore = VK_NULL_HANDLE;
}
void ImGui_ImplVulkanH_DestroyFrameRenderBuffers(VkDevice device, ImGui_ImplVulkanH_FrameRenderBuffers* buffers, const VkAllocationCallbacks* allocator)
{
if (buffers->VertexBuffer) { vkDestroyBuffer(device, buffers->VertexBuffer, allocator); buffers->VertexBuffer = VK_NULL_HANDLE; }
if (buffers->VertexBufferMemory) { vkFreeMemory(device, buffers->VertexBufferMemory, allocator); buffers->VertexBufferMemory = VK_NULL_HANDLE; }
if (buffers->IndexBuffer) { vkDestroyBuffer(device, buffers->IndexBuffer, allocator); buffers->IndexBuffer = VK_NULL_HANDLE; }
if (buffers->IndexBufferMemory) { vkFreeMemory(device, buffers->IndexBufferMemory, allocator); buffers->IndexBufferMemory = VK_NULL_HANDLE; }
buffers->VertexBufferSize = 0;
buffers->IndexBufferSize = 0;
}
void ImGui_ImplVulkanH_DestroyWindowRenderBuffers(VkDevice device, ImGui_ImplVulkanH_WindowRenderBuffers* buffers, const VkAllocationCallbacks* allocator)
{
for (uint32_t n = 0; n < buffers->Count; n++)
ImGui_ImplVulkanH_DestroyFrameRenderBuffers(device, &buffers->FrameRenderBuffers[n], allocator);
IM_FREE(buffers->FrameRenderBuffers);
buffers->FrameRenderBuffers = NULL;
buffers->Index = 0;
buffers->Count = 0;
}