| /* |
| ** $Id: lopcodes.h $ |
| ** Opcodes for Lua virtual machine |
| ** See Copyright Notice in lua.h |
| */ |
| |
| #ifndef lopcodes_h |
| #define lopcodes_h |
| |
| #include "llimits.h" |
| #include "lobject.h" |
| |
| |
| /*=========================================================================== |
| We assume that instructions are unsigned 32-bit integers. |
| All instructions have an opcode in the first 7 bits. |
| Instructions can have the following formats: |
| |
| 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 |
| 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 |
| iABC C(8) | B(8) |k| A(8) | Op(7) | |
| ivABC vC(10) | vB(6) |k| A(8) | Op(7) | |
| iABx Bx(17) | A(8) | Op(7) | |
| iAsBx sBx (signed)(17) | A(8) | Op(7) | |
| iAx Ax(25) | Op(7) | |
| isJ sJ (signed)(25) | Op(7) | |
| |
| ('v' stands for "variant", 's' for "signed", 'x' for "extended".) |
| A signed argument is represented in excess K: The represented value is |
| the written unsigned value minus K, where K is half (rounded down) the |
| maximum value for the corresponding unsigned argument. |
| ===========================================================================*/ |
| |
| |
| /* basic instruction formats */ |
| enum OpMode {iABC, ivABC, iABx, iAsBx, iAx, isJ}; |
| |
| |
| /* |
| ** size and position of opcode arguments. |
| */ |
| #define SIZE_C 8 |
| #define SIZE_vC 10 |
| #define SIZE_B 8 |
| #define SIZE_vB 6 |
| #define SIZE_Bx (SIZE_C + SIZE_B + 1) |
| #define SIZE_A 8 |
| #define SIZE_Ax (SIZE_Bx + SIZE_A) |
| #define SIZE_sJ (SIZE_Bx + SIZE_A) |
| |
| #define SIZE_OP 7 |
| |
| #define POS_OP 0 |
| |
| #define POS_A (POS_OP + SIZE_OP) |
| #define POS_k (POS_A + SIZE_A) |
| #define POS_B (POS_k + 1) |
| #define POS_vB (POS_k + 1) |
| #define POS_C (POS_B + SIZE_B) |
| #define POS_vC (POS_vB + SIZE_vB) |
| |
| #define POS_Bx POS_k |
| |
| #define POS_Ax POS_A |
| |
| #define POS_sJ POS_A |
| |
| |
| /* |
| ** limits for opcode arguments. |
| ** we use (signed) 'int' to manipulate most arguments, |
| ** so they must fit in ints. |
| */ |
| |
| /* |
| ** Check whether type 'int' has at least 'b' + 1 bits. |
| ** 'b' < 32; +1 for the sign bit. |
| */ |
| #define L_INTHASBITS(b) ((UINT_MAX >> (b)) >= 1) |
| |
| |
| #if L_INTHASBITS(SIZE_Bx) |
| #define MAXARG_Bx ((1<<SIZE_Bx)-1) |
| #else |
| #define MAXARG_Bx INT_MAX |
| #endif |
| |
| #define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ |
| |
| |
| #if L_INTHASBITS(SIZE_Ax) |
| #define MAXARG_Ax ((1<<SIZE_Ax)-1) |
| #else |
| #define MAXARG_Ax INT_MAX |
| #endif |
| |
| #if L_INTHASBITS(SIZE_sJ) |
| #define MAXARG_sJ ((1 << SIZE_sJ) - 1) |
| #else |
| #define MAXARG_sJ INT_MAX |
| #endif |
| |
| #define OFFSET_sJ (MAXARG_sJ >> 1) |
| |
| |
| #define MAXARG_A ((1<<SIZE_A)-1) |
| #define MAXARG_B ((1<<SIZE_B)-1) |
| #define MAXARG_vB ((1<<SIZE_vB)-1) |
| #define MAXARG_C ((1<<SIZE_C)-1) |
| #define MAXARG_vC ((1<<SIZE_vC)-1) |
| #define OFFSET_sC (MAXARG_C >> 1) |
| |
| #define int2sC(i) ((i) + OFFSET_sC) |
| #define sC2int(i) ((i) - OFFSET_sC) |
| |
| |
| /* creates a mask with 'n' 1 bits at position 'p' */ |
| #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) |
| |
| /* creates a mask with 'n' 0 bits at position 'p' */ |
| #define MASK0(n,p) (~MASK1(n,p)) |
| |
| /* |
| ** the following macros help to manipulate instructions |
| */ |
| |
| #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) |
| #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ |
| ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) |
| |
| #define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m) |
| |
| |
| #define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0))) |
| #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ |
| ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) |
| |
| #define GETARG_A(i) getarg(i, POS_A, SIZE_A) |
| #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) |
| |
| #define GETARG_B(i) \ |
| check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B)) |
| #define GETARG_vB(i) \ |
| check_exp(checkopm(i, ivABC), getarg(i, POS_vB, SIZE_vB)) |
| #define GETARG_sB(i) sC2int(GETARG_B(i)) |
| #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) |
| #define SETARG_vB(i,v) setarg(i, v, POS_vB, SIZE_vB) |
| |
| #define GETARG_C(i) \ |
| check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C)) |
| #define GETARG_vC(i) \ |
| check_exp(checkopm(i, ivABC), getarg(i, POS_vC, SIZE_vC)) |
| #define GETARG_sC(i) sC2int(GETARG_C(i)) |
| #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) |
| #define SETARG_vC(i,v) setarg(i, v, POS_vC, SIZE_vC) |
| |
| #define TESTARG_k(i) (cast_int(((i) & (1u << POS_k)))) |
| #define GETARG_k(i) getarg(i, POS_k, 1) |
| #define SETARG_k(i,v) setarg(i, v, POS_k, 1) |
| |
| #define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx)) |
| #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) |
| |
| #define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax)) |
| #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) |
| |
| #define GETARG_sBx(i) \ |
| check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx) |
| #define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx)) |
| |
| #define GETARG_sJ(i) \ |
| check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ) |
| #define SETARG_sJ(i,j) \ |
| setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ) |
| |
| |
| #define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \ |
| | (cast(Instruction, a)<<POS_A) \ |
| | (cast(Instruction, b)<<POS_B) \ |
| | (cast(Instruction, c)<<POS_C) \ |
| | (cast(Instruction, k)<<POS_k)) |
| |
| #define CREATE_vABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \ |
| | (cast(Instruction, a)<<POS_A) \ |
| | (cast(Instruction, b)<<POS_vB) \ |
| | (cast(Instruction, c)<<POS_vC) \ |
| | (cast(Instruction, k)<<POS_k)) |
| |
| #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ |
| | (cast(Instruction, a)<<POS_A) \ |
| | (cast(Instruction, bc)<<POS_Bx)) |
| |
| #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ |
| | (cast(Instruction, a)<<POS_Ax)) |
| |
| #define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \ |
| | (cast(Instruction, j) << POS_sJ) \ |
| | (cast(Instruction, k) << POS_k)) |
| |
| |
| #if !defined(MAXINDEXRK) /* (for debugging only) */ |
| #define MAXINDEXRK MAXARG_B |
| #endif |
| |
| |
| /* |
| ** Maximum size for the stack of a Lua function. It must fit in 8 bits. |
| ** The highest valid register is one less than this value. |
| */ |
| #define MAX_FSTACK MAXARG_A |
| |
| /* |
| ** Invalid register (one more than last valid register). |
| */ |
| #define NO_REG MAX_FSTACK |
| |
| |
| |
| /* |
| ** R[x] - register |
| ** K[x] - constant (in constant table) |
| ** RK(x) == if k(i) then K[x] else R[x] |
| */ |
| |
| |
| /* |
| ** Grep "ORDER OP" if you change these enums. Opcodes marked with a (*) |
| ** has extra descriptions in the notes after the enumeration. |
| */ |
| |
| typedef enum { |
| /*---------------------------------------------------------------------- |
| name args description |
| ------------------------------------------------------------------------*/ |
| OP_MOVE,/* A B R[A] := R[B] */ |
| OP_LOADI,/* A sBx R[A] := sBx */ |
| OP_LOADF,/* A sBx R[A] := (lua_Number)sBx */ |
| OP_LOADK,/* A Bx R[A] := K[Bx] */ |
| OP_LOADKX,/* A R[A] := K[extra arg] */ |
| OP_LOADFALSE,/* A R[A] := false */ |
| OP_LFALSESKIP,/*A R[A] := false; pc++ (*) */ |
| OP_LOADTRUE,/* A R[A] := true */ |
| OP_LOADNIL,/* A B R[A], R[A+1], ..., R[A+B] := nil */ |
| OP_GETUPVAL,/* A B R[A] := UpValue[B] */ |
| OP_SETUPVAL,/* A B UpValue[B] := R[A] */ |
| |
| OP_GETTABUP,/* A B C R[A] := UpValue[B][K[C]:shortstring] */ |
| OP_GETTABLE,/* A B C R[A] := R[B][R[C]] */ |
| OP_GETI,/* A B C R[A] := R[B][C] */ |
| OP_GETFIELD,/* A B C R[A] := R[B][K[C]:shortstring] */ |
| |
| OP_SETTABUP,/* A B C UpValue[A][K[B]:shortstring] := RK(C) */ |
| OP_SETTABLE,/* A B C R[A][R[B]] := RK(C) */ |
| OP_SETI,/* A B C R[A][B] := RK(C) */ |
| OP_SETFIELD,/* A B C R[A][K[B]:shortstring] := RK(C) */ |
| |
| OP_NEWTABLE,/* A B C k R[A] := {} */ |
| |
| OP_SELF,/* A B C R[A+1] := R[B]; R[A] := R[B][RK(C):string] */ |
| |
| OP_ADDI,/* A B sC R[A] := R[B] + sC */ |
| |
| OP_ADDK,/* A B C R[A] := R[B] + K[C]:number */ |
| OP_SUBK,/* A B C R[A] := R[B] - K[C]:number */ |
| OP_MULK,/* A B C R[A] := R[B] * K[C]:number */ |
| OP_MODK,/* A B C R[A] := R[B] % K[C]:number */ |
| OP_POWK,/* A B C R[A] := R[B] ^ K[C]:number */ |
| OP_DIVK,/* A B C R[A] := R[B] / K[C]:number */ |
| OP_IDIVK,/* A B C R[A] := R[B] // K[C]:number */ |
| |
| OP_BANDK,/* A B C R[A] := R[B] & K[C]:integer */ |
| OP_BORK,/* A B C R[A] := R[B] | K[C]:integer */ |
| OP_BXORK,/* A B C R[A] := R[B] ~ K[C]:integer */ |
| |
| OP_SHRI,/* A B sC R[A] := R[B] >> sC */ |
| OP_SHLI,/* A B sC R[A] := sC << R[B] */ |
| |
| OP_ADD,/* A B C R[A] := R[B] + R[C] */ |
| OP_SUB,/* A B C R[A] := R[B] - R[C] */ |
| OP_MUL,/* A B C R[A] := R[B] * R[C] */ |
| OP_MOD,/* A B C R[A] := R[B] % R[C] */ |
| OP_POW,/* A B C R[A] := R[B] ^ R[C] */ |
| OP_DIV,/* A B C R[A] := R[B] / R[C] */ |
| OP_IDIV,/* A B C R[A] := R[B] // R[C] */ |
| |
| OP_BAND,/* A B C R[A] := R[B] & R[C] */ |
| OP_BOR,/* A B C R[A] := R[B] | R[C] */ |
| OP_BXOR,/* A B C R[A] := R[B] ~ R[C] */ |
| OP_SHL,/* A B C R[A] := R[B] << R[C] */ |
| OP_SHR,/* A B C R[A] := R[B] >> R[C] */ |
| |
| OP_MMBIN,/* A B C call C metamethod over R[A] and R[B] (*) */ |
| OP_MMBINI,/* A sB C k call C metamethod over R[A] and sB */ |
| OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */ |
| |
| OP_UNM,/* A B R[A] := -R[B] */ |
| OP_BNOT,/* A B R[A] := ~R[B] */ |
| OP_NOT,/* A B R[A] := not R[B] */ |
| OP_LEN,/* A B R[A] := #R[B] (length operator) */ |
| |
| OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */ |
| |
| OP_CLOSE,/* A close all upvalues >= R[A] */ |
| OP_TBC,/* A mark variable A "to be closed" */ |
| OP_JMP,/* sJ pc += sJ */ |
| OP_EQ,/* A B k if ((R[A] == R[B]) ~= k) then pc++ */ |
| OP_LT,/* A B k if ((R[A] < R[B]) ~= k) then pc++ */ |
| OP_LE,/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */ |
| |
| OP_EQK,/* A B k if ((R[A] == K[B]) ~= k) then pc++ */ |
| OP_EQI,/* A sB k if ((R[A] == sB) ~= k) then pc++ */ |
| OP_LTI,/* A sB k if ((R[A] < sB) ~= k) then pc++ */ |
| OP_LEI,/* A sB k if ((R[A] <= sB) ~= k) then pc++ */ |
| OP_GTI,/* A sB k if ((R[A] > sB) ~= k) then pc++ */ |
| OP_GEI,/* A sB k if ((R[A] >= sB) ~= k) then pc++ */ |
| |
| OP_TEST,/* A k if (not R[A] == k) then pc++ */ |
| OP_TESTSET,/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] (*) */ |
| |
| OP_CALL,/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */ |
| OP_TAILCALL,/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */ |
| |
| OP_RETURN,/* A B C k return R[A], ... ,R[A+B-2] (see note) */ |
| OP_RETURN0,/* return */ |
| OP_RETURN1,/* A return R[A] */ |
| |
| OP_FORLOOP,/* A Bx update counters; if loop continues then pc-=Bx; */ |
| OP_FORPREP,/* A Bx <check values and prepare counters>; |
| if not to run then pc+=Bx+1; */ |
| |
| OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */ |
| OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */ |
| OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */ |
| |
| OP_SETLIST,/* A vB vC k R[A][vC+i] := R[A+i], 1 <= i <= vB */ |
| |
| OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */ |
| |
| OP_VARARG,/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */ |
| |
| OP_VARARGPREP,/*A (adjust vararg parameters) */ |
| |
| OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ |
| } OpCode; |
| |
| |
| #define NUM_OPCODES ((int)(OP_EXTRAARG) + 1) |
| |
| |
| |
| /*=========================================================================== |
| Notes: |
| |
| (*) Opcode OP_LFALSESKIP is used to convert a condition to a boolean |
| value, in a code equivalent to (not cond ? false : true). (It |
| produces false and skips the next instruction producing true.) |
| |
| (*) Opcodes OP_MMBIN and variants follow each arithmetic and |
| bitwise opcode. If the operation succeeds, it skips this next |
| opcode. Otherwise, this opcode calls the corresponding metamethod. |
| |
| (*) Opcode OP_TESTSET is used in short-circuit expressions that need |
| both to jump and to produce a value, such as (a = b or c). |
| |
| (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then |
| 'top' is set to last_result+1, so next open instruction (OP_CALL, |
| OP_RETURN*, OP_SETLIST) may use 'top'. |
| |
| (*) In OP_VARARG, if (C == 0) then use actual number of varargs and |
| set top (like in OP_CALL with C == 0). |
| |
| (*) In OP_RETURN, if (B == 0) then return up to 'top'. |
| |
| (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always |
| OP_EXTRAARG. |
| |
| (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then |
| real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the |
| bits of C). |
| |
| (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a |
| power of 2) plus 1, or zero for size zero. If not k, the array size |
| is C. Otherwise, the array size is EXTRAARG _ C. |
| |
| (*) For comparisons, k specifies what condition the test should accept |
| (true or false). |
| |
| (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped |
| (the constant is the first operand). |
| |
| (*) All 'skips' (pc++) assume that next instruction is a jump. |
| |
| (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the |
| function builds upvalues, which may need to be closed. C > 0 means |
| the function is vararg, so that its 'func' must be corrected before |
| returning; in this case, (C - 1) is its number of fixed parameters. |
| |
| (*) In comparisons with an immediate operand, C signals whether the |
| original operand was a float. (It must be corrected in case of |
| metamethods.) |
| |
| ===========================================================================*/ |
| |
| |
| /* |
| ** masks for instruction properties. The format is: |
| ** bits 0-2: op mode |
| ** bit 3: instruction set register A |
| ** bit 4: operator is a test (next instruction must be a jump) |
| ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0) |
| ** bit 6: instruction sets 'L->top' for next instruction (when C == 0) |
| ** bit 7: instruction is an MM instruction (call a metamethod) |
| */ |
| |
| LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];) |
| |
| #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7)) |
| #define testAMode(m) (luaP_opmodes[m] & (1 << 3)) |
| #define testTMode(m) (luaP_opmodes[m] & (1 << 4)) |
| #define testITMode(m) (luaP_opmodes[m] & (1 << 5)) |
| #define testOTMode(m) (luaP_opmodes[m] & (1 << 6)) |
| #define testMMMode(m) (luaP_opmodes[m] & (1 << 7)) |
| |
| |
| LUAI_FUNC int luaP_isOT (Instruction i); |
| LUAI_FUNC int luaP_isIT (Instruction i); |
| |
| |
| #endif |