| /* |
| ** $Id: ltable.c $ |
| ** Lua tables (hash) |
| ** See Copyright Notice in lua.h |
| */ |
| |
| #define ltable_c |
| #define LUA_CORE |
| |
| #include "lprefix.h" |
| |
| |
| /* |
| ** Implementation of tables (aka arrays, objects, or hash tables). |
| ** Tables keep its elements in two parts: an array part and a hash part. |
| ** Non-negative integer keys are all candidates to be kept in the array |
| ** part. The actual size of the array is the largest 'n' such that |
| ** more than half the slots between 1 and n are in use. |
| ** Hash uses a mix of chained scatter table with Brent's variation. |
| ** A main invariant of these tables is that, if an element is not |
| ** in its main position (i.e. the 'original' position that its hash gives |
| ** to it), then the colliding element is in its own main position. |
| ** Hence even when the load factor reaches 100%, performance remains good. |
| */ |
| |
| #include <math.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include "lua.h" |
| |
| #include "ldebug.h" |
| #include "ldo.h" |
| #include "lgc.h" |
| #include "lmem.h" |
| #include "lobject.h" |
| #include "lstate.h" |
| #include "lstring.h" |
| #include "ltable.h" |
| #include "lvm.h" |
| |
| |
| /* |
| ** Only tables with hash parts larger than 2^LIMFORLAST has a 'lastfree' |
| ** field that optimizes finding a free slot. That field is stored just |
| ** before the array of nodes, in the same block. Smaller tables do a |
| ** complete search when looking for a free slot. |
| */ |
| #define LIMFORLAST 2 /* log2 of real limit */ |
| |
| /* |
| ** The union 'Limbox' stores 'lastfree' and ensures that what follows it |
| ** is properly aligned to store a Node. |
| */ |
| typedef struct { Node *dummy; Node follows_pNode; } Limbox_aux; |
| |
| typedef union { |
| Node *lastfree; |
| char padding[offsetof(Limbox_aux, follows_pNode)]; |
| } Limbox; |
| |
| #define haslastfree(t) ((t)->lsizenode > LIMFORLAST) |
| #define getlastfree(t) ((cast(Limbox *, (t)->node) - 1)->lastfree) |
| |
| |
| /* |
| ** MAXABITS is the largest integer such that 2^MAXABITS fits in an |
| ** unsigned int. |
| */ |
| #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) |
| |
| |
| /* |
| ** MAXASIZEB is the maximum number of elements in the array part such |
| ** that the size of the array fits in 'size_t'. |
| */ |
| #define MAXASIZEB (MAX_SIZET/(sizeof(Value) + 1)) |
| |
| |
| /* |
| ** MAXASIZE is the maximum size of the array part. It is the minimum |
| ** between 2^MAXABITS and MAXASIZEB. |
| */ |
| #define MAXASIZE \ |
| (((1u << MAXABITS) < MAXASIZEB) ? (1u << MAXABITS) : cast_uint(MAXASIZEB)) |
| |
| /* |
| ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a |
| ** signed int. |
| */ |
| #define MAXHBITS (MAXABITS - 1) |
| |
| |
| /* |
| ** MAXHSIZE is the maximum size of the hash part. It is the minimum |
| ** between 2^MAXHBITS and the maximum size such that, measured in bytes, |
| ** it fits in a 'size_t'. |
| */ |
| #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node) |
| |
| |
| /* |
| ** When the original hash value is good, hashing by a power of 2 |
| ** avoids the cost of '%'. |
| */ |
| #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) |
| |
| /* |
| ** for other types, it is better to avoid modulo by power of 2, as |
| ** they can have many 2 factors. |
| */ |
| #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1u)|1u)))) |
| |
| |
| #define hashstr(t,str) hashpow2(t, (str)->hash) |
| #define hashboolean(t,p) hashpow2(t, p) |
| |
| |
| #define hashpointer(t,p) hashmod(t, point2uint(p)) |
| |
| |
| #define dummynode (&dummynode_) |
| |
| static const Node dummynode_ = { |
| {{NULL}, LUA_VEMPTY, /* value's value and type */ |
| LUA_VNIL, 0, {NULL}} /* key type, next, and key value */ |
| }; |
| |
| |
| static const TValue absentkey = {ABSTKEYCONSTANT}; |
| |
| |
| /* |
| ** Hash for integers. To allow a good hash, use the remainder operator |
| ** ('%'). If integer fits as a non-negative int, compute an int |
| ** remainder, which is faster. Otherwise, use an unsigned-integer |
| ** remainder, which uses all bits and ensures a non-negative result. |
| */ |
| static Node *hashint (const Table *t, lua_Integer i) { |
| lua_Unsigned ui = l_castS2U(i); |
| if (ui <= cast_uint(INT_MAX)) |
| return gnode(t, cast_int(ui) % cast_int((sizenode(t)-1) | 1)); |
| else |
| return hashmod(t, ui); |
| } |
| |
| |
| /* |
| ** Hash for floating-point numbers. |
| ** The main computation should be just |
| ** n = frexp(n, &i); return (n * INT_MAX) + i |
| ** but there are some numerical subtleties. |
| ** In a two-complement representation, INT_MAX does not has an exact |
| ** representation as a float, but INT_MIN does; because the absolute |
| ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the |
| ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal |
| ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when |
| ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with |
| ** INT_MIN. |
| */ |
| #if !defined(l_hashfloat) |
| static unsigned l_hashfloat (lua_Number n) { |
| int i; |
| lua_Integer ni; |
| n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); |
| if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ |
| lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); |
| return 0; |
| } |
| else { /* normal case */ |
| unsigned int u = cast_uint(i) + cast_uint(ni); |
| return (u <= cast_uint(INT_MAX) ? u : ~u); |
| } |
| } |
| #endif |
| |
| |
| /* |
| ** returns the 'main' position of an element in a table (that is, |
| ** the index of its hash value). |
| */ |
| static Node *mainpositionTV (const Table *t, const TValue *key) { |
| switch (ttypetag(key)) { |
| case LUA_VNUMINT: { |
| lua_Integer i = ivalue(key); |
| return hashint(t, i); |
| } |
| case LUA_VNUMFLT: { |
| lua_Number n = fltvalue(key); |
| return hashmod(t, l_hashfloat(n)); |
| } |
| case LUA_VSHRSTR: { |
| TString *ts = tsvalue(key); |
| return hashstr(t, ts); |
| } |
| case LUA_VLNGSTR: { |
| TString *ts = tsvalue(key); |
| return hashpow2(t, luaS_hashlongstr(ts)); |
| } |
| case LUA_VFALSE: |
| return hashboolean(t, 0); |
| case LUA_VTRUE: |
| return hashboolean(t, 1); |
| case LUA_VLIGHTUSERDATA: { |
| void *p = pvalue(key); |
| return hashpointer(t, p); |
| } |
| case LUA_VLCF: { |
| lua_CFunction f = fvalue(key); |
| return hashpointer(t, f); |
| } |
| default: { |
| GCObject *o = gcvalue(key); |
| return hashpointer(t, o); |
| } |
| } |
| } |
| |
| |
| l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) { |
| TValue key; |
| getnodekey(cast(lua_State *, NULL), &key, nd); |
| return mainpositionTV(t, &key); |
| } |
| |
| |
| /* |
| ** Check whether key 'k1' is equal to the key in node 'n2'. This |
| ** equality is raw, so there are no metamethods. Floats with integer |
| ** values have been normalized, so integers cannot be equal to |
| ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so |
| ** that short strings are handled in the default case. |
| ** A true 'deadok' means to accept dead keys as equal to their original |
| ** values. All dead keys are compared in the default case, by pointer |
| ** identity. (Only collectable objects can produce dead keys.) Note that |
| ** dead long strings are also compared by identity. |
| ** Once a key is dead, its corresponding value may be collected, and |
| ** then another value can be created with the same address. If this |
| ** other value is given to 'next', 'equalkey' will signal a false |
| ** positive. In a regular traversal, this situation should never happen, |
| ** as all keys given to 'next' came from the table itself, and therefore |
| ** could not have been collected. Outside a regular traversal, we |
| ** have garbage in, garbage out. What is relevant is that this false |
| ** positive does not break anything. (In particular, 'next' will return |
| ** some other valid item on the table or nil.) |
| */ |
| static int equalkey (const TValue *k1, const Node *n2, int deadok) { |
| if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */ |
| !(deadok && keyisdead(n2) && iscollectable(k1))) |
| return 0; /* cannot be same key */ |
| switch (keytt(n2)) { |
| case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: |
| return 1; |
| case LUA_VNUMINT: |
| return (ivalue(k1) == keyival(n2)); |
| case LUA_VNUMFLT: |
| return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); |
| case LUA_VLIGHTUSERDATA: |
| return pvalue(k1) == pvalueraw(keyval(n2)); |
| case LUA_VLCF: |
| return fvalue(k1) == fvalueraw(keyval(n2)); |
| case ctb(LUA_VLNGSTR): |
| return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); |
| default: |
| return gcvalue(k1) == gcvalueraw(keyval(n2)); |
| } |
| } |
| |
| |
| /* |
| ** True if value of 'alimit' is equal to the real size of the array |
| ** part of table 't'. (Otherwise, the array part must be larger than |
| ** 'alimit'.) |
| */ |
| #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) |
| |
| |
| /* |
| ** Returns the real size of the 'array' array |
| */ |
| unsigned int luaH_realasize (const Table *t) { |
| if (limitequalsasize(t)) |
| return t->alimit; /* this is the size */ |
| else { |
| unsigned int size = t->alimit; |
| /* compute the smallest power of 2 not smaller than 'size' */ |
| size |= (size >> 1); |
| size |= (size >> 2); |
| size |= (size >> 4); |
| size |= (size >> 8); |
| #if (UINT_MAX >> 14) > 3 /* unsigned int has more than 16 bits */ |
| size |= (size >> 16); |
| #if (UINT_MAX >> 30) > 3 |
| size |= (size >> 32); /* unsigned int has more than 32 bits */ |
| #endif |
| #endif |
| size++; |
| lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); |
| return size; |
| } |
| } |
| |
| |
| /* |
| ** Check whether real size of the array is a power of 2. |
| ** (If it is not, 'alimit' cannot be changed to any other value |
| ** without changing the real size.) |
| */ |
| static int ispow2realasize (const Table *t) { |
| return (!isrealasize(t) || ispow2(t->alimit)); |
| } |
| |
| |
| static unsigned int setlimittosize (Table *t) { |
| t->alimit = luaH_realasize(t); |
| setrealasize(t); |
| return t->alimit; |
| } |
| |
| |
| #define limitasasize(t) check_exp(isrealasize(t), t->alimit) |
| |
| |
| |
| /* |
| ** "Generic" get version. (Not that generic: not valid for integers, |
| ** which may be in array part, nor for floats with integral values.) |
| ** See explanation about 'deadok' in function 'equalkey'. |
| */ |
| static const TValue *getgeneric (Table *t, const TValue *key, int deadok) { |
| Node *n = mainpositionTV(t, key); |
| for (;;) { /* check whether 'key' is somewhere in the chain */ |
| if (equalkey(key, n, deadok)) |
| return gval(n); /* that's it */ |
| else { |
| int nx = gnext(n); |
| if (nx == 0) |
| return &absentkey; /* not found */ |
| n += nx; |
| } |
| } |
| } |
| |
| |
| /* |
| ** returns the index for 'k' if 'k' is an appropriate key to live in |
| ** the array part of a table, 0 otherwise. |
| */ |
| static unsigned int arrayindex (lua_Integer k) { |
| if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */ |
| return cast_uint(k); /* 'key' is an appropriate array index */ |
| else |
| return 0; |
| } |
| |
| |
| /* |
| ** returns the index of a 'key' for table traversals. First goes all |
| ** elements in the array part, then elements in the hash part. The |
| ** beginning of a traversal is signaled by 0. |
| */ |
| static unsigned findindex (lua_State *L, Table *t, TValue *key, |
| unsigned asize) { |
| unsigned int i; |
| if (ttisnil(key)) return 0; /* first iteration */ |
| i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0; |
| if (i - 1u < asize) /* is 'key' inside array part? */ |
| return i; /* yes; that's the index */ |
| else { |
| const TValue *n = getgeneric(t, key, 1); |
| if (l_unlikely(isabstkey(n))) |
| luaG_runerror(L, "invalid key to 'next'"); /* key not found */ |
| i = cast_uint(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ |
| /* hash elements are numbered after array ones */ |
| return (i + 1) + asize; |
| } |
| } |
| |
| |
| int luaH_next (lua_State *L, Table *t, StkId key) { |
| unsigned int asize = luaH_realasize(t); |
| unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ |
| for (; i < asize; i++) { /* try first array part */ |
| lu_byte tag = *getArrTag(t, i); |
| if (!tagisempty(tag)) { /* a non-empty entry? */ |
| setivalue(s2v(key), cast_int(i) + 1); |
| farr2val(t, i, tag, s2v(key + 1)); |
| return 1; |
| } |
| } |
| for (i -= asize; i < sizenode(t); i++) { /* hash part */ |
| if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ |
| Node *n = gnode(t, i); |
| getnodekey(L, s2v(key), n); |
| setobj2s(L, key + 1, gval(n)); |
| return 1; |
| } |
| } |
| return 0; /* no more elements */ |
| } |
| |
| |
| static void freehash (lua_State *L, Table *t) { |
| if (!isdummy(t)) { |
| /* 'node' size in bytes */ |
| size_t bsize = cast_sizet(sizenode(t)) * sizeof(Node); |
| char *arr = cast_charp(t->node); |
| if (haslastfree(t)) { |
| bsize += sizeof(Limbox); |
| arr -= sizeof(Limbox); |
| } |
| luaM_freearray(L, arr, bsize); |
| } |
| } |
| |
| |
| /* |
| ** Check whether an integer key is in the array part. If 'alimit' is |
| ** not the real size of the array, the key still can be in the array |
| ** part. In this case, do the "Xmilia trick" to check whether 'key-1' |
| ** is smaller than the real size. |
| ** The trick works as follow: let 'p' be the integer such that |
| ** '2^(p+1) >= alimit > 2^p', or '2^(p+1) > alimit-1 >= 2^p'. That is, |
| ** 'p' is the highest 1-bit in 'alimit-1', and 2^(p+1) is the real size |
| ** of the array. What we have to check becomes 'key-1 < 2^(p+1)'. We |
| ** compute '(key-1) & ~(alimit-1)', which we call 'res'; it will have |
| ** the 'p' bit cleared. (It may also clear other bits smaller than 'p', |
| ** but no bit higher than 'p'.) If the key is outside the array, that |
| ** is, 'key-1 >= 2^(p+1)', then 'res' will have some 1-bit higher than |
| ** 'p', therefore it will be larger or equal to 'alimit', and the check |
| ** will fail. If 'key-1 < 2^(p+1)', then 'res' has no 1-bit higher than |
| ** 'p', and as the bit 'p' itself was cleared, 'res' will be smaller |
| ** than 2^p, therefore smaller than 'alimit', and the check succeeds. |
| ** As special cases, when 'alimit' is 0 the condition is trivially false, |
| ** and when 'alimit' is 1 the condition simplifies to 'key-1 < alimit'. |
| ** If key is 0 or negative, 'res' will have its higher bit on, so that |
| ** it cannot be smaller than 'alimit'. |
| */ |
| static int keyinarray (Table *t, lua_Integer key) { |
| lua_Unsigned alimit = t->alimit; |
| if (l_castS2U(key) - 1u < alimit) /* 'key' in [1, t->alimit]? */ |
| return 1; |
| else if (!isrealasize(t) && /* key still may be in the array part? */ |
| (((l_castS2U(key) - 1u) & ~(alimit - 1u)) < alimit)) { |
| t->alimit = cast_uint(key); /* probably '#t' is here now */ |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| /* |
| ** {============================================================= |
| ** Rehash |
| ** ============================================================== |
| */ |
| |
| /* |
| ** Compute the optimal size for the array part of table 't'. 'nums' is a |
| ** "count array" where 'nums[i]' is the number of integers in the table |
| ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of |
| ** integer keys in the table and leaves with the number of keys that |
| ** will go to the array part; return the optimal size. (The condition |
| ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.) |
| */ |
| static unsigned computesizes (unsigned nums[], unsigned *pna) { |
| int i; |
| unsigned int twotoi; /* 2^i (candidate for optimal size) */ |
| unsigned int a = 0; /* number of elements smaller than 2^i */ |
| unsigned int na = 0; /* number of elements to go to array part */ |
| unsigned int optimal = 0; /* optimal size for array part */ |
| /* loop while keys can fill more than half of total size */ |
| for (i = 0, twotoi = 1; |
| twotoi > 0 && *pna > twotoi / 2; |
| i++, twotoi *= 2) { |
| a += nums[i]; |
| if (a > twotoi/2) { /* more than half elements present? */ |
| optimal = twotoi; /* optimal size (till now) */ |
| na = a; /* all elements up to 'optimal' will go to array part */ |
| } |
| } |
| lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); |
| *pna = na; |
| return optimal; |
| } |
| |
| |
| static unsigned countint (lua_Integer key, unsigned int *nums) { |
| unsigned int k = arrayindex(key); |
| if (k != 0) { /* is 'key' an appropriate array index? */ |
| nums[luaO_ceillog2(k)]++; /* count as such */ |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| l_sinline int arraykeyisempty (const Table *t, lua_Unsigned key) { |
| int tag = *getArrTag(t, key - 1); |
| return tagisempty(tag); |
| } |
| |
| |
| /* |
| ** Count keys in array part of table 't': Fill 'nums[i]' with |
| ** number of keys that will go into corresponding slice and return |
| ** total number of non-nil keys. |
| */ |
| static unsigned numusearray (const Table *t, unsigned *nums) { |
| int lg; |
| unsigned int ttlg; /* 2^lg */ |
| unsigned int ause = 0; /* summation of 'nums' */ |
| unsigned int i = 1; /* count to traverse all array keys */ |
| unsigned int asize = limitasasize(t); /* real array size */ |
| /* traverse each slice */ |
| for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { |
| unsigned int lc = 0; /* counter */ |
| unsigned int lim = ttlg; |
| if (lim > asize) { |
| lim = asize; /* adjust upper limit */ |
| if (i > lim) |
| break; /* no more elements to count */ |
| } |
| /* count elements in range (2^(lg - 1), 2^lg] */ |
| for (; i <= lim; i++) { |
| if (!arraykeyisempty(t, i)) |
| lc++; |
| } |
| nums[lg] += lc; |
| ause += lc; |
| } |
| return ause; |
| } |
| |
| |
| static unsigned numusehash (const Table *t, unsigned *nums, unsigned *pna) { |
| unsigned totaluse = 0; /* total number of elements */ |
| unsigned ause = 0; /* elements added to 'nums' (can go to array part) */ |
| unsigned i = sizenode(t); |
| while (i--) { |
| Node *n = &t->node[i]; |
| if (!isempty(gval(n))) { |
| if (keyisinteger(n)) |
| ause += countint(keyival(n), nums); |
| totaluse++; |
| } |
| } |
| *pna += ause; |
| return totaluse; |
| } |
| |
| |
| /* |
| ** Convert an "abstract size" (number of slots in an array) to |
| ** "concrete size" (number of bytes in the array). |
| */ |
| static size_t concretesize (unsigned int size) { |
| return size * sizeof(Value) + size; /* space for the two arrays */ |
| } |
| |
| |
| /* |
| ** Resize the array part of a table. If new size is equal to the old, |
| ** do nothing. Else, if new size is zero, free the old array. (It must |
| ** be present, as the sizes are different.) Otherwise, allocate a new |
| ** array, move the common elements to new proper position, and then |
| ** frees old array. |
| ** When array grows, we could reallocate it, but we still would need |
| ** to move the elements to their new position, so the copy implicit |
| ** in realloc is a waste. When array shrinks, it always erases some |
| ** elements that should still be in the array, so we must reallocate in |
| ** two steps anyway. It is simpler to always reallocate in two steps. |
| */ |
| static Value *resizearray (lua_State *L , Table *t, |
| unsigned oldasize, |
| unsigned newasize) { |
| if (oldasize == newasize) |
| return t->array; /* nothing to be done */ |
| else if (newasize == 0) { /* erasing array? */ |
| Value *op = t->array - oldasize; /* original array's real address */ |
| luaM_freemem(L, op, concretesize(oldasize)); /* free it */ |
| return NULL; |
| } |
| else { |
| size_t newasizeb = concretesize(newasize); |
| Value *np = cast(Value *, |
| luaM_reallocvector(L, NULL, 0, newasizeb, lu_byte)); |
| if (np == NULL) /* allocation error? */ |
| return NULL; |
| if (oldasize > 0) { |
| Value *op = t->array - oldasize; /* real original array */ |
| unsigned tomove = (oldasize < newasize) ? oldasize : newasize; |
| lua_assert(tomove > 0); |
| /* move common elements to new position */ |
| memcpy(np + newasize - tomove, |
| op + oldasize - tomove, |
| concretesize(tomove)); |
| luaM_freemem(L, op, concretesize(oldasize)); |
| } |
| return np + newasize; /* shift pointer to the end of value segment */ |
| } |
| } |
| |
| |
| /* |
| ** Creates an array for the hash part of a table with the given |
| ** size, or reuses the dummy node if size is zero. |
| ** The computation for size overflow is in two steps: the first |
| ** comparison ensures that the shift in the second one does not |
| ** overflow. |
| */ |
| static void setnodevector (lua_State *L, Table *t, unsigned size) { |
| if (size == 0) { /* no elements to hash part? */ |
| t->node = cast(Node *, dummynode); /* use common 'dummynode' */ |
| t->lsizenode = 0; |
| setdummy(t); /* signal that it is using dummy node */ |
| } |
| else { |
| int i; |
| int lsize = luaO_ceillog2(size); |
| if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) |
| luaG_runerror(L, "table overflow"); |
| size = twoto(lsize); |
| if (lsize <= LIMFORLAST) /* no 'lastfree' field? */ |
| t->node = luaM_newvector(L, size, Node); |
| else { |
| size_t bsize = size * sizeof(Node) + sizeof(Limbox); |
| char *node = luaM_newblock(L, bsize); |
| t->node = cast(Node *, node + sizeof(Limbox)); |
| getlastfree(t) = gnode(t, size); /* all positions are free */ |
| } |
| t->lsizenode = cast_byte(lsize); |
| setnodummy(t); |
| for (i = 0; i < cast_int(size); i++) { |
| Node *n = gnode(t, i); |
| gnext(n) = 0; |
| setnilkey(n); |
| setempty(gval(n)); |
| } |
| } |
| } |
| |
| |
| /* |
| ** (Re)insert all elements from the hash part of 'ot' into table 't'. |
| */ |
| static void reinsert (lua_State *L, Table *ot, Table *t) { |
| unsigned j; |
| unsigned size = sizenode(ot); |
| for (j = 0; j < size; j++) { |
| Node *old = gnode(ot, j); |
| if (!isempty(gval(old))) { |
| /* doesn't need barrier/invalidate cache, as entry was |
| already present in the table */ |
| TValue k; |
| getnodekey(L, &k, old); |
| luaH_set(L, t, &k, gval(old)); |
| } |
| } |
| } |
| |
| |
| /* |
| ** Exchange the hash part of 't1' and 't2'. (In 'flags', only the |
| ** dummy bit must be exchanged: The 'isrealasize' is not related |
| ** to the hash part, and the metamethod bits do not change during |
| ** a resize, so the "real" table can keep their values.) |
| */ |
| static void exchangehashpart (Table *t1, Table *t2) { |
| lu_byte lsizenode = t1->lsizenode; |
| Node *node = t1->node; |
| int bitdummy1 = t1->flags & BITDUMMY; |
| t1->lsizenode = t2->lsizenode; |
| t1->node = t2->node; |
| t1->flags = cast_byte((t1->flags & NOTBITDUMMY) | (t2->flags & BITDUMMY)); |
| t2->lsizenode = lsizenode; |
| t2->node = node; |
| t2->flags = cast_byte((t2->flags & NOTBITDUMMY) | bitdummy1); |
| } |
| |
| |
| /* |
| ** Re-insert into the new hash part of a table the elements from the |
| ** vanishing slice of the array part. |
| */ |
| static void reinsertOldSlice (lua_State *L, Table *t, unsigned oldasize, |
| unsigned newasize) { |
| unsigned i; |
| t->alimit = newasize; /* pretend array has new size... */ |
| for (i = newasize; i < oldasize; i++) { /* traverse vanishing slice */ |
| lu_byte tag = *getArrTag(t, i); |
| if (!tagisempty(tag)) { /* a non-empty entry? */ |
| TValue aux; |
| farr2val(t, i, tag, &aux); /* copy entry into 'aux' */ |
| /* re-insert it into the table */ |
| luaH_setint(L, t, cast_int(i) + 1, &aux); |
| } |
| } |
| t->alimit = oldasize; /* restore current size... */ |
| } |
| |
| |
| /* |
| ** Clear new slice of the array. |
| */ |
| static void clearNewSlice (Table *t, unsigned oldasize, unsigned newasize) { |
| for (; oldasize < newasize; oldasize++) |
| *getArrTag(t, oldasize) = LUA_VEMPTY; |
| } |
| |
| |
| /* |
| ** Resize table 't' for the new given sizes. Both allocations (for |
| ** the hash part and for the array part) can fail, which creates some |
| ** subtleties. If the first allocation, for the hash part, fails, an |
| ** error is raised and that is it. Otherwise, it copies the elements from |
| ** the shrinking part of the array (if it is shrinking) into the new |
| ** hash. Then it reallocates the array part. If that fails, the table |
| ** is in its original state; the function frees the new hash part and then |
| ** raises the allocation error. Otherwise, it sets the new hash part |
| ** into the table, initializes the new part of the array (if any) with |
| ** nils and reinserts the elements of the old hash back into the new |
| ** parts of the table. |
| */ |
| void luaH_resize (lua_State *L, Table *t, unsigned newasize, |
| unsigned nhsize) { |
| Table newt; /* to keep the new hash part */ |
| unsigned int oldasize = setlimittosize(t); |
| Value *newarray; |
| if (newasize > MAXASIZE) |
| luaG_runerror(L, "table overflow"); |
| /* create new hash part with appropriate size into 'newt' */ |
| newt.flags = 0; |
| setnodevector(L, &newt, nhsize); |
| if (newasize < oldasize) { /* will array shrink? */ |
| /* re-insert into the new hash the elements from vanishing slice */ |
| exchangehashpart(t, &newt); /* pretend table has new hash */ |
| reinsertOldSlice(L, t, oldasize, newasize); |
| exchangehashpart(t, &newt); /* restore old hash (in case of errors) */ |
| } |
| /* allocate new array */ |
| newarray = resizearray(L, t, oldasize, newasize); |
| if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ |
| freehash(L, &newt); /* release new hash part */ |
| luaM_error(L); /* raise error (with array unchanged) */ |
| } |
| /* allocation ok; initialize new part of the array */ |
| exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ |
| t->array = newarray; /* set new array part */ |
| t->alimit = newasize; |
| clearNewSlice(t, oldasize, newasize); |
| /* re-insert elements from old hash part into new parts */ |
| reinsert(L, &newt, t); /* 'newt' now has the old hash */ |
| freehash(L, &newt); /* free old hash part */ |
| } |
| |
| |
| void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { |
| unsigned nsize = allocsizenode(t); |
| luaH_resize(L, t, nasize, nsize); |
| } |
| |
| /* |
| ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i |
| */ |
| static void rehash (lua_State *L, Table *t, const TValue *ek) { |
| unsigned int asize; /* optimal size for array part */ |
| unsigned int na; /* number of keys in the array part */ |
| unsigned int nums[MAXABITS + 1]; |
| int i; |
| unsigned totaluse; |
| for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ |
| setlimittosize(t); |
| na = numusearray(t, nums); /* count keys in array part */ |
| totaluse = na; /* all those keys are integer keys */ |
| totaluse += numusehash(t, nums, &na); /* count keys in hash part */ |
| /* count extra key */ |
| if (ttisinteger(ek)) |
| na += countint(ivalue(ek), nums); |
| totaluse++; |
| /* compute new size for array part */ |
| asize = computesizes(nums, &na); |
| /* resize the table to new computed sizes */ |
| luaH_resize(L, t, asize, totaluse - na); |
| } |
| |
| |
| |
| /* |
| ** }============================================================= |
| */ |
| |
| |
| Table *luaH_new (lua_State *L) { |
| GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); |
| Table *t = gco2t(o); |
| t->metatable = NULL; |
| t->flags = maskflags; /* table has no metamethod fields */ |
| t->array = NULL; |
| t->alimit = 0; |
| setnodevector(L, t, 0); |
| return t; |
| } |
| |
| |
| size_t luaH_size (Table *t) { |
| size_t sz = sizeof(Table) |
| + luaH_realasize(t) * (sizeof(Value) + 1); |
| if (!isdummy(t)) { |
| sz += sizenode(t) * sizeof(Node); |
| if (haslastfree(t)) |
| sz += sizeof(Limbox); |
| } |
| return sz; |
| } |
| |
| |
| /* |
| ** Frees a table. |
| */ |
| void luaH_free (lua_State *L, Table *t) { |
| unsigned int realsize = luaH_realasize(t); |
| freehash(L, t); |
| resizearray(L, t, realsize, 0); |
| luaM_free(L, t); |
| } |
| |
| |
| static Node *getfreepos (Table *t) { |
| if (haslastfree(t)) { /* does it have 'lastfree' information? */ |
| /* look for a spot before 'lastfree', updating 'lastfree' */ |
| while (getlastfree(t) > t->node) { |
| Node *free = --getlastfree(t); |
| if (keyisnil(free)) |
| return free; |
| } |
| } |
| else { /* no 'lastfree' information */ |
| if (!isdummy(t)) { |
| unsigned i = sizenode(t); |
| while (i--) { /* do a linear search */ |
| Node *free = gnode(t, i); |
| if (keyisnil(free)) |
| return free; |
| } |
| } |
| } |
| return NULL; /* could not find a free place */ |
| } |
| |
| |
| |
| /* |
| ** Inserts a new key into a hash table; first, check whether key's main |
| ** position is free. If not, check whether colliding node is in its main |
| ** position or not: if it is not, move colliding node to an empty place |
| ** and put new key in its main position; otherwise (colliding node is in |
| ** its main position), new key goes to an empty position. |
| */ |
| static void luaH_newkey (lua_State *L, Table *t, const TValue *key, |
| TValue *value) { |
| Node *mp; |
| TValue aux; |
| if (l_unlikely(ttisnil(key))) |
| luaG_runerror(L, "table index is nil"); |
| else if (ttisfloat(key)) { |
| lua_Number f = fltvalue(key); |
| lua_Integer k; |
| if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */ |
| setivalue(&aux, k); |
| key = &aux; /* insert it as an integer */ |
| } |
| else if (l_unlikely(luai_numisnan(f))) |
| luaG_runerror(L, "table index is NaN"); |
| } |
| if (ttisnil(value)) |
| return; /* do not insert nil values */ |
| mp = mainpositionTV(t, key); |
| if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ |
| Node *othern; |
| Node *f = getfreepos(t); /* get a free place */ |
| if (f == NULL) { /* cannot find a free place? */ |
| rehash(L, t, key); /* grow table */ |
| /* whatever called 'newkey' takes care of TM cache */ |
| luaH_set(L, t, key, value); /* insert key into grown table */ |
| return; |
| } |
| lua_assert(!isdummy(t)); |
| othern = mainpositionfromnode(t, mp); |
| if (othern != mp) { /* is colliding node out of its main position? */ |
| /* yes; move colliding node into free position */ |
| while (othern + gnext(othern) != mp) /* find previous */ |
| othern += gnext(othern); |
| gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ |
| *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ |
| if (gnext(mp) != 0) { |
| gnext(f) += cast_int(mp - f); /* correct 'next' */ |
| gnext(mp) = 0; /* now 'mp' is free */ |
| } |
| setempty(gval(mp)); |
| } |
| else { /* colliding node is in its own main position */ |
| /* new node will go into free position */ |
| if (gnext(mp) != 0) |
| gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ |
| else lua_assert(gnext(f) == 0); |
| gnext(mp) = cast_int(f - mp); |
| mp = f; |
| } |
| } |
| setnodekey(L, mp, key); |
| luaC_barrierback(L, obj2gco(t), key); |
| lua_assert(isempty(gval(mp))); |
| setobj2t(L, gval(mp), value); |
| } |
| |
| |
| static const TValue *getintfromhash (Table *t, lua_Integer key) { |
| Node *n = hashint(t, key); |
| lua_assert(l_castS2U(key) - 1u >= luaH_realasize(t)); |
| for (;;) { /* check whether 'key' is somewhere in the chain */ |
| if (keyisinteger(n) && keyival(n) == key) |
| return gval(n); /* that's it */ |
| else { |
| int nx = gnext(n); |
| if (nx == 0) break; |
| n += nx; |
| } |
| } |
| return &absentkey; |
| } |
| |
| |
| static int hashkeyisempty (Table *t, lua_Unsigned key) { |
| const TValue *val = getintfromhash(t, l_castU2S(key)); |
| return isempty(val); |
| } |
| |
| |
| static lu_byte finishnodeget (const TValue *val, TValue *res) { |
| if (!ttisnil(val)) { |
| setobj(((lua_State*)NULL), res, val); |
| } |
| return ttypetag(val); |
| } |
| |
| |
| lu_byte luaH_getint (Table *t, lua_Integer key, TValue *res) { |
| if (keyinarray(t, key)) { |
| lu_byte tag = *getArrTag(t, key - 1); |
| if (!tagisempty(tag)) |
| farr2val(t, key - 1, tag, res); |
| return tag; |
| } |
| else |
| return finishnodeget(getintfromhash(t, key), res); |
| } |
| |
| |
| /* |
| ** search function for short strings |
| */ |
| const TValue *luaH_Hgetshortstr (Table *t, TString *key) { |
| Node *n = hashstr(t, key); |
| lua_assert(key->tt == LUA_VSHRSTR); |
| for (;;) { /* check whether 'key' is somewhere in the chain */ |
| if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) |
| return gval(n); /* that's it */ |
| else { |
| int nx = gnext(n); |
| if (nx == 0) |
| return &absentkey; /* not found */ |
| n += nx; |
| } |
| } |
| } |
| |
| |
| lu_byte luaH_getshortstr (Table *t, TString *key, TValue *res) { |
| return finishnodeget(luaH_Hgetshortstr(t, key), res); |
| } |
| |
| |
| static const TValue *Hgetstr (Table *t, TString *key) { |
| if (key->tt == LUA_VSHRSTR) |
| return luaH_Hgetshortstr(t, key); |
| else { /* for long strings, use generic case */ |
| TValue ko; |
| setsvalue(cast(lua_State *, NULL), &ko, key); |
| return getgeneric(t, &ko, 0); |
| } |
| } |
| |
| |
| lu_byte luaH_getstr (Table *t, TString *key, TValue *res) { |
| return finishnodeget(Hgetstr(t, key), res); |
| } |
| |
| |
| TString *luaH_getstrkey (Table *t, TString *key) { |
| const TValue *o = Hgetstr(t, key); |
| if (!isabstkey(o)) /* string already present? */ |
| return keystrval(nodefromval(o)); /* get saved copy */ |
| else |
| return NULL; |
| } |
| |
| |
| /* |
| ** main search function |
| */ |
| lu_byte luaH_get (Table *t, const TValue *key, TValue *res) { |
| const TValue *slot; |
| switch (ttypetag(key)) { |
| case LUA_VSHRSTR: |
| slot = luaH_Hgetshortstr(t, tsvalue(key)); |
| break; |
| case LUA_VNUMINT: |
| return luaH_getint(t, ivalue(key), res); |
| case LUA_VNIL: |
| slot = &absentkey; |
| break; |
| case LUA_VNUMFLT: { |
| lua_Integer k; |
| if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ |
| return luaH_getint(t, k, res); /* use specialized version */ |
| /* else... */ |
| } /* FALLTHROUGH */ |
| default: |
| slot = getgeneric(t, key, 0); |
| break; |
| } |
| return finishnodeget(slot, res); |
| } |
| |
| |
| static int finishnodeset (Table *t, const TValue *slot, TValue *val) { |
| if (!ttisnil(slot)) { |
| setobj(((lua_State*)NULL), cast(TValue*, slot), val); |
| return HOK; /* success */ |
| } |
| else if (isabstkey(slot)) |
| return HNOTFOUND; /* no slot with that key */ |
| else /* return node encoded */ |
| return cast_int((cast(Node*, slot) - t->node)) + HFIRSTNODE; |
| } |
| |
| |
| static int rawfinishnodeset (const TValue *slot, TValue *val) { |
| if (isabstkey(slot)) |
| return 0; /* no slot with that key */ |
| else { |
| setobj(((lua_State*)NULL), cast(TValue*, slot), val); |
| return 1; /* success */ |
| } |
| } |
| |
| |
| int luaH_psetint (Table *t, lua_Integer key, TValue *val) { |
| if (keyinarray(t, key)) { |
| lu_byte *tag = getArrTag(t, key - 1); |
| if (!tagisempty(*tag) || checknoTM(t->metatable, TM_NEWINDEX)) { |
| fval2arr(t, key - 1, tag, val); |
| return HOK; /* success */ |
| } |
| else |
| return ~cast_int(key - 1); /* empty slot in the array part */ |
| } |
| else |
| return finishnodeset(t, getintfromhash(t, key), val); |
| } |
| |
| |
| int luaH_psetshortstr (Table *t, TString *key, TValue *val) { |
| return finishnodeset(t, luaH_Hgetshortstr(t, key), val); |
| } |
| |
| |
| int luaH_psetstr (Table *t, TString *key, TValue *val) { |
| return finishnodeset(t, Hgetstr(t, key), val); |
| } |
| |
| |
| int luaH_pset (Table *t, const TValue *key, TValue *val) { |
| switch (ttypetag(key)) { |
| case LUA_VSHRSTR: return luaH_psetshortstr(t, tsvalue(key), val); |
| case LUA_VNUMINT: return luaH_psetint(t, ivalue(key), val); |
| case LUA_VNIL: return HNOTFOUND; |
| case LUA_VNUMFLT: { |
| lua_Integer k; |
| if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ |
| return luaH_psetint(t, k, val); /* use specialized version */ |
| /* else... */ |
| } /* FALLTHROUGH */ |
| default: |
| return finishnodeset(t, getgeneric(t, key, 0), val); |
| } |
| } |
| |
| /* |
| ** Finish a raw "set table" operation, where 'slot' is where the value |
| ** should have been (the result of a previous "get table"). |
| ** Beware: when using this function you probably need to check a GC |
| ** barrier and invalidate the TM cache. |
| */ |
| |
| |
| void luaH_finishset (lua_State *L, Table *t, const TValue *key, |
| TValue *value, int hres) { |
| lua_assert(hres != HOK); |
| if (hres == HNOTFOUND) { |
| luaH_newkey(L, t, key, value); |
| } |
| else if (hres > 0) { /* regular Node? */ |
| setobj2t(L, gval(gnode(t, hres - HFIRSTNODE)), value); |
| } |
| else { /* array entry */ |
| hres = ~hres; /* real index */ |
| obj2arr(t, hres, value); |
| } |
| } |
| |
| |
| /* |
| ** beware: when using this function you probably need to check a GC |
| ** barrier and invalidate the TM cache. |
| */ |
| void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) { |
| int hres = luaH_pset(t, key, value); |
| if (hres != HOK) |
| luaH_finishset(L, t, key, value, hres); |
| } |
| |
| |
| /* |
| ** Ditto for a GC barrier. (No need to invalidate the TM cache, as |
| ** integers cannot be keys to metamethods.) |
| */ |
| void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { |
| if (keyinarray(t, key)) |
| obj2arr(t, key - 1, value); |
| else { |
| int ok = rawfinishnodeset(getintfromhash(t, key), value); |
| if (!ok) { |
| TValue k; |
| setivalue(&k, key); |
| luaH_newkey(L, t, &k, value); |
| } |
| } |
| } |
| |
| |
| /* |
| ** Try to find a boundary in the hash part of table 't'. From the |
| ** caller, we know that 'j' is zero or present and that 'j + 1' is |
| ** present. We want to find a larger key that is absent from the |
| ** table, so that we can do a binary search between the two keys to |
| ** find a boundary. We keep doubling 'j' until we get an absent index. |
| ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is |
| ** absent, we are ready for the binary search. ('j', being max integer, |
| ** is larger or equal to 'i', but it cannot be equal because it is |
| ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a |
| ** boundary. ('j + 1' cannot be a present integer key because it is |
| ** not a valid integer in Lua.) |
| */ |
| static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { |
| lua_Unsigned i; |
| if (j == 0) j++; /* the caller ensures 'j + 1' is present */ |
| do { |
| i = j; /* 'i' is a present index */ |
| if (j <= l_castS2U(LUA_MAXINTEGER) / 2) |
| j *= 2; |
| else { |
| j = LUA_MAXINTEGER; |
| if (hashkeyisempty(t, j)) /* t[j] not present? */ |
| break; /* 'j' now is an absent index */ |
| else /* weird case */ |
| return j; /* well, max integer is a boundary... */ |
| } |
| } while (!hashkeyisempty(t, j)); /* repeat until an absent t[j] */ |
| /* i < j && t[i] present && t[j] absent */ |
| while (j - i > 1u) { /* do a binary search between them */ |
| lua_Unsigned m = (i + j) / 2; |
| if (hashkeyisempty(t, m)) j = m; |
| else i = m; |
| } |
| return i; |
| } |
| |
| |
| static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) { |
| while (j - i > 1u) { /* binary search */ |
| unsigned int m = (i + j) / 2; |
| if (arraykeyisempty(array, m)) j = m; |
| else i = m; |
| } |
| return i; |
| } |
| |
| |
| /* |
| ** Try to find a boundary in table 't'. (A 'boundary' is an integer index |
| ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent |
| ** and 'maxinteger' if t[maxinteger] is present.) |
| ** (In the next explanation, we use Lua indices, that is, with base 1. |
| ** The code itself uses base 0 when indexing the array part of the table.) |
| ** The code starts with 'limit = t->alimit', a position in the array |
| ** part that may be a boundary. |
| ** |
| ** (1) If 't[limit]' is empty, there must be a boundary before it. |
| ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' |
| ** is present. If so, it is a boundary. Otherwise, do a binary search |
| ** between 0 and limit to find a boundary. In both cases, try to |
| ** use this boundary as the new 'alimit', as a hint for the next call. |
| ** |
| ** (2) If 't[limit]' is not empty and the array has more elements |
| ** after 'limit', try to find a boundary there. Again, try first |
| ** the special case (which should be quite frequent) where 'limit+1' |
| ** is empty, so that 'limit' is a boundary. Otherwise, check the |
| ** last element of the array part. If it is empty, there must be a |
| ** boundary between the old limit (present) and the last element |
| ** (absent), which is found with a binary search. (This boundary always |
| ** can be a new limit.) |
| ** |
| ** (3) The last case is when there are no elements in the array part |
| ** (limit == 0) or its last element (the new limit) is present. |
| ** In this case, must check the hash part. If there is no hash part |
| ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call |
| ** 'hash_search' to find a boundary in the hash part of the table. |
| ** (In those cases, the boundary is not inside the array part, and |
| ** therefore cannot be used as a new limit.) |
| */ |
| lua_Unsigned luaH_getn (Table *t) { |
| unsigned int limit = t->alimit; |
| if (limit > 0 && arraykeyisempty(t, limit)) { /* (1)? */ |
| /* there must be a boundary before 'limit' */ |
| if (limit >= 2 && !arraykeyisempty(t, limit - 1)) { |
| /* 'limit - 1' is a boundary; can it be a new limit? */ |
| if (ispow2realasize(t) && !ispow2(limit - 1)) { |
| t->alimit = limit - 1; |
| setnorealasize(t); /* now 'alimit' is not the real size */ |
| } |
| return limit - 1; |
| } |
| else { /* must search for a boundary in [0, limit] */ |
| unsigned int boundary = binsearch(t, 0, limit); |
| /* can this boundary represent the real size of the array? */ |
| if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { |
| t->alimit = boundary; /* use it as the new limit */ |
| setnorealasize(t); |
| } |
| return boundary; |
| } |
| } |
| /* 'limit' is zero or present in table */ |
| if (!limitequalsasize(t)) { /* (2)? */ |
| /* 'limit' > 0 and array has more elements after 'limit' */ |
| if (arraykeyisempty(t, limit + 1)) /* 'limit + 1' is empty? */ |
| return limit; /* this is the boundary */ |
| /* else, try last element in the array */ |
| limit = luaH_realasize(t); |
| if (arraykeyisempty(t, limit)) { /* empty? */ |
| /* there must be a boundary in the array after old limit, |
| and it must be a valid new limit */ |
| unsigned int boundary = binsearch(t, t->alimit, limit); |
| t->alimit = boundary; |
| return boundary; |
| } |
| /* else, new limit is present in the table; check the hash part */ |
| } |
| /* (3) 'limit' is the last element and either is zero or present in table */ |
| lua_assert(limit == luaH_realasize(t) && |
| (limit == 0 || !arraykeyisempty(t, limit))); |
| if (isdummy(t) || hashkeyisempty(t, limit + 1)) |
| return limit; /* 'limit + 1' is absent */ |
| else /* 'limit + 1' is also present */ |
| return hash_search(t, limit); |
| } |
| |
| |
| |
| #if defined(LUA_DEBUG) |
| |
| /* export these functions for the test library */ |
| |
| Node *luaH_mainposition (const Table *t, const TValue *key) { |
| return mainpositionTV(t, key); |
| } |
| |
| #endif |