| /* |
| ** $Id: lparser.c $ |
| ** Lua Parser |
| ** See Copyright Notice in lua.h |
| */ |
| |
| #define lparser_c |
| #define LUA_CORE |
| |
| #include "lprefix.h" |
| |
| |
| #include <limits.h> |
| #include <string.h> |
| |
| #include "lua.h" |
| |
| #include "lcode.h" |
| #include "ldebug.h" |
| #include "ldo.h" |
| #include "lfunc.h" |
| #include "llex.h" |
| #include "lmem.h" |
| #include "lobject.h" |
| #include "lopcodes.h" |
| #include "lparser.h" |
| #include "lstate.h" |
| #include "lstring.h" |
| #include "ltable.h" |
| |
| |
| |
| /* maximum number of local variables per function (must be smaller |
| than 250, due to the bytecode format) */ |
| #define MAXVARS 200 |
| |
| |
| #define hasmultret(k) ((k) == VCALL || (k) == VVARARG) |
| |
| |
| /* because all strings are unified by the scanner, the parser |
| can use pointer equality for string equality */ |
| #define eqstr(a,b) ((a) == (b)) |
| |
| |
| /* |
| ** nodes for block list (list of active blocks) |
| */ |
| typedef struct BlockCnt { |
| struct BlockCnt *previous; /* chain */ |
| int firstlabel; /* index of first label in this block */ |
| int firstgoto; /* index of first pending goto in this block */ |
| lu_byte nactvar; /* # active locals outside the block */ |
| lu_byte upval; /* true if some variable in the block is an upvalue */ |
| lu_byte isloop; /* true if 'block' is a loop */ |
| lu_byte insidetbc; /* true if inside the scope of a to-be-closed var. */ |
| } BlockCnt; |
| |
| |
| |
| /* |
| ** prototypes for recursive non-terminal functions |
| */ |
| static void statement (LexState *ls); |
| static void expr (LexState *ls, expdesc *v); |
| |
| |
| static l_noret error_expected (LexState *ls, int token) { |
| luaX_syntaxerror(ls, |
| luaO_pushfstring(ls->L, "%s expected", luaX_token2str(ls, token))); |
| } |
| |
| |
| static l_noret errorlimit (FuncState *fs, int limit, const char *what) { |
| lua_State *L = fs->ls->L; |
| const char *msg; |
| int line = fs->f->linedefined; |
| const char *where = (line == 0) |
| ? "main function" |
| : luaO_pushfstring(L, "function at line %d", line); |
| msg = luaO_pushfstring(L, "too many %s (limit is %d) in %s", |
| what, limit, where); |
| luaX_syntaxerror(fs->ls, msg); |
| } |
| |
| |
| void luaY_checklimit (FuncState *fs, int v, int l, const char *what) { |
| if (l_unlikely(v > l)) errorlimit(fs, l, what); |
| } |
| |
| |
| /* |
| ** Test whether next token is 'c'; if so, skip it. |
| */ |
| static int testnext (LexState *ls, int c) { |
| if (ls->t.token == c) { |
| luaX_next(ls); |
| return 1; |
| } |
| else return 0; |
| } |
| |
| |
| /* |
| ** Check that next token is 'c'. |
| */ |
| static void check (LexState *ls, int c) { |
| if (ls->t.token != c) |
| error_expected(ls, c); |
| } |
| |
| |
| /* |
| ** Check that next token is 'c' and skip it. |
| */ |
| static void checknext (LexState *ls, int c) { |
| check(ls, c); |
| luaX_next(ls); |
| } |
| |
| |
| #define check_condition(ls,c,msg) { if (!(c)) luaX_syntaxerror(ls, msg); } |
| |
| |
| /* |
| ** Check that next token is 'what' and skip it. In case of error, |
| ** raise an error that the expected 'what' should match a 'who' |
| ** in line 'where' (if that is not the current line). |
| */ |
| static void check_match (LexState *ls, int what, int who, int where) { |
| if (l_unlikely(!testnext(ls, what))) { |
| if (where == ls->linenumber) /* all in the same line? */ |
| error_expected(ls, what); /* do not need a complex message */ |
| else { |
| luaX_syntaxerror(ls, luaO_pushfstring(ls->L, |
| "%s expected (to close %s at line %d)", |
| luaX_token2str(ls, what), luaX_token2str(ls, who), where)); |
| } |
| } |
| } |
| |
| |
| static TString *str_checkname (LexState *ls) { |
| TString *ts; |
| check(ls, TK_NAME); |
| ts = ls->t.seminfo.ts; |
| luaX_next(ls); |
| return ts; |
| } |
| |
| |
| static void init_exp (expdesc *e, expkind k, int i) { |
| e->f = e->t = NO_JUMP; |
| e->k = k; |
| e->u.info = i; |
| } |
| |
| |
| static void codestring (expdesc *e, TString *s) { |
| e->f = e->t = NO_JUMP; |
| e->k = VKSTR; |
| e->u.strval = s; |
| } |
| |
| |
| static void codename (LexState *ls, expdesc *e) { |
| codestring(e, str_checkname(ls)); |
| } |
| |
| |
| /* |
| ** Register a new local variable in the active 'Proto' (for debug |
| ** information). |
| */ |
| static short registerlocalvar (LexState *ls, FuncState *fs, |
| TString *varname) { |
| Proto *f = fs->f; |
| int oldsize = f->sizelocvars; |
| luaM_growvector(ls->L, f->locvars, fs->ndebugvars, f->sizelocvars, |
| LocVar, SHRT_MAX, "local variables"); |
| while (oldsize < f->sizelocvars) |
| f->locvars[oldsize++].varname = NULL; |
| f->locvars[fs->ndebugvars].varname = varname; |
| f->locvars[fs->ndebugvars].startpc = fs->pc; |
| luaC_objbarrier(ls->L, f, varname); |
| return fs->ndebugvars++; |
| } |
| |
| |
| /* |
| ** Create a new local variable with the given 'name' and given 'kind'. |
| ** Return its index in the function. |
| */ |
| static int new_localvarkind (LexState *ls, TString *name, lu_byte kind) { |
| lua_State *L = ls->L; |
| FuncState *fs = ls->fs; |
| Dyndata *dyd = ls->dyd; |
| Vardesc *var; |
| luaY_checklimit(fs, dyd->actvar.n + 1 - fs->firstlocal, |
| MAXVARS, "local variables"); |
| luaM_growvector(L, dyd->actvar.arr, dyd->actvar.n + 1, |
| dyd->actvar.size, Vardesc, SHRT_MAX, "local variables"); |
| var = &dyd->actvar.arr[dyd->actvar.n++]; |
| var->vd.kind = kind; /* default */ |
| var->vd.name = name; |
| return dyd->actvar.n - 1 - fs->firstlocal; |
| } |
| |
| |
| /* |
| ** Create a new local variable with the given 'name' and regular kind. |
| */ |
| static int new_localvar (LexState *ls, TString *name) { |
| return new_localvarkind(ls, name, VDKREG); |
| } |
| |
| #define new_localvarliteral(ls,v) \ |
| new_localvar(ls, \ |
| luaX_newstring(ls, "" v, (sizeof(v)/sizeof(char)) - 1)); |
| |
| |
| |
| /* |
| ** Return the "variable description" (Vardesc) of a given variable. |
| ** (Unless noted otherwise, all variables are referred to by their |
| ** compiler indices.) |
| */ |
| static Vardesc *getlocalvardesc (FuncState *fs, int vidx) { |
| return &fs->ls->dyd->actvar.arr[fs->firstlocal + vidx]; |
| } |
| |
| |
| /* |
| ** Convert 'nvar', a compiler index level, to its corresponding |
| ** register. For that, search for the highest variable below that level |
| ** that is in a register and uses its register index ('ridx') plus one. |
| */ |
| static lu_byte reglevel (FuncState *fs, int nvar) { |
| while (nvar-- > 0) { |
| Vardesc *vd = getlocalvardesc(fs, nvar); /* get previous variable */ |
| if (vd->vd.kind != RDKCTC) /* is in a register? */ |
| return cast_byte(vd->vd.ridx + 1); |
| } |
| return 0; /* no variables in registers */ |
| } |
| |
| |
| /* |
| ** Return the number of variables in the register stack for the given |
| ** function. |
| */ |
| lu_byte luaY_nvarstack (FuncState *fs) { |
| return reglevel(fs, fs->nactvar); |
| } |
| |
| |
| /* |
| ** Get the debug-information entry for current variable 'vidx'. |
| */ |
| static LocVar *localdebuginfo (FuncState *fs, int vidx) { |
| Vardesc *vd = getlocalvardesc(fs, vidx); |
| if (vd->vd.kind == RDKCTC) |
| return NULL; /* no debug info. for constants */ |
| else { |
| int idx = vd->vd.pidx; |
| lua_assert(idx < fs->ndebugvars); |
| return &fs->f->locvars[idx]; |
| } |
| } |
| |
| |
| /* |
| ** Create an expression representing variable 'vidx' |
| */ |
| static void init_var (FuncState *fs, expdesc *e, int vidx) { |
| e->f = e->t = NO_JUMP; |
| e->k = VLOCAL; |
| e->u.var.vidx = cast(unsigned short, vidx); |
| e->u.var.ridx = getlocalvardesc(fs, vidx)->vd.ridx; |
| } |
| |
| |
| /* |
| ** Raises an error if variable described by 'e' is read only |
| */ |
| static void check_readonly (LexState *ls, expdesc *e) { |
| FuncState *fs = ls->fs; |
| TString *varname = NULL; /* to be set if variable is const */ |
| switch (e->k) { |
| case VCONST: { |
| varname = ls->dyd->actvar.arr[e->u.info].vd.name; |
| break; |
| } |
| case VLOCAL: { |
| Vardesc *vardesc = getlocalvardesc(fs, e->u.var.vidx); |
| if (vardesc->vd.kind != VDKREG) /* not a regular variable? */ |
| varname = vardesc->vd.name; |
| break; |
| } |
| case VUPVAL: { |
| Upvaldesc *up = &fs->f->upvalues[e->u.info]; |
| if (up->kind != VDKREG) |
| varname = up->name; |
| break; |
| } |
| default: |
| return; /* other cases cannot be read-only */ |
| } |
| if (varname) { |
| const char *msg = luaO_pushfstring(ls->L, |
| "attempt to assign to const variable '%s'", getstr(varname)); |
| luaK_semerror(ls, msg); /* error */ |
| } |
| } |
| |
| |
| /* |
| ** Start the scope for the last 'nvars' created variables. |
| */ |
| static void adjustlocalvars (LexState *ls, int nvars) { |
| FuncState *fs = ls->fs; |
| int reglevel = luaY_nvarstack(fs); |
| int i; |
| for (i = 0; i < nvars; i++) { |
| int vidx = fs->nactvar++; |
| Vardesc *var = getlocalvardesc(fs, vidx); |
| var->vd.ridx = cast_byte(reglevel++); |
| var->vd.pidx = registerlocalvar(ls, fs, var->vd.name); |
| } |
| } |
| |
| |
| /* |
| ** Close the scope for all variables up to level 'tolevel'. |
| ** (debug info.) |
| */ |
| static void removevars (FuncState *fs, int tolevel) { |
| fs->ls->dyd->actvar.n -= (fs->nactvar - tolevel); |
| while (fs->nactvar > tolevel) { |
| LocVar *var = localdebuginfo(fs, --fs->nactvar); |
| if (var) /* does it have debug information? */ |
| var->endpc = fs->pc; |
| } |
| } |
| |
| |
| /* |
| ** Search the upvalues of the function 'fs' for one |
| ** with the given 'name'. |
| */ |
| static int searchupvalue (FuncState *fs, TString *name) { |
| int i; |
| Upvaldesc *up = fs->f->upvalues; |
| for (i = 0; i < fs->nups; i++) { |
| if (eqstr(up[i].name, name)) return i; |
| } |
| return -1; /* not found */ |
| } |
| |
| |
| static Upvaldesc *allocupvalue (FuncState *fs) { |
| Proto *f = fs->f; |
| int oldsize = f->sizeupvalues; |
| luaY_checklimit(fs, fs->nups + 1, MAXUPVAL, "upvalues"); |
| luaM_growvector(fs->ls->L, f->upvalues, fs->nups, f->sizeupvalues, |
| Upvaldesc, MAXUPVAL, "upvalues"); |
| while (oldsize < f->sizeupvalues) |
| f->upvalues[oldsize++].name = NULL; |
| return &f->upvalues[fs->nups++]; |
| } |
| |
| |
| static int newupvalue (FuncState *fs, TString *name, expdesc *v) { |
| Upvaldesc *up = allocupvalue(fs); |
| FuncState *prev = fs->prev; |
| if (v->k == VLOCAL) { |
| up->instack = 1; |
| up->idx = v->u.var.ridx; |
| up->kind = getlocalvardesc(prev, v->u.var.vidx)->vd.kind; |
| lua_assert(eqstr(name, getlocalvardesc(prev, v->u.var.vidx)->vd.name)); |
| } |
| else { |
| up->instack = 0; |
| up->idx = cast_byte(v->u.info); |
| up->kind = prev->f->upvalues[v->u.info].kind; |
| lua_assert(eqstr(name, prev->f->upvalues[v->u.info].name)); |
| } |
| up->name = name; |
| luaC_objbarrier(fs->ls->L, fs->f, name); |
| return fs->nups - 1; |
| } |
| |
| |
| /* |
| ** Look for an active local variable with the name 'n' in the |
| ** function 'fs'. If found, initialize 'var' with it and return |
| ** its expression kind; otherwise return -1. |
| */ |
| static int searchvar (FuncState *fs, TString *n, expdesc *var) { |
| int i; |
| for (i = cast_int(fs->nactvar) - 1; i >= 0; i--) { |
| Vardesc *vd = getlocalvardesc(fs, i); |
| if (eqstr(n, vd->vd.name)) { /* found? */ |
| if (vd->vd.kind == RDKCTC) /* compile-time constant? */ |
| init_exp(var, VCONST, fs->firstlocal + i); |
| else /* real variable */ |
| init_var(fs, var, i); |
| return var->k; |
| } |
| } |
| return -1; /* not found */ |
| } |
| |
| |
| /* |
| ** Mark block where variable at given level was defined |
| ** (to emit close instructions later). |
| */ |
| static void markupval (FuncState *fs, int level) { |
| BlockCnt *bl = fs->bl; |
| while (bl->nactvar > level) |
| bl = bl->previous; |
| bl->upval = 1; |
| fs->needclose = 1; |
| } |
| |
| |
| /* |
| ** Mark that current block has a to-be-closed variable. |
| */ |
| static void marktobeclosed (FuncState *fs) { |
| BlockCnt *bl = fs->bl; |
| bl->upval = 1; |
| bl->insidetbc = 1; |
| fs->needclose = 1; |
| } |
| |
| |
| /* |
| ** Find a variable with the given name 'n'. If it is an upvalue, add |
| ** this upvalue into all intermediate functions. If it is a global, set |
| ** 'var' as 'void' as a flag. |
| */ |
| static void singlevaraux (FuncState *fs, TString *n, expdesc *var, int base) { |
| if (fs == NULL) /* no more levels? */ |
| init_exp(var, VVOID, 0); /* default is global */ |
| else { |
| int v = searchvar(fs, n, var); /* look up locals at current level */ |
| if (v >= 0) { /* found? */ |
| if (v == VLOCAL && !base) |
| markupval(fs, var->u.var.vidx); /* local will be used as an upval */ |
| } |
| else { /* not found as local at current level; try upvalues */ |
| int idx = searchupvalue(fs, n); /* try existing upvalues */ |
| if (idx < 0) { /* not found? */ |
| singlevaraux(fs->prev, n, var, 0); /* try upper levels */ |
| if (var->k == VLOCAL || var->k == VUPVAL) /* local or upvalue? */ |
| idx = newupvalue(fs, n, var); /* will be a new upvalue */ |
| else /* it is a global or a constant */ |
| return; /* don't need to do anything at this level */ |
| } |
| init_exp(var, VUPVAL, idx); /* new or old upvalue */ |
| } |
| } |
| } |
| |
| |
| /* |
| ** Find a variable with the given name 'n', handling global variables |
| ** too. |
| */ |
| static void singlevar (LexState *ls, expdesc *var) { |
| TString *varname = str_checkname(ls); |
| FuncState *fs = ls->fs; |
| singlevaraux(fs, varname, var, 1); |
| if (var->k == VVOID) { /* global name? */ |
| expdesc key; |
| singlevaraux(fs, ls->envn, var, 1); /* get environment variable */ |
| lua_assert(var->k != VVOID); /* this one must exist */ |
| luaK_exp2anyregup(fs, var); /* but could be a constant */ |
| codestring(&key, varname); /* key is variable name */ |
| luaK_indexed(fs, var, &key); /* env[varname] */ |
| } |
| } |
| |
| |
| /* |
| ** Adjust the number of results from an expression list 'e' with 'nexps' |
| ** expressions to 'nvars' values. |
| */ |
| static void adjust_assign (LexState *ls, int nvars, int nexps, expdesc *e) { |
| FuncState *fs = ls->fs; |
| int needed = nvars - nexps; /* extra values needed */ |
| if (hasmultret(e->k)) { /* last expression has multiple returns? */ |
| int extra = needed + 1; /* discount last expression itself */ |
| if (extra < 0) |
| extra = 0; |
| luaK_setreturns(fs, e, extra); /* last exp. provides the difference */ |
| } |
| else { |
| if (e->k != VVOID) /* at least one expression? */ |
| luaK_exp2nextreg(fs, e); /* close last expression */ |
| if (needed > 0) /* missing values? */ |
| luaK_nil(fs, fs->freereg, needed); /* complete with nils */ |
| } |
| if (needed > 0) |
| luaK_reserveregs(fs, needed); /* registers for extra values */ |
| else /* adding 'needed' is actually a subtraction */ |
| fs->freereg = cast_byte(fs->freereg + needed); /* remove extra values */ |
| } |
| |
| |
| #define enterlevel(ls) luaE_incCstack(ls->L) |
| |
| |
| #define leavelevel(ls) ((ls)->L->nCcalls--) |
| |
| |
| /* |
| ** Generates an error that a goto jumps into the scope of some |
| ** local variable. |
| */ |
| static l_noret jumpscopeerror (LexState *ls, Labeldesc *gt) { |
| TString *tsname = getlocalvardesc(ls->fs, gt->nactvar)->vd.name; |
| const char *varname = getstr(tsname); |
| const char *msg = "<goto %s> at line %d jumps into the scope of local '%s'"; |
| msg = luaO_pushfstring(ls->L, msg, getstr(gt->name), gt->line, varname); |
| luaK_semerror(ls, msg); /* raise the error */ |
| } |
| |
| |
| /* |
| ** Solves the goto at index 'g' to given 'label' and removes it |
| ** from the list of pending gotos. |
| ** If it jumps into the scope of some variable, raises an error. |
| */ |
| static void solvegoto (LexState *ls, int g, Labeldesc *label) { |
| int i; |
| Labellist *gl = &ls->dyd->gt; /* list of gotos */ |
| Labeldesc *gt = &gl->arr[g]; /* goto to be resolved */ |
| lua_assert(eqstr(gt->name, label->name)); |
| if (l_unlikely(gt->nactvar < label->nactvar)) /* enter some scope? */ |
| jumpscopeerror(ls, gt); |
| luaK_patchlist(ls->fs, gt->pc, label->pc); |
| for (i = g; i < gl->n - 1; i++) /* remove goto from pending list */ |
| gl->arr[i] = gl->arr[i + 1]; |
| gl->n--; |
| } |
| |
| |
| /* |
| ** Search for an active label with the given name. |
| */ |
| static Labeldesc *findlabel (LexState *ls, TString *name) { |
| int i; |
| Dyndata *dyd = ls->dyd; |
| /* check labels in current function for a match */ |
| for (i = ls->fs->firstlabel; i < dyd->label.n; i++) { |
| Labeldesc *lb = &dyd->label.arr[i]; |
| if (eqstr(lb->name, name)) /* correct label? */ |
| return lb; |
| } |
| return NULL; /* label not found */ |
| } |
| |
| |
| /* |
| ** Adds a new label/goto in the corresponding list. |
| */ |
| static int newlabelentry (LexState *ls, Labellist *l, TString *name, |
| int line, int pc) { |
| int n = l->n; |
| luaM_growvector(ls->L, l->arr, n, l->size, |
| Labeldesc, SHRT_MAX, "labels/gotos"); |
| l->arr[n].name = name; |
| l->arr[n].line = line; |
| l->arr[n].nactvar = ls->fs->nactvar; |
| l->arr[n].close = 0; |
| l->arr[n].pc = pc; |
| l->n = n + 1; |
| return n; |
| } |
| |
| |
| static int newgotoentry (LexState *ls, TString *name, int line, int pc) { |
| return newlabelentry(ls, &ls->dyd->gt, name, line, pc); |
| } |
| |
| |
| /* |
| ** Solves forward jumps. Check whether new label 'lb' matches any |
| ** pending gotos in current block and solves them. Return true |
| ** if any of the gotos need to close upvalues. |
| */ |
| static int solvegotos (LexState *ls, Labeldesc *lb) { |
| Labellist *gl = &ls->dyd->gt; |
| int i = ls->fs->bl->firstgoto; |
| int needsclose = 0; |
| while (i < gl->n) { |
| if (eqstr(gl->arr[i].name, lb->name)) { |
| needsclose |= gl->arr[i].close; |
| solvegoto(ls, i, lb); /* will remove 'i' from the list */ |
| } |
| else |
| i++; |
| } |
| return needsclose; |
| } |
| |
| |
| /* |
| ** Create a new label with the given 'name' at the given 'line'. |
| ** 'last' tells whether label is the last non-op statement in its |
| ** block. Solves all pending gotos to this new label and adds |
| ** a close instruction if necessary. |
| ** Returns true iff it added a close instruction. |
| */ |
| static int createlabel (LexState *ls, TString *name, int line, |
| int last) { |
| FuncState *fs = ls->fs; |
| Labellist *ll = &ls->dyd->label; |
| int l = newlabelentry(ls, ll, name, line, luaK_getlabel(fs)); |
| if (last) { /* label is last no-op statement in the block? */ |
| /* assume that locals are already out of scope */ |
| ll->arr[l].nactvar = fs->bl->nactvar; |
| } |
| if (solvegotos(ls, &ll->arr[l])) { /* need close? */ |
| luaK_codeABC(fs, OP_CLOSE, luaY_nvarstack(fs), 0, 0); |
| return 1; |
| } |
| return 0; |
| } |
| |
| |
| /* |
| ** Adjust pending gotos to outer level of a block. |
| */ |
| static void movegotosout (FuncState *fs, BlockCnt *bl) { |
| int i; |
| Labellist *gl = &fs->ls->dyd->gt; |
| /* correct pending gotos to current block */ |
| for (i = bl->firstgoto; i < gl->n; i++) { /* for each pending goto */ |
| Labeldesc *gt = &gl->arr[i]; |
| /* leaving a variable scope? */ |
| if (reglevel(fs, gt->nactvar) > reglevel(fs, bl->nactvar)) |
| gt->close |= bl->upval; /* jump may need a close */ |
| gt->nactvar = bl->nactvar; /* update goto level */ |
| } |
| } |
| |
| |
| static void enterblock (FuncState *fs, BlockCnt *bl, lu_byte isloop) { |
| bl->isloop = isloop; |
| bl->nactvar = fs->nactvar; |
| bl->firstlabel = fs->ls->dyd->label.n; |
| bl->firstgoto = fs->ls->dyd->gt.n; |
| bl->upval = 0; |
| bl->insidetbc = (fs->bl != NULL && fs->bl->insidetbc); |
| bl->previous = fs->bl; |
| fs->bl = bl; |
| lua_assert(fs->freereg == luaY_nvarstack(fs)); |
| } |
| |
| |
| /* |
| ** generates an error for an undefined 'goto'. |
| */ |
| static l_noret undefgoto (LexState *ls, Labeldesc *gt) { |
| const char *msg; |
| if (eqstr(gt->name, luaS_newliteral(ls->L, "break"))) { |
| msg = "break outside loop at line %d"; |
| msg = luaO_pushfstring(ls->L, msg, gt->line); |
| } |
| else { |
| msg = "no visible label '%s' for <goto> at line %d"; |
| msg = luaO_pushfstring(ls->L, msg, getstr(gt->name), gt->line); |
| } |
| luaK_semerror(ls, msg); |
| } |
| |
| |
| static void leaveblock (FuncState *fs) { |
| BlockCnt *bl = fs->bl; |
| LexState *ls = fs->ls; |
| int hasclose = 0; |
| lu_byte stklevel = reglevel(fs, bl->nactvar); /* level outside the block */ |
| removevars(fs, bl->nactvar); /* remove block locals */ |
| lua_assert(bl->nactvar == fs->nactvar); /* back to level on entry */ |
| if (bl->isloop) /* has to fix pending breaks? */ |
| hasclose = createlabel(ls, luaS_newliteral(ls->L, "break"), 0, 0); |
| if (!hasclose && bl->previous && bl->upval) /* still need a 'close'? */ |
| luaK_codeABC(fs, OP_CLOSE, stklevel, 0, 0); |
| fs->freereg = stklevel; /* free registers */ |
| ls->dyd->label.n = bl->firstlabel; /* remove local labels */ |
| fs->bl = bl->previous; /* current block now is previous one */ |
| if (bl->previous) /* was it a nested block? */ |
| movegotosout(fs, bl); /* update pending gotos to enclosing block */ |
| else { |
| if (bl->firstgoto < ls->dyd->gt.n) /* still pending gotos? */ |
| undefgoto(ls, &ls->dyd->gt.arr[bl->firstgoto]); /* error */ |
| } |
| } |
| |
| |
| /* |
| ** adds a new prototype into list of prototypes |
| */ |
| static Proto *addprototype (LexState *ls) { |
| Proto *clp; |
| lua_State *L = ls->L; |
| FuncState *fs = ls->fs; |
| Proto *f = fs->f; /* prototype of current function */ |
| if (fs->np >= f->sizep) { |
| int oldsize = f->sizep; |
| luaM_growvector(L, f->p, fs->np, f->sizep, Proto *, MAXARG_Bx, "functions"); |
| while (oldsize < f->sizep) |
| f->p[oldsize++] = NULL; |
| } |
| f->p[fs->np++] = clp = luaF_newproto(L); |
| luaC_objbarrier(L, f, clp); |
| return clp; |
| } |
| |
| |
| /* |
| ** codes instruction to create new closure in parent function. |
| ** The OP_CLOSURE instruction uses the last available register, |
| ** so that, if it invokes the GC, the GC knows which registers |
| ** are in use at that time. |
| |
| */ |
| static void codeclosure (LexState *ls, expdesc *v) { |
| FuncState *fs = ls->fs->prev; |
| init_exp(v, VRELOC, luaK_codeABx(fs, OP_CLOSURE, 0, fs->np - 1)); |
| luaK_exp2nextreg(fs, v); /* fix it at the last register */ |
| } |
| |
| |
| static void open_func (LexState *ls, FuncState *fs, BlockCnt *bl) { |
| Proto *f = fs->f; |
| fs->prev = ls->fs; /* linked list of funcstates */ |
| fs->ls = ls; |
| ls->fs = fs; |
| fs->pc = 0; |
| fs->previousline = f->linedefined; |
| fs->iwthabs = 0; |
| fs->lasttarget = 0; |
| fs->freereg = 0; |
| fs->nk = 0; |
| fs->nabslineinfo = 0; |
| fs->np = 0; |
| fs->nups = 0; |
| fs->ndebugvars = 0; |
| fs->nactvar = 0; |
| fs->needclose = 0; |
| fs->firstlocal = ls->dyd->actvar.n; |
| fs->firstlabel = ls->dyd->label.n; |
| fs->bl = NULL; |
| f->source = ls->source; |
| luaC_objbarrier(ls->L, f, f->source); |
| f->maxstacksize = 2; /* registers 0/1 are always valid */ |
| enterblock(fs, bl, 0); |
| } |
| |
| |
| static void close_func (LexState *ls) { |
| lua_State *L = ls->L; |
| FuncState *fs = ls->fs; |
| Proto *f = fs->f; |
| luaK_ret(fs, luaY_nvarstack(fs), 0); /* final return */ |
| leaveblock(fs); |
| lua_assert(fs->bl == NULL); |
| luaK_finish(fs); |
| luaM_shrinkvector(L, f->code, f->sizecode, fs->pc, Instruction); |
| luaM_shrinkvector(L, f->lineinfo, f->sizelineinfo, fs->pc, ls_byte); |
| luaM_shrinkvector(L, f->abslineinfo, f->sizeabslineinfo, |
| fs->nabslineinfo, AbsLineInfo); |
| luaM_shrinkvector(L, f->k, f->sizek, fs->nk, TValue); |
| luaM_shrinkvector(L, f->p, f->sizep, fs->np, Proto *); |
| luaM_shrinkvector(L, f->locvars, f->sizelocvars, fs->ndebugvars, LocVar); |
| luaM_shrinkvector(L, f->upvalues, f->sizeupvalues, fs->nups, Upvaldesc); |
| ls->fs = fs->prev; |
| luaC_checkGC(L); |
| } |
| |
| |
| |
| /*============================================================*/ |
| /* GRAMMAR RULES */ |
| /*============================================================*/ |
| |
| |
| /* |
| ** check whether current token is in the follow set of a block. |
| ** 'until' closes syntactical blocks, but do not close scope, |
| ** so it is handled in separate. |
| */ |
| static int block_follow (LexState *ls, int withuntil) { |
| switch (ls->t.token) { |
| case TK_ELSE: case TK_ELSEIF: |
| case TK_END: case TK_EOS: |
| return 1; |
| case TK_UNTIL: return withuntil; |
| default: return 0; |
| } |
| } |
| |
| |
| static void statlist (LexState *ls) { |
| /* statlist -> { stat [';'] } */ |
| while (!block_follow(ls, 1)) { |
| if (ls->t.token == TK_RETURN) { |
| statement(ls); |
| return; /* 'return' must be last statement */ |
| } |
| statement(ls); |
| } |
| } |
| |
| |
| static void fieldsel (LexState *ls, expdesc *v) { |
| /* fieldsel -> ['.' | ':'] NAME */ |
| FuncState *fs = ls->fs; |
| expdesc key; |
| luaK_exp2anyregup(fs, v); |
| luaX_next(ls); /* skip the dot or colon */ |
| codename(ls, &key); |
| luaK_indexed(fs, v, &key); |
| } |
| |
| |
| static void yindex (LexState *ls, expdesc *v) { |
| /* index -> '[' expr ']' */ |
| luaX_next(ls); /* skip the '[' */ |
| expr(ls, v); |
| luaK_exp2val(ls->fs, v); |
| checknext(ls, ']'); |
| } |
| |
| |
| /* |
| ** {====================================================================== |
| ** Rules for Constructors |
| ** ======================================================================= |
| */ |
| |
| typedef struct ConsControl { |
| expdesc v; /* last list item read */ |
| expdesc *t; /* table descriptor */ |
| int nh; /* total number of 'record' elements */ |
| int na; /* number of array elements already stored */ |
| int tostore; /* number of array elements pending to be stored */ |
| int maxtostore; /* maximum number of pending elements */ |
| } ConsControl; |
| |
| |
| static void recfield (LexState *ls, ConsControl *cc) { |
| /* recfield -> (NAME | '['exp']') = exp */ |
| FuncState *fs = ls->fs; |
| lu_byte reg = ls->fs->freereg; |
| expdesc tab, key, val; |
| if (ls->t.token == TK_NAME) { |
| luaY_checklimit(fs, cc->nh, INT_MAX / 2, "items in a constructor"); |
| codename(ls, &key); |
| } |
| else /* ls->t.token == '[' */ |
| yindex(ls, &key); |
| cc->nh++; |
| checknext(ls, '='); |
| tab = *cc->t; |
| luaK_indexed(fs, &tab, &key); |
| expr(ls, &val); |
| luaK_storevar(fs, &tab, &val); |
| fs->freereg = reg; /* free registers */ |
| } |
| |
| |
| static void closelistfield (FuncState *fs, ConsControl *cc) { |
| if (cc->v.k == VVOID) return; /* there is no list item */ |
| luaK_exp2nextreg(fs, &cc->v); |
| cc->v.k = VVOID; |
| if (cc->tostore >= cc->maxtostore) { |
| luaK_setlist(fs, cc->t->u.info, cc->na, cc->tostore); /* flush */ |
| cc->na += cc->tostore; |
| cc->tostore = 0; /* no more items pending */ |
| } |
| } |
| |
| |
| static void lastlistfield (FuncState *fs, ConsControl *cc) { |
| if (cc->tostore == 0) return; |
| if (hasmultret(cc->v.k)) { |
| luaK_setmultret(fs, &cc->v); |
| luaK_setlist(fs, cc->t->u.info, cc->na, LUA_MULTRET); |
| cc->na--; /* do not count last expression (unknown number of elements) */ |
| } |
| else { |
| if (cc->v.k != VVOID) |
| luaK_exp2nextreg(fs, &cc->v); |
| luaK_setlist(fs, cc->t->u.info, cc->na, cc->tostore); |
| } |
| cc->na += cc->tostore; |
| } |
| |
| |
| static void listfield (LexState *ls, ConsControl *cc) { |
| /* listfield -> exp */ |
| expr(ls, &cc->v); |
| cc->tostore++; |
| } |
| |
| |
| static void field (LexState *ls, ConsControl *cc) { |
| /* field -> listfield | recfield */ |
| switch(ls->t.token) { |
| case TK_NAME: { /* may be 'listfield' or 'recfield' */ |
| if (luaX_lookahead(ls) != '=') /* expression? */ |
| listfield(ls, cc); |
| else |
| recfield(ls, cc); |
| break; |
| } |
| case '[': { |
| recfield(ls, cc); |
| break; |
| } |
| default: { |
| listfield(ls, cc); |
| break; |
| } |
| } |
| } |
| |
| |
| /* |
| ** Compute a limit for how many registers a constructor can use before |
| ** emitting a 'SETLIST' instruction, based on how many registers are |
| ** available. |
| */ |
| static int maxtostore (FuncState *fs) { |
| int numfreeregs = MAX_FSTACK - fs->freereg; |
| if (numfreeregs >= 160) /* "lots" of registers? */ |
| return numfreeregs / 5; /* use up to 1/5 of them */ |
| else if (numfreeregs >= 80) /* still "enough" registers? */ |
| return 10; /* one 'SETLIST' instruction for each 10 values */ |
| else /* save registers for potential more nesting */ |
| return 1; |
| } |
| |
| |
| static void constructor (LexState *ls, expdesc *t) { |
| /* constructor -> '{' [ field { sep field } [sep] ] '}' |
| sep -> ',' | ';' */ |
| FuncState *fs = ls->fs; |
| int line = ls->linenumber; |
| int pc = luaK_codevABCk(fs, OP_NEWTABLE, 0, 0, 0, 0); |
| ConsControl cc; |
| luaK_code(fs, 0); /* space for extra arg. */ |
| cc.na = cc.nh = cc.tostore = 0; |
| cc.t = t; |
| init_exp(t, VNONRELOC, fs->freereg); /* table will be at stack top */ |
| luaK_reserveregs(fs, 1); |
| init_exp(&cc.v, VVOID, 0); /* no value (yet) */ |
| checknext(ls, '{'); |
| cc.maxtostore = maxtostore(fs); |
| do { |
| lua_assert(cc.v.k == VVOID || cc.tostore > 0); |
| if (ls->t.token == '}') break; |
| closelistfield(fs, &cc); |
| field(ls, &cc); |
| } while (testnext(ls, ',') || testnext(ls, ';')); |
| check_match(ls, '}', '{', line); |
| lastlistfield(fs, &cc); |
| luaK_settablesize(fs, pc, t->u.info, cc.na, cc.nh); |
| } |
| |
| /* }====================================================================== */ |
| |
| |
| static void setvararg (FuncState *fs, int nparams) { |
| fs->f->flag |= PF_ISVARARG; |
| luaK_codeABC(fs, OP_VARARGPREP, nparams, 0, 0); |
| } |
| |
| |
| static void parlist (LexState *ls) { |
| /* parlist -> [ {NAME ','} (NAME | '...') ] */ |
| FuncState *fs = ls->fs; |
| Proto *f = fs->f; |
| int nparams = 0; |
| int isvararg = 0; |
| if (ls->t.token != ')') { /* is 'parlist' not empty? */ |
| do { |
| switch (ls->t.token) { |
| case TK_NAME: { |
| new_localvar(ls, str_checkname(ls)); |
| nparams++; |
| break; |
| } |
| case TK_DOTS: { |
| luaX_next(ls); |
| isvararg = 1; |
| break; |
| } |
| default: luaX_syntaxerror(ls, "<name> or '...' expected"); |
| } |
| } while (!isvararg && testnext(ls, ',')); |
| } |
| adjustlocalvars(ls, nparams); |
| f->numparams = cast_byte(fs->nactvar); |
| if (isvararg) |
| setvararg(fs, f->numparams); /* declared vararg */ |
| luaK_reserveregs(fs, fs->nactvar); /* reserve registers for parameters */ |
| } |
| |
| |
| static void body (LexState *ls, expdesc *e, int ismethod, int line) { |
| /* body -> '(' parlist ')' block END */ |
| FuncState new_fs; |
| BlockCnt bl; |
| new_fs.f = addprototype(ls); |
| new_fs.f->linedefined = line; |
| open_func(ls, &new_fs, &bl); |
| checknext(ls, '('); |
| if (ismethod) { |
| new_localvarliteral(ls, "self"); /* create 'self' parameter */ |
| adjustlocalvars(ls, 1); |
| } |
| parlist(ls); |
| checknext(ls, ')'); |
| statlist(ls); |
| new_fs.f->lastlinedefined = ls->linenumber; |
| check_match(ls, TK_END, TK_FUNCTION, line); |
| codeclosure(ls, e); |
| close_func(ls); |
| } |
| |
| |
| static int explist (LexState *ls, expdesc *v) { |
| /* explist -> expr { ',' expr } */ |
| int n = 1; /* at least one expression */ |
| expr(ls, v); |
| while (testnext(ls, ',')) { |
| luaK_exp2nextreg(ls->fs, v); |
| expr(ls, v); |
| n++; |
| } |
| return n; |
| } |
| |
| |
| static void funcargs (LexState *ls, expdesc *f) { |
| FuncState *fs = ls->fs; |
| expdesc args; |
| int base, nparams; |
| int line = ls->linenumber; |
| switch (ls->t.token) { |
| case '(': { /* funcargs -> '(' [ explist ] ')' */ |
| luaX_next(ls); |
| if (ls->t.token == ')') /* arg list is empty? */ |
| args.k = VVOID; |
| else { |
| explist(ls, &args); |
| if (hasmultret(args.k)) |
| luaK_setmultret(fs, &args); |
| } |
| check_match(ls, ')', '(', line); |
| break; |
| } |
| case '{': { /* funcargs -> constructor */ |
| constructor(ls, &args); |
| break; |
| } |
| case TK_STRING: { /* funcargs -> STRING */ |
| codestring(&args, ls->t.seminfo.ts); |
| luaX_next(ls); /* must use 'seminfo' before 'next' */ |
| break; |
| } |
| default: { |
| luaX_syntaxerror(ls, "function arguments expected"); |
| } |
| } |
| lua_assert(f->k == VNONRELOC); |
| base = f->u.info; /* base register for call */ |
| if (hasmultret(args.k)) |
| nparams = LUA_MULTRET; /* open call */ |
| else { |
| if (args.k != VVOID) |
| luaK_exp2nextreg(fs, &args); /* close last argument */ |
| nparams = fs->freereg - (base+1); |
| } |
| init_exp(f, VCALL, luaK_codeABC(fs, OP_CALL, base, nparams+1, 2)); |
| luaK_fixline(fs, line); |
| /* call removes function and arguments and leaves one result (unless |
| changed later) */ |
| fs->freereg = cast_byte(base + 1); |
| } |
| |
| |
| |
| |
| /* |
| ** {====================================================================== |
| ** Expression parsing |
| ** ======================================================================= |
| */ |
| |
| |
| static void primaryexp (LexState *ls, expdesc *v) { |
| /* primaryexp -> NAME | '(' expr ')' */ |
| switch (ls->t.token) { |
| case '(': { |
| int line = ls->linenumber; |
| luaX_next(ls); |
| expr(ls, v); |
| check_match(ls, ')', '(', line); |
| luaK_dischargevars(ls->fs, v); |
| return; |
| } |
| case TK_NAME: { |
| singlevar(ls, v); |
| return; |
| } |
| default: { |
| luaX_syntaxerror(ls, "unexpected symbol"); |
| } |
| } |
| } |
| |
| |
| static void suffixedexp (LexState *ls, expdesc *v) { |
| /* suffixedexp -> |
| primaryexp { '.' NAME | '[' exp ']' | ':' NAME funcargs | funcargs } */ |
| FuncState *fs = ls->fs; |
| primaryexp(ls, v); |
| for (;;) { |
| switch (ls->t.token) { |
| case '.': { /* fieldsel */ |
| fieldsel(ls, v); |
| break; |
| } |
| case '[': { /* '[' exp ']' */ |
| expdesc key; |
| luaK_exp2anyregup(fs, v); |
| yindex(ls, &key); |
| luaK_indexed(fs, v, &key); |
| break; |
| } |
| case ':': { /* ':' NAME funcargs */ |
| expdesc key; |
| luaX_next(ls); |
| codename(ls, &key); |
| luaK_self(fs, v, &key); |
| funcargs(ls, v); |
| break; |
| } |
| case '(': case TK_STRING: case '{': { /* funcargs */ |
| luaK_exp2nextreg(fs, v); |
| funcargs(ls, v); |
| break; |
| } |
| default: return; |
| } |
| } |
| } |
| |
| |
| static void simpleexp (LexState *ls, expdesc *v) { |
| /* simpleexp -> FLT | INT | STRING | NIL | TRUE | FALSE | ... | |
| constructor | FUNCTION body | suffixedexp */ |
| switch (ls->t.token) { |
| case TK_FLT: { |
| init_exp(v, VKFLT, 0); |
| v->u.nval = ls->t.seminfo.r; |
| break; |
| } |
| case TK_INT: { |
| init_exp(v, VKINT, 0); |
| v->u.ival = ls->t.seminfo.i; |
| break; |
| } |
| case TK_STRING: { |
| codestring(v, ls->t.seminfo.ts); |
| break; |
| } |
| case TK_NIL: { |
| init_exp(v, VNIL, 0); |
| break; |
| } |
| case TK_TRUE: { |
| init_exp(v, VTRUE, 0); |
| break; |
| } |
| case TK_FALSE: { |
| init_exp(v, VFALSE, 0); |
| break; |
| } |
| case TK_DOTS: { /* vararg */ |
| FuncState *fs = ls->fs; |
| check_condition(ls, fs->f->flag & PF_ISVARARG, |
| "cannot use '...' outside a vararg function"); |
| init_exp(v, VVARARG, luaK_codeABC(fs, OP_VARARG, 0, 0, 1)); |
| break; |
| } |
| case '{': { /* constructor */ |
| constructor(ls, v); |
| return; |
| } |
| case TK_FUNCTION: { |
| luaX_next(ls); |
| body(ls, v, 0, ls->linenumber); |
| return; |
| } |
| default: { |
| suffixedexp(ls, v); |
| return; |
| } |
| } |
| luaX_next(ls); |
| } |
| |
| |
| static UnOpr getunopr (int op) { |
| switch (op) { |
| case TK_NOT: return OPR_NOT; |
| case '-': return OPR_MINUS; |
| case '~': return OPR_BNOT; |
| case '#': return OPR_LEN; |
| default: return OPR_NOUNOPR; |
| } |
| } |
| |
| |
| static BinOpr getbinopr (int op) { |
| switch (op) { |
| case '+': return OPR_ADD; |
| case '-': return OPR_SUB; |
| case '*': return OPR_MUL; |
| case '%': return OPR_MOD; |
| case '^': return OPR_POW; |
| case '/': return OPR_DIV; |
| case TK_IDIV: return OPR_IDIV; |
| case '&': return OPR_BAND; |
| case '|': return OPR_BOR; |
| case '~': return OPR_BXOR; |
| case TK_SHL: return OPR_SHL; |
| case TK_SHR: return OPR_SHR; |
| case TK_CONCAT: return OPR_CONCAT; |
| case TK_NE: return OPR_NE; |
| case TK_EQ: return OPR_EQ; |
| case '<': return OPR_LT; |
| case TK_LE: return OPR_LE; |
| case '>': return OPR_GT; |
| case TK_GE: return OPR_GE; |
| case TK_AND: return OPR_AND; |
| case TK_OR: return OPR_OR; |
| default: return OPR_NOBINOPR; |
| } |
| } |
| |
| |
| /* |
| ** Priority table for binary operators. |
| */ |
| static const struct { |
| lu_byte left; /* left priority for each binary operator */ |
| lu_byte right; /* right priority */ |
| } priority[] = { /* ORDER OPR */ |
| {10, 10}, {10, 10}, /* '+' '-' */ |
| {11, 11}, {11, 11}, /* '*' '%' */ |
| {14, 13}, /* '^' (right associative) */ |
| {11, 11}, {11, 11}, /* '/' '//' */ |
| {6, 6}, {4, 4}, {5, 5}, /* '&' '|' '~' */ |
| {7, 7}, {7, 7}, /* '<<' '>>' */ |
| {9, 8}, /* '..' (right associative) */ |
| {3, 3}, {3, 3}, {3, 3}, /* ==, <, <= */ |
| {3, 3}, {3, 3}, {3, 3}, /* ~=, >, >= */ |
| {2, 2}, {1, 1} /* and, or */ |
| }; |
| |
| #define UNARY_PRIORITY 12 /* priority for unary operators */ |
| |
| |
| /* |
| ** subexpr -> (simpleexp | unop subexpr) { binop subexpr } |
| ** where 'binop' is any binary operator with a priority higher than 'limit' |
| */ |
| static BinOpr subexpr (LexState *ls, expdesc *v, int limit) { |
| BinOpr op; |
| UnOpr uop; |
| enterlevel(ls); |
| uop = getunopr(ls->t.token); |
| if (uop != OPR_NOUNOPR) { /* prefix (unary) operator? */ |
| int line = ls->linenumber; |
| luaX_next(ls); /* skip operator */ |
| subexpr(ls, v, UNARY_PRIORITY); |
| luaK_prefix(ls->fs, uop, v, line); |
| } |
| else simpleexp(ls, v); |
| /* expand while operators have priorities higher than 'limit' */ |
| op = getbinopr(ls->t.token); |
| while (op != OPR_NOBINOPR && priority[op].left > limit) { |
| expdesc v2; |
| BinOpr nextop; |
| int line = ls->linenumber; |
| luaX_next(ls); /* skip operator */ |
| luaK_infix(ls->fs, op, v); |
| /* read sub-expression with higher priority */ |
| nextop = subexpr(ls, &v2, priority[op].right); |
| luaK_posfix(ls->fs, op, v, &v2, line); |
| op = nextop; |
| } |
| leavelevel(ls); |
| return op; /* return first untreated operator */ |
| } |
| |
| |
| static void expr (LexState *ls, expdesc *v) { |
| subexpr(ls, v, 0); |
| } |
| |
| /* }==================================================================== */ |
| |
| |
| |
| /* |
| ** {====================================================================== |
| ** Rules for Statements |
| ** ======================================================================= |
| */ |
| |
| |
| static void block (LexState *ls) { |
| /* block -> statlist */ |
| FuncState *fs = ls->fs; |
| BlockCnt bl; |
| enterblock(fs, &bl, 0); |
| statlist(ls); |
| leaveblock(fs); |
| } |
| |
| |
| /* |
| ** structure to chain all variables in the left-hand side of an |
| ** assignment |
| */ |
| struct LHS_assign { |
| struct LHS_assign *prev; |
| expdesc v; /* variable (global, local, upvalue, or indexed) */ |
| }; |
| |
| |
| /* |
| ** check whether, in an assignment to an upvalue/local variable, the |
| ** upvalue/local variable is begin used in a previous assignment to a |
| ** table. If so, save original upvalue/local value in a safe place and |
| ** use this safe copy in the previous assignment. |
| */ |
| static void check_conflict (LexState *ls, struct LHS_assign *lh, expdesc *v) { |
| FuncState *fs = ls->fs; |
| lu_byte extra = fs->freereg; /* eventual position to save local variable */ |
| int conflict = 0; |
| for (; lh; lh = lh->prev) { /* check all previous assignments */ |
| if (vkisindexed(lh->v.k)) { /* assignment to table field? */ |
| if (lh->v.k == VINDEXUP) { /* is table an upvalue? */ |
| if (v->k == VUPVAL && lh->v.u.ind.t == v->u.info) { |
| conflict = 1; /* table is the upvalue being assigned now */ |
| lh->v.k = VINDEXSTR; |
| lh->v.u.ind.t = extra; /* assignment will use safe copy */ |
| } |
| } |
| else { /* table is a register */ |
| if (v->k == VLOCAL && lh->v.u.ind.t == v->u.var.ridx) { |
| conflict = 1; /* table is the local being assigned now */ |
| lh->v.u.ind.t = extra; /* assignment will use safe copy */ |
| } |
| /* is index the local being assigned? */ |
| if (lh->v.k == VINDEXED && v->k == VLOCAL && |
| lh->v.u.ind.idx == v->u.var.ridx) { |
| conflict = 1; |
| lh->v.u.ind.idx = extra; /* previous assignment will use safe copy */ |
| } |
| } |
| } |
| } |
| if (conflict) { |
| /* copy upvalue/local value to a temporary (in position 'extra') */ |
| if (v->k == VLOCAL) |
| luaK_codeABC(fs, OP_MOVE, extra, v->u.var.ridx, 0); |
| else |
| luaK_codeABC(fs, OP_GETUPVAL, extra, v->u.info, 0); |
| luaK_reserveregs(fs, 1); |
| } |
| } |
| |
| /* |
| ** Parse and compile a multiple assignment. The first "variable" |
| ** (a 'suffixedexp') was already read by the caller. |
| ** |
| ** assignment -> suffixedexp restassign |
| ** restassign -> ',' suffixedexp restassign | '=' explist |
| */ |
| static void restassign (LexState *ls, struct LHS_assign *lh, int nvars) { |
| expdesc e; |
| check_condition(ls, vkisvar(lh->v.k), "syntax error"); |
| check_readonly(ls, &lh->v); |
| if (testnext(ls, ',')) { /* restassign -> ',' suffixedexp restassign */ |
| struct LHS_assign nv; |
| nv.prev = lh; |
| suffixedexp(ls, &nv.v); |
| if (!vkisindexed(nv.v.k)) |
| check_conflict(ls, lh, &nv.v); |
| enterlevel(ls); /* control recursion depth */ |
| restassign(ls, &nv, nvars+1); |
| leavelevel(ls); |
| } |
| else { /* restassign -> '=' explist */ |
| int nexps; |
| checknext(ls, '='); |
| nexps = explist(ls, &e); |
| if (nexps != nvars) |
| adjust_assign(ls, nvars, nexps, &e); |
| else { |
| luaK_setoneret(ls->fs, &e); /* close last expression */ |
| luaK_storevar(ls->fs, &lh->v, &e); |
| return; /* avoid default */ |
| } |
| } |
| init_exp(&e, VNONRELOC, ls->fs->freereg-1); /* default assignment */ |
| luaK_storevar(ls->fs, &lh->v, &e); |
| } |
| |
| |
| static int cond (LexState *ls) { |
| /* cond -> exp */ |
| expdesc v; |
| expr(ls, &v); /* read condition */ |
| if (v.k == VNIL) v.k = VFALSE; /* 'falses' are all equal here */ |
| luaK_goiftrue(ls->fs, &v); |
| return v.f; |
| } |
| |
| |
| static void gotostat (LexState *ls) { |
| FuncState *fs = ls->fs; |
| int line = ls->linenumber; |
| TString *name = str_checkname(ls); /* label's name */ |
| Labeldesc *lb = findlabel(ls, name); |
| if (lb == NULL) /* no label? */ |
| /* forward jump; will be resolved when the label is declared */ |
| newgotoentry(ls, name, line, luaK_jump(fs)); |
| else { /* found a label */ |
| /* backward jump; will be resolved here */ |
| int lblevel = reglevel(fs, lb->nactvar); /* label level */ |
| if (luaY_nvarstack(fs) > lblevel) /* leaving the scope of a variable? */ |
| luaK_codeABC(fs, OP_CLOSE, lblevel, 0, 0); |
| /* create jump and link it to the label */ |
| luaK_patchlist(fs, luaK_jump(fs), lb->pc); |
| } |
| } |
| |
| |
| /* |
| ** Break statement. Semantically equivalent to "goto break". |
| */ |
| static void breakstat (LexState *ls) { |
| int line = ls->linenumber; |
| luaX_next(ls); /* skip break */ |
| newgotoentry(ls, luaS_newliteral(ls->L, "break"), line, luaK_jump(ls->fs)); |
| } |
| |
| |
| /* |
| ** Check whether there is already a label with the given 'name'. |
| */ |
| static void checkrepeated (LexState *ls, TString *name) { |
| Labeldesc *lb = findlabel(ls, name); |
| if (l_unlikely(lb != NULL)) { /* already defined? */ |
| const char *msg = "label '%s' already defined on line %d"; |
| msg = luaO_pushfstring(ls->L, msg, getstr(name), lb->line); |
| luaK_semerror(ls, msg); /* error */ |
| } |
| } |
| |
| |
| static void labelstat (LexState *ls, TString *name, int line) { |
| /* label -> '::' NAME '::' */ |
| checknext(ls, TK_DBCOLON); /* skip double colon */ |
| while (ls->t.token == ';' || ls->t.token == TK_DBCOLON) |
| statement(ls); /* skip other no-op statements */ |
| checkrepeated(ls, name); /* check for repeated labels */ |
| createlabel(ls, name, line, block_follow(ls, 0)); |
| } |
| |
| |
| static void whilestat (LexState *ls, int line) { |
| /* whilestat -> WHILE cond DO block END */ |
| FuncState *fs = ls->fs; |
| int whileinit; |
| int condexit; |
| BlockCnt bl; |
| luaX_next(ls); /* skip WHILE */ |
| whileinit = luaK_getlabel(fs); |
| condexit = cond(ls); |
| enterblock(fs, &bl, 1); |
| checknext(ls, TK_DO); |
| block(ls); |
| luaK_jumpto(fs, whileinit); |
| check_match(ls, TK_END, TK_WHILE, line); |
| leaveblock(fs); |
| luaK_patchtohere(fs, condexit); /* false conditions finish the loop */ |
| } |
| |
| |
| static void repeatstat (LexState *ls, int line) { |
| /* repeatstat -> REPEAT block UNTIL cond */ |
| int condexit; |
| FuncState *fs = ls->fs; |
| int repeat_init = luaK_getlabel(fs); |
| BlockCnt bl1, bl2; |
| enterblock(fs, &bl1, 1); /* loop block */ |
| enterblock(fs, &bl2, 0); /* scope block */ |
| luaX_next(ls); /* skip REPEAT */ |
| statlist(ls); |
| check_match(ls, TK_UNTIL, TK_REPEAT, line); |
| condexit = cond(ls); /* read condition (inside scope block) */ |
| leaveblock(fs); /* finish scope */ |
| if (bl2.upval) { /* upvalues? */ |
| int exit = luaK_jump(fs); /* normal exit must jump over fix */ |
| luaK_patchtohere(fs, condexit); /* repetition must close upvalues */ |
| luaK_codeABC(fs, OP_CLOSE, reglevel(fs, bl2.nactvar), 0, 0); |
| condexit = luaK_jump(fs); /* repeat after closing upvalues */ |
| luaK_patchtohere(fs, exit); /* normal exit comes to here */ |
| } |
| luaK_patchlist(fs, condexit, repeat_init); /* close the loop */ |
| leaveblock(fs); /* finish loop */ |
| } |
| |
| |
| /* |
| ** Read an expression and generate code to put its results in next |
| ** stack slot. |
| ** |
| */ |
| static void exp1 (LexState *ls) { |
| expdesc e; |
| expr(ls, &e); |
| luaK_exp2nextreg(ls->fs, &e); |
| lua_assert(e.k == VNONRELOC); |
| } |
| |
| |
| /* |
| ** Fix for instruction at position 'pc' to jump to 'dest'. |
| ** (Jump addresses are relative in Lua). 'back' true means |
| ** a back jump. |
| */ |
| static void fixforjump (FuncState *fs, int pc, int dest, int back) { |
| Instruction *jmp = &fs->f->code[pc]; |
| int offset = dest - (pc + 1); |
| if (back) |
| offset = -offset; |
| if (l_unlikely(offset > MAXARG_Bx)) |
| luaX_syntaxerror(fs->ls, "control structure too long"); |
| SETARG_Bx(*jmp, offset); |
| } |
| |
| |
| /* |
| ** Generate code for a 'for' loop. |
| */ |
| static void forbody (LexState *ls, int base, int line, int nvars, int isgen) { |
| /* forbody -> DO block */ |
| static const OpCode forprep[2] = {OP_FORPREP, OP_TFORPREP}; |
| static const OpCode forloop[2] = {OP_FORLOOP, OP_TFORLOOP}; |
| BlockCnt bl; |
| FuncState *fs = ls->fs; |
| int prep, endfor; |
| checknext(ls, TK_DO); |
| prep = luaK_codeABx(fs, forprep[isgen], base, 0); |
| fs->freereg--; /* both 'forprep' remove one register from the stack */ |
| enterblock(fs, &bl, 0); /* scope for declared variables */ |
| adjustlocalvars(ls, nvars); |
| luaK_reserveregs(fs, nvars); |
| block(ls); |
| leaveblock(fs); /* end of scope for declared variables */ |
| fixforjump(fs, prep, luaK_getlabel(fs), 0); |
| if (isgen) { /* generic for? */ |
| luaK_codeABC(fs, OP_TFORCALL, base, 0, nvars); |
| luaK_fixline(fs, line); |
| } |
| endfor = luaK_codeABx(fs, forloop[isgen], base, 0); |
| fixforjump(fs, endfor, prep + 1, 1); |
| luaK_fixline(fs, line); |
| } |
| |
| |
| static void fornum (LexState *ls, TString *varname, int line) { |
| /* fornum -> NAME = exp,exp[,exp] forbody */ |
| FuncState *fs = ls->fs; |
| int base = fs->freereg; |
| new_localvarliteral(ls, "(for state)"); |
| new_localvarliteral(ls, "(for state)"); |
| new_localvarkind(ls, varname, RDKCONST); /* control variable */ |
| checknext(ls, '='); |
| exp1(ls); /* initial value */ |
| checknext(ls, ','); |
| exp1(ls); /* limit */ |
| if (testnext(ls, ',')) |
| exp1(ls); /* optional step */ |
| else { /* default step = 1 */ |
| luaK_int(fs, fs->freereg, 1); |
| luaK_reserveregs(fs, 1); |
| } |
| adjustlocalvars(ls, 2); /* start scope for internal variables */ |
| forbody(ls, base, line, 1, 0); |
| } |
| |
| |
| static void forlist (LexState *ls, TString *indexname) { |
| /* forlist -> NAME {,NAME} IN explist forbody */ |
| FuncState *fs = ls->fs; |
| expdesc e; |
| int nvars = 4; /* function, state, closing, control */ |
| int line; |
| int base = fs->freereg; |
| /* create internal variables */ |
| new_localvarliteral(ls, "(for state)"); /* iterator function */ |
| new_localvarliteral(ls, "(for state)"); /* state */ |
| new_localvarliteral(ls, "(for state)"); /* closing var. (after swap) */ |
| new_localvarkind(ls, indexname, RDKCONST); /* control variable */ |
| /* other declared variables */ |
| while (testnext(ls, ',')) { |
| new_localvar(ls, str_checkname(ls)); |
| nvars++; |
| } |
| checknext(ls, TK_IN); |
| line = ls->linenumber; |
| adjust_assign(ls, 4, explist(ls, &e), &e); |
| adjustlocalvars(ls, 3); /* start scope for internal variables */ |
| marktobeclosed(fs); /* last internal var. must be closed */ |
| luaK_checkstack(fs, 2); /* extra space to call iterator */ |
| forbody(ls, base, line, nvars - 3, 1); |
| } |
| |
| |
| static void forstat (LexState *ls, int line) { |
| /* forstat -> FOR (fornum | forlist) END */ |
| FuncState *fs = ls->fs; |
| TString *varname; |
| BlockCnt bl; |
| enterblock(fs, &bl, 1); /* scope for loop and control variables */ |
| luaX_next(ls); /* skip 'for' */ |
| varname = str_checkname(ls); /* first variable name */ |
| switch (ls->t.token) { |
| case '=': fornum(ls, varname, line); break; |
| case ',': case TK_IN: forlist(ls, varname); break; |
| default: luaX_syntaxerror(ls, "'=' or 'in' expected"); |
| } |
| check_match(ls, TK_END, TK_FOR, line); |
| leaveblock(fs); /* loop scope ('break' jumps to this point) */ |
| } |
| |
| |
| static void test_then_block (LexState *ls, int *escapelist) { |
| /* test_then_block -> [IF | ELSEIF] cond THEN block */ |
| BlockCnt bl; |
| FuncState *fs = ls->fs; |
| expdesc v; |
| int jf; /* instruction to skip 'then' code (if condition is false) */ |
| luaX_next(ls); /* skip IF or ELSEIF */ |
| expr(ls, &v); /* read condition */ |
| checknext(ls, TK_THEN); |
| if (ls->t.token == TK_BREAK) { /* 'if x then break' ? */ |
| int line = ls->linenumber; |
| luaK_goiffalse(ls->fs, &v); /* will jump if condition is true */ |
| luaX_next(ls); /* skip 'break' */ |
| enterblock(fs, &bl, 0); /* must enter block before 'goto' */ |
| newgotoentry(ls, luaS_newliteral(ls->L, "break"), line, v.t); |
| while (testnext(ls, ';')) {} /* skip semicolons */ |
| if (block_follow(ls, 0)) { /* jump is the entire block? */ |
| leaveblock(fs); |
| return; /* and that is it */ |
| } |
| else /* must skip over 'then' part if condition is false */ |
| jf = luaK_jump(fs); |
| } |
| else { /* regular case (not a break) */ |
| luaK_goiftrue(ls->fs, &v); /* skip over block if condition is false */ |
| enterblock(fs, &bl, 0); |
| jf = v.f; |
| } |
| statlist(ls); /* 'then' part */ |
| leaveblock(fs); |
| if (ls->t.token == TK_ELSE || |
| ls->t.token == TK_ELSEIF) /* followed by 'else'/'elseif'? */ |
| luaK_concat(fs, escapelist, luaK_jump(fs)); /* must jump over it */ |
| luaK_patchtohere(fs, jf); |
| } |
| |
| |
| static void ifstat (LexState *ls, int line) { |
| /* ifstat -> IF cond THEN block {ELSEIF cond THEN block} [ELSE block] END */ |
| FuncState *fs = ls->fs; |
| int escapelist = NO_JUMP; /* exit list for finished parts */ |
| test_then_block(ls, &escapelist); /* IF cond THEN block */ |
| while (ls->t.token == TK_ELSEIF) |
| test_then_block(ls, &escapelist); /* ELSEIF cond THEN block */ |
| if (testnext(ls, TK_ELSE)) |
| block(ls); /* 'else' part */ |
| check_match(ls, TK_END, TK_IF, line); |
| luaK_patchtohere(fs, escapelist); /* patch escape list to 'if' end */ |
| } |
| |
| |
| static void localfunc (LexState *ls) { |
| expdesc b; |
| FuncState *fs = ls->fs; |
| int fvar = fs->nactvar; /* function's variable index */ |
| new_localvar(ls, str_checkname(ls)); /* new local variable */ |
| adjustlocalvars(ls, 1); /* enter its scope */ |
| body(ls, &b, 0, ls->linenumber); /* function created in next register */ |
| /* debug information will only see the variable after this point! */ |
| localdebuginfo(fs, fvar)->startpc = fs->pc; |
| } |
| |
| |
| static lu_byte getlocalattribute (LexState *ls) { |
| /* ATTRIB -> ['<' Name '>'] */ |
| if (testnext(ls, '<')) { |
| TString *ts = str_checkname(ls); |
| const char *attr = getstr(ts); |
| checknext(ls, '>'); |
| if (strcmp(attr, "const") == 0) |
| return RDKCONST; /* read-only variable */ |
| else if (strcmp(attr, "close") == 0) |
| return RDKTOCLOSE; /* to-be-closed variable */ |
| else |
| luaK_semerror(ls, |
| luaO_pushfstring(ls->L, "unknown attribute '%s'", attr)); |
| } |
| return VDKREG; /* regular variable */ |
| } |
| |
| |
| static void checktoclose (FuncState *fs, int level) { |
| if (level != -1) { /* is there a to-be-closed variable? */ |
| marktobeclosed(fs); |
| luaK_codeABC(fs, OP_TBC, reglevel(fs, level), 0, 0); |
| } |
| } |
| |
| |
| static void localstat (LexState *ls) { |
| /* stat -> LOCAL NAME ATTRIB { ',' NAME ATTRIB } ['=' explist] */ |
| FuncState *fs = ls->fs; |
| int toclose = -1; /* index of to-be-closed variable (if any) */ |
| Vardesc *var; /* last variable */ |
| int vidx; /* index of last variable */ |
| int nvars = 0; |
| int nexps; |
| expdesc e; |
| do { |
| TString *vname = str_checkname(ls); |
| lu_byte kind = getlocalattribute(ls); |
| vidx = new_localvarkind(ls, vname, kind); |
| if (kind == RDKTOCLOSE) { /* to-be-closed? */ |
| if (toclose != -1) /* one already present? */ |
| luaK_semerror(ls, "multiple to-be-closed variables in local list"); |
| toclose = fs->nactvar + nvars; |
| } |
| nvars++; |
| } while (testnext(ls, ',')); |
| if (testnext(ls, '=')) |
| nexps = explist(ls, &e); |
| else { |
| e.k = VVOID; |
| nexps = 0; |
| } |
| var = getlocalvardesc(fs, vidx); /* get last variable */ |
| if (nvars == nexps && /* no adjustments? */ |
| var->vd.kind == RDKCONST && /* last variable is const? */ |
| luaK_exp2const(fs, &e, &var->k)) { /* compile-time constant? */ |
| var->vd.kind = RDKCTC; /* variable is a compile-time constant */ |
| adjustlocalvars(ls, nvars - 1); /* exclude last variable */ |
| fs->nactvar++; /* but count it */ |
| } |
| else { |
| adjust_assign(ls, nvars, nexps, &e); |
| adjustlocalvars(ls, nvars); |
| } |
| checktoclose(fs, toclose); |
| } |
| |
| |
| static int funcname (LexState *ls, expdesc *v) { |
| /* funcname -> NAME {fieldsel} [':' NAME] */ |
| int ismethod = 0; |
| singlevar(ls, v); |
| while (ls->t.token == '.') |
| fieldsel(ls, v); |
| if (ls->t.token == ':') { |
| ismethod = 1; |
| fieldsel(ls, v); |
| } |
| return ismethod; |
| } |
| |
| |
| static void funcstat (LexState *ls, int line) { |
| /* funcstat -> FUNCTION funcname body */ |
| int ismethod; |
| expdesc v, b; |
| luaX_next(ls); /* skip FUNCTION */ |
| ismethod = funcname(ls, &v); |
| body(ls, &b, ismethod, line); |
| check_readonly(ls, &v); |
| luaK_storevar(ls->fs, &v, &b); |
| luaK_fixline(ls->fs, line); /* definition "happens" in the first line */ |
| } |
| |
| |
| static void exprstat (LexState *ls) { |
| /* stat -> func | assignment */ |
| FuncState *fs = ls->fs; |
| struct LHS_assign v; |
| suffixedexp(ls, &v.v); |
| if (ls->t.token == '=' || ls->t.token == ',') { /* stat -> assignment ? */ |
| v.prev = NULL; |
| restassign(ls, &v, 1); |
| } |
| else { /* stat -> func */ |
| Instruction *inst; |
| check_condition(ls, v.v.k == VCALL, "syntax error"); |
| inst = &getinstruction(fs, &v.v); |
| SETARG_C(*inst, 1); /* call statement uses no results */ |
| } |
| } |
| |
| |
| static void retstat (LexState *ls) { |
| /* stat -> RETURN [explist] [';'] */ |
| FuncState *fs = ls->fs; |
| expdesc e; |
| int nret; /* number of values being returned */ |
| int first = luaY_nvarstack(fs); /* first slot to be returned */ |
| if (block_follow(ls, 1) || ls->t.token == ';') |
| nret = 0; /* return no values */ |
| else { |
| nret = explist(ls, &e); /* optional return values */ |
| if (hasmultret(e.k)) { |
| luaK_setmultret(fs, &e); |
| if (e.k == VCALL && nret == 1 && !fs->bl->insidetbc) { /* tail call? */ |
| SET_OPCODE(getinstruction(fs,&e), OP_TAILCALL); |
| lua_assert(GETARG_A(getinstruction(fs,&e)) == luaY_nvarstack(fs)); |
| } |
| nret = LUA_MULTRET; /* return all values */ |
| } |
| else { |
| if (nret == 1) /* only one single value? */ |
| first = luaK_exp2anyreg(fs, &e); /* can use original slot */ |
| else { /* values must go to the top of the stack */ |
| luaK_exp2nextreg(fs, &e); |
| lua_assert(nret == fs->freereg - first); |
| } |
| } |
| } |
| luaK_ret(fs, first, nret); |
| testnext(ls, ';'); /* skip optional semicolon */ |
| } |
| |
| |
| static void statement (LexState *ls) { |
| int line = ls->linenumber; /* may be needed for error messages */ |
| enterlevel(ls); |
| switch (ls->t.token) { |
| case ';': { /* stat -> ';' (empty statement) */ |
| luaX_next(ls); /* skip ';' */ |
| break; |
| } |
| case TK_IF: { /* stat -> ifstat */ |
| ifstat(ls, line); |
| break; |
| } |
| case TK_WHILE: { /* stat -> whilestat */ |
| whilestat(ls, line); |
| break; |
| } |
| case TK_DO: { /* stat -> DO block END */ |
| luaX_next(ls); /* skip DO */ |
| block(ls); |
| check_match(ls, TK_END, TK_DO, line); |
| break; |
| } |
| case TK_FOR: { /* stat -> forstat */ |
| forstat(ls, line); |
| break; |
| } |
| case TK_REPEAT: { /* stat -> repeatstat */ |
| repeatstat(ls, line); |
| break; |
| } |
| case TK_FUNCTION: { /* stat -> funcstat */ |
| funcstat(ls, line); |
| break; |
| } |
| case TK_LOCAL: { /* stat -> localstat */ |
| luaX_next(ls); /* skip LOCAL */ |
| if (testnext(ls, TK_FUNCTION)) /* local function? */ |
| localfunc(ls); |
| else |
| localstat(ls); |
| break; |
| } |
| case TK_DBCOLON: { /* stat -> label */ |
| luaX_next(ls); /* skip double colon */ |
| labelstat(ls, str_checkname(ls), line); |
| break; |
| } |
| case TK_RETURN: { /* stat -> retstat */ |
| luaX_next(ls); /* skip RETURN */ |
| retstat(ls); |
| break; |
| } |
| case TK_BREAK: { /* stat -> breakstat */ |
| breakstat(ls); |
| break; |
| } |
| case TK_GOTO: { /* stat -> 'goto' NAME */ |
| luaX_next(ls); /* skip 'goto' */ |
| gotostat(ls); |
| break; |
| } |
| default: { /* stat -> func | assignment */ |
| exprstat(ls); |
| break; |
| } |
| } |
| lua_assert(ls->fs->f->maxstacksize >= ls->fs->freereg && |
| ls->fs->freereg >= luaY_nvarstack(ls->fs)); |
| ls->fs->freereg = luaY_nvarstack(ls->fs); /* free registers */ |
| leavelevel(ls); |
| } |
| |
| /* }====================================================================== */ |
| |
| |
| /* |
| ** compiles the main function, which is a regular vararg function with an |
| ** upvalue named LUA_ENV |
| */ |
| static void mainfunc (LexState *ls, FuncState *fs) { |
| BlockCnt bl; |
| Upvaldesc *env; |
| open_func(ls, fs, &bl); |
| setvararg(fs, 0); /* main function is always declared vararg */ |
| env = allocupvalue(fs); /* ...set environment upvalue */ |
| env->instack = 1; |
| env->idx = 0; |
| env->kind = VDKREG; |
| env->name = ls->envn; |
| luaC_objbarrier(ls->L, fs->f, env->name); |
| luaX_next(ls); /* read first token */ |
| statlist(ls); /* parse main body */ |
| check(ls, TK_EOS); |
| close_func(ls); |
| } |
| |
| |
| LClosure *luaY_parser (lua_State *L, ZIO *z, Mbuffer *buff, |
| Dyndata *dyd, const char *name, int firstchar) { |
| LexState lexstate; |
| FuncState funcstate; |
| LClosure *cl = luaF_newLclosure(L, 1); /* create main closure */ |
| setclLvalue2s(L, L->top.p, cl); /* anchor it (to avoid being collected) */ |
| luaD_inctop(L); |
| lexstate.h = luaH_new(L); /* create table for scanner */ |
| sethvalue2s(L, L->top.p, lexstate.h); /* anchor it */ |
| luaD_inctop(L); |
| funcstate.f = cl->p = luaF_newproto(L); |
| luaC_objbarrier(L, cl, cl->p); |
| funcstate.f->source = luaS_new(L, name); /* create and anchor TString */ |
| luaC_objbarrier(L, funcstate.f, funcstate.f->source); |
| lexstate.buff = buff; |
| lexstate.dyd = dyd; |
| dyd->actvar.n = dyd->gt.n = dyd->label.n = 0; |
| luaX_setinput(L, &lexstate, z, funcstate.f->source, firstchar); |
| mainfunc(&lexstate, &funcstate); |
| lua_assert(!funcstate.prev && funcstate.nups == 1 && !lexstate.fs); |
| /* all scopes should be correctly finished */ |
| lua_assert(dyd->actvar.n == 0 && dyd->gt.n == 0 && dyd->label.n == 0); |
| L->top.p--; /* remove scanner's table */ |
| return cl; /* closure is on the stack, too */ |
| } |
| |