| /* |
| ** $Id: lobject.c $ |
| ** Some generic functions over Lua objects |
| ** See Copyright Notice in lua.h |
| */ |
| |
| #define lobject_c |
| #define LUA_CORE |
| |
| #include "lprefix.h" |
| |
| |
| #include <float.h> |
| #include <locale.h> |
| #include <math.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "lua.h" |
| |
| #include "lctype.h" |
| #include "ldebug.h" |
| #include "ldo.h" |
| #include "lmem.h" |
| #include "lobject.h" |
| #include "lstate.h" |
| #include "lstring.h" |
| #include "lvm.h" |
| |
| |
| /* |
| ** Computes ceil(log2(x)) |
| */ |
| lu_byte luaO_ceillog2 (unsigned int x) { |
| static const lu_byte log_2[256] = { /* log_2[i - 1] = ceil(log2(i)) */ |
| 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, |
| 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, |
| 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, |
| 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, |
| 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
| 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
| 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
| 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 |
| }; |
| int l = 0; |
| x--; |
| while (x >= 256) { l += 8; x >>= 8; } |
| return cast_byte(l + log_2[x]); |
| } |
| |
| /* |
| ** Encodes 'p'% as a floating-point byte, represented as (eeeexxxx). |
| ** The exponent is represented using excess-7. Mimicking IEEE 754, the |
| ** representation normalizes the number when possible, assuming an extra |
| ** 1 before the mantissa (xxxx) and adding one to the exponent (eeee) |
| ** to signal that. So, the real value is (1xxxx) * 2^(eeee - 7 - 1) if |
| ** eeee != 0, and (xxxx) * 2^-7 otherwise (subnormal numbers). |
| */ |
| lu_byte luaO_codeparam (unsigned int p) { |
| if (p >= (cast(lu_mem, 0x1F) << (0xF - 7 - 1)) * 100u) /* overflow? */ |
| return 0xFF; /* return maximum value */ |
| else { |
| p = (cast(l_uint32, p) * 128 + 99) / 100; /* round up the division */ |
| if (p < 0x10) { /* subnormal number? */ |
| /* exponent bits are already zero; nothing else to do */ |
| return cast_byte(p); |
| } |
| else { /* p >= 0x10 implies ceil(log2(p + 1)) >= 5 */ |
| /* preserve 5 bits in 'p' */ |
| unsigned log = luaO_ceillog2(p + 1) - 5u; |
| return cast_byte(((p >> log) - 0x10) | ((log + 1) << 4)); |
| } |
| } |
| } |
| |
| |
| /* |
| ** Computes 'p' times 'x', where 'p' is a floating-point byte. Roughly, |
| ** we have to multiply 'x' by the mantissa and then shift accordingly to |
| ** the exponent. If the exponent is positive, both the multiplication |
| ** and the shift increase 'x', so we have to care only about overflows. |
| ** For negative exponents, however, multiplying before the shift keeps |
| ** more significant bits, as long as the multiplication does not |
| ** overflow, so we check which order is best. |
| */ |
| l_mem luaO_applyparam (lu_byte p, l_mem x) { |
| unsigned int m = p & 0xF; /* mantissa */ |
| int e = (p >> 4); /* exponent */ |
| if (e > 0) { /* normalized? */ |
| e--; /* correct exponent */ |
| m += 0x10; /* correct mantissa; maximum value is 0x1F */ |
| } |
| e -= 7; /* correct excess-7 */ |
| if (e >= 0) { |
| if (x < (MAX_LMEM / 0x1F) >> e) /* no overflow? */ |
| return (x * m) << e; /* order doesn't matter here */ |
| else /* real overflow */ |
| return MAX_LMEM; |
| } |
| else { /* negative exponent */ |
| e = -e; |
| if (x < MAX_LMEM / 0x1F) /* multiplication cannot overflow? */ |
| return (x * m) >> e; /* multiplying first gives more precision */ |
| else if ((x >> e) < MAX_LMEM / 0x1F) /* cannot overflow after shift? */ |
| return (x >> e) * m; |
| else /* real overflow */ |
| return MAX_LMEM; |
| } |
| } |
| |
| |
| static lua_Integer intarith (lua_State *L, int op, lua_Integer v1, |
| lua_Integer v2) { |
| switch (op) { |
| case LUA_OPADD: return intop(+, v1, v2); |
| case LUA_OPSUB:return intop(-, v1, v2); |
| case LUA_OPMUL:return intop(*, v1, v2); |
| case LUA_OPMOD: return luaV_mod(L, v1, v2); |
| case LUA_OPIDIV: return luaV_idiv(L, v1, v2); |
| case LUA_OPBAND: return intop(&, v1, v2); |
| case LUA_OPBOR: return intop(|, v1, v2); |
| case LUA_OPBXOR: return intop(^, v1, v2); |
| case LUA_OPSHL: return luaV_shiftl(v1, v2); |
| case LUA_OPSHR: return luaV_shiftr(v1, v2); |
| case LUA_OPUNM: return intop(-, 0, v1); |
| case LUA_OPBNOT: return intop(^, ~l_castS2U(0), v1); |
| default: lua_assert(0); return 0; |
| } |
| } |
| |
| |
| static lua_Number numarith (lua_State *L, int op, lua_Number v1, |
| lua_Number v2) { |
| switch (op) { |
| case LUA_OPADD: return luai_numadd(L, v1, v2); |
| case LUA_OPSUB: return luai_numsub(L, v1, v2); |
| case LUA_OPMUL: return luai_nummul(L, v1, v2); |
| case LUA_OPDIV: return luai_numdiv(L, v1, v2); |
| case LUA_OPPOW: return luai_numpow(L, v1, v2); |
| case LUA_OPIDIV: return luai_numidiv(L, v1, v2); |
| case LUA_OPUNM: return luai_numunm(L, v1); |
| case LUA_OPMOD: return luaV_modf(L, v1, v2); |
| default: lua_assert(0); return 0; |
| } |
| } |
| |
| |
| int luaO_rawarith (lua_State *L, int op, const TValue *p1, const TValue *p2, |
| TValue *res) { |
| switch (op) { |
| case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: |
| case LUA_OPSHL: case LUA_OPSHR: |
| case LUA_OPBNOT: { /* operate only on integers */ |
| lua_Integer i1; lua_Integer i2; |
| if (tointegerns(p1, &i1) && tointegerns(p2, &i2)) { |
| setivalue(res, intarith(L, op, i1, i2)); |
| return 1; |
| } |
| else return 0; /* fail */ |
| } |
| case LUA_OPDIV: case LUA_OPPOW: { /* operate only on floats */ |
| lua_Number n1; lua_Number n2; |
| if (tonumberns(p1, n1) && tonumberns(p2, n2)) { |
| setfltvalue(res, numarith(L, op, n1, n2)); |
| return 1; |
| } |
| else return 0; /* fail */ |
| } |
| default: { /* other operations */ |
| lua_Number n1; lua_Number n2; |
| if (ttisinteger(p1) && ttisinteger(p2)) { |
| setivalue(res, intarith(L, op, ivalue(p1), ivalue(p2))); |
| return 1; |
| } |
| else if (tonumberns(p1, n1) && tonumberns(p2, n2)) { |
| setfltvalue(res, numarith(L, op, n1, n2)); |
| return 1; |
| } |
| else return 0; /* fail */ |
| } |
| } |
| } |
| |
| |
| void luaO_arith (lua_State *L, int op, const TValue *p1, const TValue *p2, |
| StkId res) { |
| if (!luaO_rawarith(L, op, p1, p2, s2v(res))) { |
| /* could not perform raw operation; try metamethod */ |
| luaT_trybinTM(L, p1, p2, res, cast(TMS, (op - LUA_OPADD) + TM_ADD)); |
| } |
| } |
| |
| |
| lu_byte luaO_hexavalue (int c) { |
| if (lisdigit(c)) return cast_byte(c - '0'); |
| else return cast_byte((ltolower(c) - 'a') + 10); |
| } |
| |
| |
| static int isneg (const char **s) { |
| if (**s == '-') { (*s)++; return 1; } |
| else if (**s == '+') (*s)++; |
| return 0; |
| } |
| |
| |
| |
| /* |
| ** {================================================================== |
| ** Lua's implementation for 'lua_strx2number' |
| ** =================================================================== |
| */ |
| |
| #if !defined(lua_strx2number) |
| |
| /* maximum number of significant digits to read (to avoid overflows |
| even with single floats) */ |
| #define MAXSIGDIG 30 |
| |
| /* |
| ** convert a hexadecimal numeric string to a number, following |
| ** C99 specification for 'strtod' |
| */ |
| static lua_Number lua_strx2number (const char *s, char **endptr) { |
| int dot = lua_getlocaledecpoint(); |
| lua_Number r = l_mathop(0.0); /* result (accumulator) */ |
| int sigdig = 0; /* number of significant digits */ |
| int nosigdig = 0; /* number of non-significant digits */ |
| int e = 0; /* exponent correction */ |
| int neg; /* 1 if number is negative */ |
| int hasdot = 0; /* true after seen a dot */ |
| *endptr = cast_charp(s); /* nothing is valid yet */ |
| while (lisspace(cast_uchar(*s))) s++; /* skip initial spaces */ |
| neg = isneg(&s); /* check sign */ |
| if (!(*s == '0' && (*(s + 1) == 'x' || *(s + 1) == 'X'))) /* check '0x' */ |
| return l_mathop(0.0); /* invalid format (no '0x') */ |
| for (s += 2; ; s++) { /* skip '0x' and read numeral */ |
| if (*s == dot) { |
| if (hasdot) break; /* second dot? stop loop */ |
| else hasdot = 1; |
| } |
| else if (lisxdigit(cast_uchar(*s))) { |
| if (sigdig == 0 && *s == '0') /* non-significant digit (zero)? */ |
| nosigdig++; |
| else if (++sigdig <= MAXSIGDIG) /* can read it without overflow? */ |
| r = (r * l_mathop(16.0)) + luaO_hexavalue(*s); |
| else e++; /* too many digits; ignore, but still count for exponent */ |
| if (hasdot) e--; /* decimal digit? correct exponent */ |
| } |
| else break; /* neither a dot nor a digit */ |
| } |
| if (nosigdig + sigdig == 0) /* no digits? */ |
| return l_mathop(0.0); /* invalid format */ |
| *endptr = cast_charp(s); /* valid up to here */ |
| e *= 4; /* each digit multiplies/divides value by 2^4 */ |
| if (*s == 'p' || *s == 'P') { /* exponent part? */ |
| int exp1 = 0; /* exponent value */ |
| int neg1; /* exponent sign */ |
| s++; /* skip 'p' */ |
| neg1 = isneg(&s); /* sign */ |
| if (!lisdigit(cast_uchar(*s))) |
| return l_mathop(0.0); /* invalid; must have at least one digit */ |
| while (lisdigit(cast_uchar(*s))) /* read exponent */ |
| exp1 = exp1 * 10 + *(s++) - '0'; |
| if (neg1) exp1 = -exp1; |
| e += exp1; |
| *endptr = cast_charp(s); /* valid up to here */ |
| } |
| if (neg) r = -r; |
| return l_mathop(ldexp)(r, e); |
| } |
| |
| #endif |
| /* }====================================================== */ |
| |
| |
| /* maximum length of a numeral to be converted to a number */ |
| #if !defined (L_MAXLENNUM) |
| #define L_MAXLENNUM 200 |
| #endif |
| |
| /* |
| ** Convert string 's' to a Lua number (put in 'result'). Return NULL on |
| ** fail or the address of the ending '\0' on success. ('mode' == 'x') |
| ** means a hexadecimal numeral. |
| */ |
| static const char *l_str2dloc (const char *s, lua_Number *result, int mode) { |
| char *endptr; |
| *result = (mode == 'x') ? lua_strx2number(s, &endptr) /* try to convert */ |
| : lua_str2number(s, &endptr); |
| if (endptr == s) return NULL; /* nothing recognized? */ |
| while (lisspace(cast_uchar(*endptr))) endptr++; /* skip trailing spaces */ |
| return (*endptr == '\0') ? endptr : NULL; /* OK iff no trailing chars */ |
| } |
| |
| |
| /* |
| ** Convert string 's' to a Lua number (put in 'result') handling the |
| ** current locale. |
| ** This function accepts both the current locale or a dot as the radix |
| ** mark. If the conversion fails, it may mean number has a dot but |
| ** locale accepts something else. In that case, the code copies 's' |
| ** to a buffer (because 's' is read-only), changes the dot to the |
| ** current locale radix mark, and tries to convert again. |
| ** The variable 'mode' checks for special characters in the string: |
| ** - 'n' means 'inf' or 'nan' (which should be rejected) |
| ** - 'x' means a hexadecimal numeral |
| ** - '.' just optimizes the search for the common case (no special chars) |
| */ |
| static const char *l_str2d (const char *s, lua_Number *result) { |
| const char *endptr; |
| const char *pmode = strpbrk(s, ".xXnN"); /* look for special chars */ |
| int mode = pmode ? ltolower(cast_uchar(*pmode)) : 0; |
| if (mode == 'n') /* reject 'inf' and 'nan' */ |
| return NULL; |
| endptr = l_str2dloc(s, result, mode); /* try to convert */ |
| if (endptr == NULL) { /* failed? may be a different locale */ |
| char buff[L_MAXLENNUM + 1]; |
| const char *pdot = strchr(s, '.'); |
| if (pdot == NULL || strlen(s) > L_MAXLENNUM) |
| return NULL; /* string too long or no dot; fail */ |
| strcpy(buff, s); /* copy string to buffer */ |
| buff[pdot - s] = lua_getlocaledecpoint(); /* correct decimal point */ |
| endptr = l_str2dloc(buff, result, mode); /* try again */ |
| if (endptr != NULL) |
| endptr = s + (endptr - buff); /* make relative to 's' */ |
| } |
| return endptr; |
| } |
| |
| |
| #define MAXBY10 cast(lua_Unsigned, LUA_MAXINTEGER / 10) |
| #define MAXLASTD cast_int(LUA_MAXINTEGER % 10) |
| |
| static const char *l_str2int (const char *s, lua_Integer *result) { |
| lua_Unsigned a = 0; |
| int empty = 1; |
| int neg; |
| while (lisspace(cast_uchar(*s))) s++; /* skip initial spaces */ |
| neg = isneg(&s); |
| if (s[0] == '0' && |
| (s[1] == 'x' || s[1] == 'X')) { /* hex? */ |
| s += 2; /* skip '0x' */ |
| for (; lisxdigit(cast_uchar(*s)); s++) { |
| a = a * 16 + luaO_hexavalue(*s); |
| empty = 0; |
| } |
| } |
| else { /* decimal */ |
| for (; lisdigit(cast_uchar(*s)); s++) { |
| int d = *s - '0'; |
| if (a >= MAXBY10 && (a > MAXBY10 || d > MAXLASTD + neg)) /* overflow? */ |
| return NULL; /* do not accept it (as integer) */ |
| a = a * 10 + cast_uint(d); |
| empty = 0; |
| } |
| } |
| while (lisspace(cast_uchar(*s))) s++; /* skip trailing spaces */ |
| if (empty || *s != '\0') return NULL; /* something wrong in the numeral */ |
| else { |
| *result = l_castU2S((neg) ? 0u - a : a); |
| return s; |
| } |
| } |
| |
| |
| size_t luaO_str2num (const char *s, TValue *o) { |
| lua_Integer i; lua_Number n; |
| const char *e; |
| if ((e = l_str2int(s, &i)) != NULL) { /* try as an integer */ |
| setivalue(o, i); |
| } |
| else if ((e = l_str2d(s, &n)) != NULL) { /* else try as a float */ |
| setfltvalue(o, n); |
| } |
| else |
| return 0; /* conversion failed */ |
| return ct_diff2sz(e - s) + 1; /* success; return string size */ |
| } |
| |
| |
| int luaO_utf8esc (char *buff, unsigned long x) { |
| int n = 1; /* number of bytes put in buffer (backwards) */ |
| lua_assert(x <= 0x7FFFFFFFu); |
| if (x < 0x80) /* ascii? */ |
| buff[UTF8BUFFSZ - 1] = cast_char(x); |
| else { /* need continuation bytes */ |
| unsigned int mfb = 0x3f; /* maximum that fits in first byte */ |
| do { /* add continuation bytes */ |
| buff[UTF8BUFFSZ - (n++)] = cast_char(0x80 | (x & 0x3f)); |
| x >>= 6; /* remove added bits */ |
| mfb >>= 1; /* now there is one less bit available in first byte */ |
| } while (x > mfb); /* still needs continuation byte? */ |
| buff[UTF8BUFFSZ - n] = cast_char((~mfb << 1) | x); /* add first byte */ |
| } |
| return n; |
| } |
| |
| |
| /* |
| ** The size of the buffer for the conversion of a number to a string |
| ** 'LUA_N2SBUFFSZ' must be enough to accommodate both LUA_INTEGER_FMT |
| ** and LUA_NUMBER_FMT. For a long long int, this is 19 digits plus a |
| ** sign and a final '\0', adding to 21. For a long double, it can go to |
| ** a sign, the dot, an exponent letter, an exponent sign, 4 exponent |
| ** digits, the final '\0', plus the significant digits, which are |
| ** approximately the *_DIG attribute. |
| */ |
| #if LUA_N2SBUFFSZ < (20 + l_floatatt(DIG)) |
| #error "invalid value for LUA_N2SBUFFSZ" |
| #endif |
| |
| |
| /* |
| ** Convert a float to a string, adding it to a buffer. First try with |
| ** a not too large number of digits, to avoid noise (for instance, |
| ** 1.1 going to "1.1000000000000001"). If that lose precision, so |
| ** that reading the result back gives a different number, then do the |
| ** conversion again with extra precision. Moreover, if the numeral looks |
| ** like an integer (without a decimal point or an exponent), add ".0" to |
| ** its end. |
| */ |
| static int tostringbuffFloat (lua_Number n, char *buff) { |
| /* first conversion */ |
| int len = l_sprintf(buff, LUA_N2SBUFFSZ, LUA_NUMBER_FMT, |
| (LUAI_UACNUMBER)n); |
| lua_Number check = lua_str2number(buff, NULL); /* read it back */ |
| if (check != n) { /* not enough precision? */ |
| /* convert again with more precision */ |
| len = l_sprintf(buff, LUA_N2SBUFFSZ, LUA_NUMBER_FMT_N, |
| (LUAI_UACNUMBER)n); |
| } |
| /* looks like an integer? */ |
| if (buff[strspn(buff, "-0123456789")] == '\0') { |
| buff[len++] = lua_getlocaledecpoint(); |
| buff[len++] = '0'; /* adds '.0' to result */ |
| } |
| return len; |
| } |
| |
| |
| /* |
| ** Convert a number object to a string, adding it to a buffer. |
| */ |
| unsigned luaO_tostringbuff (const TValue *obj, char *buff) { |
| int len; |
| lua_assert(ttisnumber(obj)); |
| if (ttisinteger(obj)) |
| len = lua_integer2str(buff, LUA_N2SBUFFSZ, ivalue(obj)); |
| else |
| len = tostringbuffFloat(fltvalue(obj), buff); |
| lua_assert(len < LUA_N2SBUFFSZ); |
| return cast_uint(len); |
| } |
| |
| |
| /* |
| ** Convert a number object to a Lua string, replacing the value at 'obj' |
| */ |
| void luaO_tostring (lua_State *L, TValue *obj) { |
| char buff[LUA_N2SBUFFSZ]; |
| unsigned len = luaO_tostringbuff(obj, buff); |
| setsvalue(L, obj, luaS_newlstr(L, buff, len)); |
| } |
| |
| |
| |
| |
| /* |
| ** {================================================================== |
| ** 'luaO_pushvfstring' |
| ** =================================================================== |
| */ |
| |
| /* |
| ** Size for buffer space used by 'luaO_pushvfstring'. It should be |
| ** (LUA_IDSIZE + LUA_N2SBUFFSZ) + a minimal space for basic messages, |
| ** so that 'luaG_addinfo' can work directly on the static buffer. |
| */ |
| #define BUFVFS cast_uint(LUA_IDSIZE + LUA_N2SBUFFSZ + 95) |
| |
| /* |
| ** Buffer used by 'luaO_pushvfstring'. 'err' signals an error while |
| ** building result (memory error [1] or buffer overflow [2]). |
| */ |
| typedef struct BuffFS { |
| lua_State *L; |
| char *b; |
| size_t buffsize; |
| size_t blen; /* length of string in 'buff' */ |
| int err; |
| char space[BUFVFS]; /* initial buffer */ |
| } BuffFS; |
| |
| |
| static void initbuff (lua_State *L, BuffFS *buff) { |
| buff->L = L; |
| buff->b = buff->space; |
| buff->buffsize = sizeof(buff->space); |
| buff->blen = 0; |
| buff->err = 0; |
| } |
| |
| |
| /* |
| ** Push final result from 'luaO_pushvfstring'. This function may raise |
| ** errors explicitly or through memory errors, so it must run protected. |
| */ |
| static void pushbuff (lua_State *L, void *ud) { |
| BuffFS *buff = cast(BuffFS*, ud); |
| switch (buff->err) { |
| case 1: |
| luaD_throw(L, LUA_ERRMEM); |
| break; |
| case 2: /* length overflow: Add "..." at the end of result */ |
| if (buff->buffsize - buff->blen < 3) |
| strcpy(buff->b + buff->blen - 3, "..."); /* 'blen' must be > 3 */ |
| else { /* there is enough space left for the "..." */ |
| strcpy(buff->b + buff->blen, "..."); |
| buff->blen += 3; |
| } |
| /* FALLTHROUGH */ |
| default: { /* no errors */ |
| TString *ts = luaS_newlstr(L, buff->b, buff->blen); |
| setsvalue2s(L, L->top.p, ts); |
| L->top.p++; |
| } |
| } |
| } |
| |
| |
| static const char *clearbuff (BuffFS *buff) { |
| lua_State *L = buff->L; |
| const char *res; |
| if (luaD_rawrunprotected(L, pushbuff, buff) != LUA_OK) /* errors? */ |
| res = NULL; /* error message is on the top of the stack */ |
| else |
| res = getstr(tsvalue(s2v(L->top.p - 1))); |
| if (buff->b != buff->space) /* using dynamic buffer? */ |
| luaM_freearray(L, buff->b, buff->buffsize); /* free it */ |
| return res; |
| } |
| |
| |
| static void addstr2buff (BuffFS *buff, const char *str, size_t slen) { |
| size_t left = buff->buffsize - buff->blen; /* space left in the buffer */ |
| if (buff->err) /* do nothing else after an error */ |
| return; |
| if (slen > left) { /* new string doesn't fit into current buffer? */ |
| if (slen > ((MAX_SIZE/2) - buff->blen)) { /* overflow? */ |
| memcpy(buff->b + buff->blen, str, left); /* copy what it can */ |
| buff->blen = buff->buffsize; |
| buff->err = 2; /* doesn't add anything else */ |
| return; |
| } |
| else { |
| size_t newsize = buff->buffsize + slen; /* limited to MAX_SIZE/2 */ |
| char *newb = |
| (buff->b == buff->space) /* still using static space? */ |
| ? luaM_reallocvector(buff->L, NULL, 0, newsize, char) |
| : luaM_reallocvector(buff->L, buff->b, buff->buffsize, newsize, |
| char); |
| if (newb == NULL) { /* allocation error? */ |
| buff->err = 1; /* signal a memory error */ |
| return; |
| } |
| if (buff->b == buff->space) /* new buffer (not reallocated)? */ |
| memcpy(newb, buff->b, buff->blen); /* copy previous content */ |
| buff->b = newb; /* set new (larger) buffer... */ |
| buff->buffsize = newsize; /* ...and its new size */ |
| } |
| } |
| memcpy(buff->b + buff->blen, str, slen); /* copy new content */ |
| buff->blen += slen; |
| } |
| |
| |
| /* |
| ** Add a numeral to the buffer. |
| */ |
| static void addnum2buff (BuffFS *buff, TValue *num) { |
| char numbuff[LUA_N2SBUFFSZ]; |
| unsigned len = luaO_tostringbuff(num, numbuff); |
| addstr2buff(buff, numbuff, len); |
| } |
| |
| |
| /* |
| ** this function handles only '%d', '%c', '%f', '%p', '%s', and '%%' |
| conventional formats, plus Lua-specific '%I' and '%U' |
| */ |
| const char *luaO_pushvfstring (lua_State *L, const char *fmt, va_list argp) { |
| BuffFS buff; /* holds last part of the result */ |
| const char *e; /* points to next '%' */ |
| initbuff(L, &buff); |
| while ((e = strchr(fmt, '%')) != NULL) { |
| addstr2buff(&buff, fmt, ct_diff2sz(e - fmt)); /* add 'fmt' up to '%' */ |
| switch (*(e + 1)) { /* conversion specifier */ |
| case 's': { /* zero-terminated string */ |
| const char *s = va_arg(argp, char *); |
| if (s == NULL) s = "(null)"; |
| addstr2buff(&buff, s, strlen(s)); |
| break; |
| } |
| case 'c': { /* an 'int' as a character */ |
| char c = cast_char(va_arg(argp, int)); |
| addstr2buff(&buff, &c, sizeof(char)); |
| break; |
| } |
| case 'd': { /* an 'int' */ |
| TValue num; |
| setivalue(&num, va_arg(argp, int)); |
| addnum2buff(&buff, &num); |
| break; |
| } |
| case 'I': { /* a 'lua_Integer' */ |
| TValue num; |
| setivalue(&num, cast(lua_Integer, va_arg(argp, l_uacInt))); |
| addnum2buff(&buff, &num); |
| break; |
| } |
| case 'f': { /* a 'lua_Number' */ |
| TValue num; |
| setfltvalue(&num, cast_num(va_arg(argp, l_uacNumber))); |
| addnum2buff(&buff, &num); |
| break; |
| } |
| case 'p': { /* a pointer */ |
| char bf[LUA_N2SBUFFSZ]; /* enough space for '%p' */ |
| void *p = va_arg(argp, void *); |
| int len = lua_pointer2str(bf, LUA_N2SBUFFSZ, p); |
| addstr2buff(&buff, bf, cast_uint(len)); |
| break; |
| } |
| case 'U': { /* an 'unsigned long' as a UTF-8 sequence */ |
| char bf[UTF8BUFFSZ]; |
| int len = luaO_utf8esc(bf, va_arg(argp, unsigned long)); |
| addstr2buff(&buff, bf + UTF8BUFFSZ - len, cast_uint(len)); |
| break; |
| } |
| case '%': { |
| addstr2buff(&buff, "%", 1); |
| break; |
| } |
| default: { |
| addstr2buff(&buff, e, 2); /* keep unknown format in the result */ |
| break; |
| } |
| } |
| fmt = e + 2; /* skip '%' and the specifier */ |
| } |
| addstr2buff(&buff, fmt, strlen(fmt)); /* rest of 'fmt' */ |
| return clearbuff(&buff); /* empty buffer into a new string */ |
| } |
| |
| |
| const char *luaO_pushfstring (lua_State *L, const char *fmt, ...) { |
| const char *msg; |
| va_list argp; |
| va_start(argp, fmt); |
| msg = luaO_pushvfstring(L, fmt, argp); |
| va_end(argp); |
| if (msg == NULL) /* error? */ |
| luaD_throw(L, LUA_ERRMEM); |
| return msg; |
| } |
| |
| /* }================================================================== */ |
| |
| |
| #define RETS "..." |
| #define PRE "[string \"" |
| #define POS "\"]" |
| |
| #define addstr(a,b,l) ( memcpy(a,b,(l) * sizeof(char)), a += (l) ) |
| |
| void luaO_chunkid (char *out, const char *source, size_t srclen) { |
| size_t bufflen = LUA_IDSIZE; /* free space in buffer */ |
| if (*source == '=') { /* 'literal' source */ |
| if (srclen <= bufflen) /* small enough? */ |
| memcpy(out, source + 1, srclen * sizeof(char)); |
| else { /* truncate it */ |
| addstr(out, source + 1, bufflen - 1); |
| *out = '\0'; |
| } |
| } |
| else if (*source == '@') { /* file name */ |
| if (srclen <= bufflen) /* small enough? */ |
| memcpy(out, source + 1, srclen * sizeof(char)); |
| else { /* add '...' before rest of name */ |
| addstr(out, RETS, LL(RETS)); |
| bufflen -= LL(RETS); |
| memcpy(out, source + 1 + srclen - bufflen, bufflen * sizeof(char)); |
| } |
| } |
| else { /* string; format as [string "source"] */ |
| const char *nl = strchr(source, '\n'); /* find first new line (if any) */ |
| addstr(out, PRE, LL(PRE)); /* add prefix */ |
| bufflen -= LL(PRE RETS POS) + 1; /* save space for prefix+suffix+'\0' */ |
| if (srclen < bufflen && nl == NULL) { /* small one-line source? */ |
| addstr(out, source, srclen); /* keep it */ |
| } |
| else { |
| if (nl != NULL) |
| srclen = ct_diff2sz(nl - source); /* stop at first newline */ |
| if (srclen > bufflen) srclen = bufflen; |
| addstr(out, source, srclen); |
| addstr(out, RETS, LL(RETS)); |
| } |
| memcpy(out, POS, (LL(POS) + 1) * sizeof(char)); |
| } |
| } |
| |