Fix warnings & stylistic issues (by ocornut)
diff --git a/imgui_draw.cpp b/imgui_draw.cpp
index 2ab5534..363496c 100644
--- a/imgui_draw.cpp
+++ b/imgui_draw.cpp
@@ -608,10 +608,8 @@
// Those macros expects l-values.
#define IM_NORMALIZE2F_OVER_ZERO(VX,VY) { float d2 = VX*VX + VY*VY; if (d2 > 0.0f) { float inv_len = 1.0f / ImSqrt(d2); VX *= inv_len; VY *= inv_len; } }
#define IM_FIXNORMAL2F(VX,VY) { float d2 = VX*VX + VY*VY; if (d2 < 0.5f) d2 = 0.5f; float inv_lensq = 1.0f / d2; VX *= inv_lensq; VY *= inv_lensq; }
-#define IM_NORMALIZE2F_OVER_EPSILON_CLAMP(VX,VY,EPS,INVLENMAX) { float d2 = VX*VX + VY*VY; if (d2 > EPS) { float inv_len = 1.0f / ImSqrt(d2); if (inv_len > INVLENMAX) inv_len = INVLENMAX; VX *= inv_len; VY *= inv_len; } }
-
-// TODO: Thickness anti-aliased lines cap are missing their AA fringe.
+// FIXME: Thickness anti-aliased lines cap are missing their AA fringe.
// We avoid using the ImVec2 math operators here to reduce cost to a minimum for debug/non-inlined builds.
void ImDrawList::AddPolyline(const ImVec2* points, const int points_count, ImU32 col, bool closed, float thickness)
{
@@ -619,22 +617,18 @@
return;
const ImVec2 uv = _Data->TexUvWhitePixel;
-
- int count = points_count; // segment count
- if (!closed)
- count = points_count-1;
-
- const bool antialias = Flags & ImDrawListFlags_AntiAliasedLines;
+ const int count = closed ? points_count : points_count - 1;
+ const bool antialias = (Flags & ImDrawListFlags_AntiAliasedLines) != 0;
const float AA_SIZE = 1.0f;
const ImU32 col_trans = col & ~IM_COL32_A_MASK;
- if (antialias && thickness <= 1.0)
+ if (antialias && thickness <= 1.0f)
{
// Anti-aliased stroke approximation
const int idx_count = count*12;
const int vtx_count = count*6; // FIXME-OPT: Not sharing edges
PrimReserve(idx_count, vtx_count);
- const ImU32 col_faded = (col & ~IM_COL32_A_MASK) | (int(((col >> IM_COL32_A_SHIFT) & 0xFF) * thickness) << IM_COL32_A_SHIFT);
+ const ImU32 col_faded = (col & ~IM_COL32_A_MASK) | ((int)(((col >> IM_COL32_A_SHIFT) & 0xFF) * thickness) << IM_COL32_A_SHIFT);
for (int i1 = 0; i1 < count; i1++)
{
@@ -680,7 +674,7 @@
unsigned int unused_vertices = 0;
unsigned int unused_indices = 0;
- float sqlen1, sqlen2;
+ float sqlen1 = 0.0f;
float dx1, dy1;
if (closed)
{
@@ -693,11 +687,11 @@
for (int i1 = 0; i1 < points_count; i1++)
{
const ImVec2& p1 = points[i1];
- const int i2 = i1+1 == points_count ? 0 : i1+1;
+ const int i2 = (i1 + 1 == points_count) ? 0 : i1 + 1;
const ImVec2& p2 = points[i2];
float dx2 = p1.x - p2.x;
float dy2 = p1.y - p2.y;
- sqlen2 = dx2 * dx2 + dy2 * dy2;
+ float sqlen2 = dx2 * dx2 + dy2 * dy2;
IM_NORMALIZE2F_OVER_ZERO(dx2, dy2);
if (!closed && i1 == 0)
@@ -706,7 +700,7 @@
dy1 = -dy2;
sqlen1 = sqlen2;
}
- if (!closed && i1 == points_count-1)
+ else if (!closed && i1 == points_count-1)
{
dx2 = -dx1;
dy2 = -dy1;
@@ -715,21 +709,19 @@
float miter_l_recip = dx1 * dy2 - dy1 * dx2;
float mlx, mly, mrx, mry; // Left and right miters
- float mlax, mlay, mrax, mray; // Left and right miters incl. antialiasing
- bool bevel = dx1 * dx2 + dy1 * dy2 > 1e-5;
- if (fabsf(miter_l_recip) > 1e-5)
+ float mlax, mlay, mrax, mray; // Left and right miters including anti-aliasing
+ const bool bevel = (dx1 * dx2 + dy1 * dy2) > 1e-5f;
+ if (ImFabs(miter_l_recip) > 1e-5f)
{
float miter_l = half_thickness / miter_l_recip;
// Limit (inner) miter so it doesn't shoot away when miter is longer than adjacent line segments on acute angles
if (bevel)
{
- // This is too aggressive (not exacply precise)
+ // This is too aggressive (not exactly precise)
float min_sqlen = sqlen1 > sqlen2 ? sqlen2 : sqlen1;
float miter_sqlen = ((dx1 + dx2) * (dx1 + dx2) + (dy1 + dy2) * (dy1 + dy2)) * miter_l * miter_l;
if (miter_sqlen > min_sqlen)
- {
- miter_l *= sqrtf(min_sqlen / miter_sqlen);
- }
+ miter_l *= ImSqrt(min_sqlen / miter_sqlen);
}
mlx = p1.x - (dx1 + dx2) * miter_l;
mly = p1.y - (dy1 + dy2) * miter_l;
@@ -763,10 +755,10 @@
// miter_sign == 1, iff the outer (maybe bevelled) edge is on the right, -1 iff it is on the left
int miter_sign = (miter_l_recip >= 0) - (miter_l_recip < 0);
float b1x, b1y, b2x, b2y; // First and second bevel point
- float b1ax, b1ay, b2ax, b2ay; // First and second bevel point incl. antialiasing
+ float b1ax, b1ay, b2ax, b2ay; // First and second bevel point including anti-aliasing
if (bevel)
{
- // TODO: benchmark if doing these computations only once in AA case saves cycles
+ // FIXME-OPT: benchmark if doing these computations only once in AA case saves cycles
b1x = p1.x + (dx1 - dy1 * miter_sign) * half_thickness;
b1y = p1.y + (dy1 + dx1 * miter_sign) * half_thickness;
b2x = p1.x + (dx2 + dy2 * miter_sign) * half_thickness;
@@ -788,18 +780,18 @@
// Now that we have all the point coordinates, put them into buffers
// Vertices for each point are ordered in vertex buffer like this (looking in the direction of the polyline):
- // left vertex*
- // right vertex*
- // left vertex AA fringe* (if antialias)
- // right vertex AA fringe* (if antialias)
- // the remaining vertex (if bevel)
- // the remaining vertex AA fringe (if bevel and antialias)
- // *) if there is bevel, these vertices are the ones on the incoming edge.
+ // - left vertex*
+ // - right vertex*
+ // - left vertex AA fringe* (if antialias)
+ // - right vertex AA fringe* (if antialias)
+ // - the remaining vertex (if bevel)
+ // - the remaining vertex AA fringe (if bevel and antialias)
+ // (*) if there is bevel, these vertices are the ones on the incoming edge.
// Having all the vertices of the incoming edge in predictable positions is important - we reference them
// even if we don't know relevant line properties yet
- int vertex_count = antialias ? (bevel ? 6 : 4) : (bevel ? 3 : 2); // TODO: shorten the expression
- unsigned int bi = antialias ? 4 : 2; // outgoing edge bevel vertex index
+ int vertex_count = antialias ? (bevel ? 6 : 4) : (bevel ? 3 : 2); // FIXME: shorten the expression
+ unsigned int bi = antialias ? 4 : 2; // Outgoing edge bevel vertex index
const bool bevel_l = bevel && miter_sign < 0;
const bool bevel_r = bevel && miter_sign > 0;
@@ -825,19 +817,19 @@
if (i1 < count)
{
const int vtx_next_id = i1 < points_count-1 ? _VtxCurrentIdx+vertex_count : first_vtx_ptr;
- ImDrawIdx l1i = _VtxCurrentIdx + (bevel_l ? bi : 0);
- ImDrawIdx r1i = _VtxCurrentIdx + (bevel_r ? bi : 1);
- ImDrawIdx l2i = vtx_next_id;
- ImDrawIdx r2i = vtx_next_id + 1;
- ImDrawIdx ebi = _VtxCurrentIdx + (bevel_l ? 0 : 1); // incoming edge bevel vertex index
+ unsigned int l1i = _VtxCurrentIdx + (bevel_l ? bi : 0);
+ unsigned int r1i = _VtxCurrentIdx + (bevel_r ? bi : 1);
+ unsigned int l2i = vtx_next_id;
+ unsigned int r2i = vtx_next_id + 1;
+ unsigned int ebi = _VtxCurrentIdx + (bevel_l ? 0 : 1); // incoming edge bevel vertex index
- _IdxWritePtr[0] = l1i; _IdxWritePtr[1] = r1i; _IdxWritePtr[2] = r2i;
- _IdxWritePtr[3] = l1i; _IdxWritePtr[4] = r2i; _IdxWritePtr[5] = l2i;
+ _IdxWritePtr[0] = (ImDrawIdx)l1i; _IdxWritePtr[1] = (ImDrawIdx)r1i; _IdxWritePtr[2] = (ImDrawIdx)r2i;
+ _IdxWritePtr[3] = (ImDrawIdx)l1i; _IdxWritePtr[4] = (ImDrawIdx)r2i; _IdxWritePtr[5] = (ImDrawIdx)l2i;
_IdxWritePtr += 6;
if (bevel)
{
- _IdxWritePtr[0] = l1i; _IdxWritePtr[1] = r1i; _IdxWritePtr[2] = ebi;
+ _IdxWritePtr[0] = (ImDrawIdx)l1i; _IdxWritePtr[1] = (ImDrawIdx)r1i; _IdxWritePtr[2] = (ImDrawIdx)ebi;
_IdxWritePtr += 3;
}
else
@@ -845,35 +837,37 @@
if (antialias)
{
- ImDrawIdx l1ai = _VtxCurrentIdx + (bevel_l ? 5 : 2);
- ImDrawIdx r1ai = _VtxCurrentIdx + (bevel_r ? 5 : 3);
- ImDrawIdx l2ai = vtx_next_id + 2;
- ImDrawIdx r2ai = vtx_next_id + 3;
+ unsigned int l1ai = _VtxCurrentIdx + (bevel_l ? 5 : 2);
+ unsigned int r1ai = _VtxCurrentIdx + (bevel_r ? 5 : 3);
+ unsigned int l2ai = vtx_next_id + 2;
+ unsigned int r2ai = vtx_next_id + 3;
- _IdxWritePtr[0] = l1ai; _IdxWritePtr[1] = l1i; _IdxWritePtr[2] = l2i;
- _IdxWritePtr[3] = l1ai; _IdxWritePtr[4] = l2i; _IdxWritePtr[5] = l2ai;
- _IdxWritePtr[6] = r1ai; _IdxWritePtr[7] = r1i; _IdxWritePtr[8] = r2i;
- _IdxWritePtr[9] = r1ai; _IdxWritePtr[10] = r2i; _IdxWritePtr[11] = r2ai;
+ _IdxWritePtr[0] = (ImDrawIdx)l1ai; _IdxWritePtr[1] = (ImDrawIdx)l1i; _IdxWritePtr[2] = (ImDrawIdx)l2i;
+ _IdxWritePtr[3] = (ImDrawIdx)l1ai; _IdxWritePtr[4] = (ImDrawIdx)l2i; _IdxWritePtr[5] = (ImDrawIdx)l2ai;
+ _IdxWritePtr[6] = (ImDrawIdx)r1ai; _IdxWritePtr[7] = (ImDrawIdx)r1i; _IdxWritePtr[8] = (ImDrawIdx)r2i;
+ _IdxWritePtr[9] = (ImDrawIdx)r1ai; _IdxWritePtr[10] = (ImDrawIdx)r2i; _IdxWritePtr[11] = (ImDrawIdx)r2ai;
_IdxWritePtr += 12;
if (bevel)
{
- _IdxWritePtr[0] = (_VtxCurrentIdx+(bevel_r ? 1 : 2));
- _IdxWritePtr[1] = (_VtxCurrentIdx+(bevel_r ? 3 : 0));
- _IdxWritePtr[2] = (_VtxCurrentIdx+(bevel_r ? 5 : 4));
+ _IdxWritePtr[0] = (ImDrawIdx)((_VtxCurrentIdx + bevel_r) ? 1 : 2);
+ _IdxWritePtr[1] = (ImDrawIdx)((_VtxCurrentIdx + bevel_r) ? 3 : 0);
+ _IdxWritePtr[2] = (ImDrawIdx)((_VtxCurrentIdx + bevel_r) ? 5 : 4);
- _IdxWritePtr[3] = (_VtxCurrentIdx+(bevel_r ? 1 : 2));
- _IdxWritePtr[4] = (_VtxCurrentIdx+(bevel_r ? 5 : 4));
- _IdxWritePtr[5] = (_VtxCurrentIdx+(bevel_r ? 4 : 5));
+ _IdxWritePtr[3] = (ImDrawIdx)((_VtxCurrentIdx + bevel_r) ? 1 : 2);
+ _IdxWritePtr[4] = (ImDrawIdx)((_VtxCurrentIdx + bevel_r) ? 5 : 4);
+ _IdxWritePtr[5] = (ImDrawIdx)((_VtxCurrentIdx + bevel_r) ? 4 : 5);
_IdxWritePtr += 6;
}
else
+ {
unused_indices += 6;
+ }
}
}
_VtxCurrentIdx += vertex_count;
}
- PrimUnreserve(unused_indices, unused_vertices);
+ PrimUnreserve((int)unused_indices, (int)unused_vertices);
}
}