| /* |
| ** $Id: lmathlib.c $ |
| ** Standard mathematical library |
| ** See Copyright Notice in lua.h |
| */ |
| |
| #define lmathlib_c |
| #define LUA_LIB |
| |
| #include "lprefix.h" |
| |
| |
| #include <float.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdlib.h> |
| #include <time.h> |
| |
| #include "lua.h" |
| |
| #include "lauxlib.h" |
| #include "lualib.h" |
| #include "llimits.h" |
| |
| |
| #undef PI |
| #define PI (l_mathop(3.141592653589793238462643383279502884)) |
| |
| |
| static int math_abs (lua_State *L) { |
| if (lua_isinteger(L, 1)) { |
| lua_Integer n = lua_tointeger(L, 1); |
| if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n); |
| lua_pushinteger(L, n); |
| } |
| else |
| lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| static int math_sin (lua_State *L) { |
| lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| static int math_cos (lua_State *L) { |
| lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| static int math_tan (lua_State *L) { |
| lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| static int math_asin (lua_State *L) { |
| lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| static int math_acos (lua_State *L) { |
| lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| static int math_atan (lua_State *L) { |
| lua_Number y = luaL_checknumber(L, 1); |
| lua_Number x = luaL_optnumber(L, 2, 1); |
| lua_pushnumber(L, l_mathop(atan2)(y, x)); |
| return 1; |
| } |
| |
| |
| static int math_toint (lua_State *L) { |
| int valid; |
| lua_Integer n = lua_tointegerx(L, 1, &valid); |
| if (l_likely(valid)) |
| lua_pushinteger(L, n); |
| else { |
| luaL_checkany(L, 1); |
| luaL_pushfail(L); /* value is not convertible to integer */ |
| } |
| return 1; |
| } |
| |
| |
| static void pushnumint (lua_State *L, lua_Number d) { |
| lua_Integer n; |
| if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */ |
| lua_pushinteger(L, n); /* result is integer */ |
| else |
| lua_pushnumber(L, d); /* result is float */ |
| } |
| |
| |
| static int math_floor (lua_State *L) { |
| if (lua_isinteger(L, 1)) |
| lua_settop(L, 1); /* integer is its own floor */ |
| else { |
| lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1)); |
| pushnumint(L, d); |
| } |
| return 1; |
| } |
| |
| |
| static int math_ceil (lua_State *L) { |
| if (lua_isinteger(L, 1)) |
| lua_settop(L, 1); /* integer is its own ceil */ |
| else { |
| lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1)); |
| pushnumint(L, d); |
| } |
| return 1; |
| } |
| |
| |
| static int math_fmod (lua_State *L) { |
| if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) { |
| lua_Integer d = lua_tointeger(L, 2); |
| if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */ |
| luaL_argcheck(L, d != 0, 2, "zero"); |
| lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */ |
| } |
| else |
| lua_pushinteger(L, lua_tointeger(L, 1) % d); |
| } |
| else |
| lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1), |
| luaL_checknumber(L, 2))); |
| return 1; |
| } |
| |
| |
| /* |
| ** next function does not use 'modf', avoiding problems with 'double*' |
| ** (which is not compatible with 'float*') when lua_Number is not |
| ** 'double'. |
| */ |
| static int math_modf (lua_State *L) { |
| if (lua_isinteger(L ,1)) { |
| lua_settop(L, 1); /* number is its own integer part */ |
| lua_pushnumber(L, 0); /* no fractional part */ |
| } |
| else { |
| lua_Number n = luaL_checknumber(L, 1); |
| /* integer part (rounds toward zero) */ |
| lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n); |
| pushnumint(L, ip); |
| /* fractional part (test needed for inf/-inf) */ |
| lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip)); |
| } |
| return 2; |
| } |
| |
| |
| static int math_sqrt (lua_State *L) { |
| lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| |
| static int math_ult (lua_State *L) { |
| lua_Integer a = luaL_checkinteger(L, 1); |
| lua_Integer b = luaL_checkinteger(L, 2); |
| lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b); |
| return 1; |
| } |
| |
| static int math_log (lua_State *L) { |
| lua_Number x = luaL_checknumber(L, 1); |
| lua_Number res; |
| if (lua_isnoneornil(L, 2)) |
| res = l_mathop(log)(x); |
| else { |
| lua_Number base = luaL_checknumber(L, 2); |
| #if !defined(LUA_USE_C89) |
| if (base == l_mathop(2.0)) |
| res = l_mathop(log2)(x); |
| else |
| #endif |
| if (base == l_mathop(10.0)) |
| res = l_mathop(log10)(x); |
| else |
| res = l_mathop(log)(x)/l_mathop(log)(base); |
| } |
| lua_pushnumber(L, res); |
| return 1; |
| } |
| |
| static int math_exp (lua_State *L) { |
| lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| static int math_deg (lua_State *L) { |
| lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI)); |
| return 1; |
| } |
| |
| static int math_rad (lua_State *L) { |
| lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0))); |
| return 1; |
| } |
| |
| |
| static int math_min (lua_State *L) { |
| int n = lua_gettop(L); /* number of arguments */ |
| int imin = 1; /* index of current minimum value */ |
| int i; |
| luaL_argcheck(L, n >= 1, 1, "value expected"); |
| for (i = 2; i <= n; i++) { |
| if (lua_compare(L, i, imin, LUA_OPLT)) |
| imin = i; |
| } |
| lua_pushvalue(L, imin); |
| return 1; |
| } |
| |
| |
| static int math_max (lua_State *L) { |
| int n = lua_gettop(L); /* number of arguments */ |
| int imax = 1; /* index of current maximum value */ |
| int i; |
| luaL_argcheck(L, n >= 1, 1, "value expected"); |
| for (i = 2; i <= n; i++) { |
| if (lua_compare(L, imax, i, LUA_OPLT)) |
| imax = i; |
| } |
| lua_pushvalue(L, imax); |
| return 1; |
| } |
| |
| |
| static int math_type (lua_State *L) { |
| if (lua_type(L, 1) == LUA_TNUMBER) |
| lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float"); |
| else { |
| luaL_checkany(L, 1); |
| luaL_pushfail(L); |
| } |
| return 1; |
| } |
| |
| |
| |
| /* |
| ** {================================================================== |
| ** Pseudo-Random Number Generator based on 'xoshiro256**'. |
| ** =================================================================== |
| */ |
| |
| /* |
| ** This code uses lots of shifts. ANSI C does not allow shifts greater |
| ** than or equal to the width of the type being shifted, so some shifts |
| ** are written in convoluted ways to match that restriction. For |
| ** preprocessor tests, it assumes a width of 32 bits, so the maximum |
| ** shift there is 31 bits. |
| */ |
| |
| |
| /* number of binary digits in the mantissa of a float */ |
| #define FIGS l_floatatt(MANT_DIG) |
| |
| #if FIGS > 64 |
| /* there are only 64 random bits; use them all */ |
| #undef FIGS |
| #define FIGS 64 |
| #endif |
| |
| |
| /* |
| ** LUA_RAND32 forces the use of 32-bit integers in the implementation |
| ** of the PRN generator (mainly for testing). |
| */ |
| #if !defined(LUA_RAND32) && !defined(Rand64) |
| |
| /* try to find an integer type with at least 64 bits */ |
| |
| #if ((ULONG_MAX >> 31) >> 31) >= 3 |
| |
| /* 'long' has at least 64 bits */ |
| #define Rand64 unsigned long |
| #define SRand64 long |
| |
| #elif !defined(LUA_USE_C89) && defined(LLONG_MAX) |
| |
| /* there is a 'long long' type (which must have at least 64 bits) */ |
| #define Rand64 unsigned long long |
| #define SRand64 long long |
| |
| #elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3 |
| |
| /* 'lua_Unsigned' has at least 64 bits */ |
| #define Rand64 lua_Unsigned |
| #define SRand64 lua_Integer |
| |
| #endif |
| |
| #endif |
| |
| |
| #if defined(Rand64) /* { */ |
| |
| /* |
| ** Standard implementation, using 64-bit integers. |
| ** If 'Rand64' has more than 64 bits, the extra bits do not interfere |
| ** with the 64 initial bits, except in a right shift. Moreover, the |
| ** final result has to discard the extra bits. |
| */ |
| |
| /* avoid using extra bits when needed */ |
| #define trim64(x) ((x) & 0xffffffffffffffffu) |
| |
| |
| /* rotate left 'x' by 'n' bits */ |
| static Rand64 rotl (Rand64 x, int n) { |
| return (x << n) | (trim64(x) >> (64 - n)); |
| } |
| |
| static Rand64 nextrand (Rand64 *state) { |
| Rand64 state0 = state[0]; |
| Rand64 state1 = state[1]; |
| Rand64 state2 = state[2] ^ state0; |
| Rand64 state3 = state[3] ^ state1; |
| Rand64 res = rotl(state1 * 5, 7) * 9; |
| state[0] = state0 ^ state3; |
| state[1] = state1 ^ state2; |
| state[2] = state2 ^ (state1 << 17); |
| state[3] = rotl(state3, 45); |
| return res; |
| } |
| |
| |
| /* |
| ** Convert bits from a random integer into a float in the |
| ** interval [0,1), getting the higher FIG bits from the |
| ** random unsigned integer and converting that to a float. |
| ** Some old Microsoft compilers cannot cast an unsigned long |
| ** to a floating-point number, so we use a signed long as an |
| ** intermediary. When lua_Number is float or double, the shift ensures |
| ** that 'sx' is non negative; in that case, a good compiler will remove |
| ** the correction. |
| */ |
| |
| /* must throw out the extra (64 - FIGS) bits */ |
| #define shift64_FIG (64 - FIGS) |
| |
| /* 2^(-FIGS) == 2^-1 / 2^(FIGS-1) */ |
| #define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1))) |
| |
| static lua_Number I2d (Rand64 x) { |
| SRand64 sx = (SRand64)(trim64(x) >> shift64_FIG); |
| lua_Number res = (lua_Number)(sx) * scaleFIG; |
| if (sx < 0) |
| res += l_mathop(1.0); /* correct the two's complement if negative */ |
| lua_assert(0 <= res && res < 1); |
| return res; |
| } |
| |
| /* convert a 'Rand64' to a 'lua_Unsigned' */ |
| #define I2UInt(x) ((lua_Unsigned)trim64(x)) |
| |
| /* convert a 'lua_Unsigned' to a 'Rand64' */ |
| #define Int2I(x) ((Rand64)(x)) |
| |
| |
| #else /* no 'Rand64' }{ */ |
| |
| /* |
| ** Use two 32-bit integers to represent a 64-bit quantity. |
| */ |
| typedef struct Rand64 { |
| l_uint32 h; /* higher half */ |
| l_uint32 l; /* lower half */ |
| } Rand64; |
| |
| |
| /* |
| ** If 'l_uint32' has more than 32 bits, the extra bits do not interfere |
| ** with the 32 initial bits, except in a right shift and comparisons. |
| ** Moreover, the final result has to discard the extra bits. |
| */ |
| |
| /* avoid using extra bits when needed */ |
| #define trim32(x) ((x) & 0xffffffffu) |
| |
| |
| /* |
| ** basic operations on 'Rand64' values |
| */ |
| |
| /* build a new Rand64 value */ |
| static Rand64 packI (l_uint32 h, l_uint32 l) { |
| Rand64 result; |
| result.h = h; |
| result.l = l; |
| return result; |
| } |
| |
| /* return i << n */ |
| static Rand64 Ishl (Rand64 i, int n) { |
| lua_assert(n > 0 && n < 32); |
| return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n); |
| } |
| |
| /* i1 ^= i2 */ |
| static void Ixor (Rand64 *i1, Rand64 i2) { |
| i1->h ^= i2.h; |
| i1->l ^= i2.l; |
| } |
| |
| /* return i1 + i2 */ |
| static Rand64 Iadd (Rand64 i1, Rand64 i2) { |
| Rand64 result = packI(i1.h + i2.h, i1.l + i2.l); |
| if (trim32(result.l) < trim32(i1.l)) /* carry? */ |
| result.h++; |
| return result; |
| } |
| |
| /* return i * 5 */ |
| static Rand64 times5 (Rand64 i) { |
| return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */ |
| } |
| |
| /* return i * 9 */ |
| static Rand64 times9 (Rand64 i) { |
| return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */ |
| } |
| |
| /* return 'i' rotated left 'n' bits */ |
| static Rand64 rotl (Rand64 i, int n) { |
| lua_assert(n > 0 && n < 32); |
| return packI((i.h << n) | (trim32(i.l) >> (32 - n)), |
| (trim32(i.h) >> (32 - n)) | (i.l << n)); |
| } |
| |
| /* for offsets larger than 32, rotate right by 64 - offset */ |
| static Rand64 rotl1 (Rand64 i, int n) { |
| lua_assert(n > 32 && n < 64); |
| n = 64 - n; |
| return packI((trim32(i.h) >> n) | (i.l << (32 - n)), |
| (i.h << (32 - n)) | (trim32(i.l) >> n)); |
| } |
| |
| /* |
| ** implementation of 'xoshiro256**' algorithm on 'Rand64' values |
| */ |
| static Rand64 nextrand (Rand64 *state) { |
| Rand64 res = times9(rotl(times5(state[1]), 7)); |
| Rand64 t = Ishl(state[1], 17); |
| Ixor(&state[2], state[0]); |
| Ixor(&state[3], state[1]); |
| Ixor(&state[1], state[2]); |
| Ixor(&state[0], state[3]); |
| Ixor(&state[2], t); |
| state[3] = rotl1(state[3], 45); |
| return res; |
| } |
| |
| |
| /* |
| ** Converts a 'Rand64' into a float. |
| */ |
| |
| /* an unsigned 1 with proper type */ |
| #define UONE ((l_uint32)1) |
| |
| |
| #if FIGS <= 32 |
| |
| /* 2^(-FIGS) */ |
| #define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1))) |
| |
| /* |
| ** get up to 32 bits from higher half, shifting right to |
| ** throw out the extra bits. |
| */ |
| static lua_Number I2d (Rand64 x) { |
| lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS)); |
| return h * scaleFIG; |
| } |
| |
| #else /* 32 < FIGS <= 64 */ |
| |
| /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */ |
| #define scaleFIG \ |
| (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33))) |
| |
| /* |
| ** use FIGS - 32 bits from lower half, throwing out the other |
| ** (32 - (FIGS - 32)) = (64 - FIGS) bits |
| */ |
| #define shiftLOW (64 - FIGS) |
| |
| /* |
| ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32) |
| */ |
| #define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0)) |
| |
| |
| static lua_Number I2d (Rand64 x) { |
| lua_Number h = (lua_Number)trim32(x.h) * shiftHI; |
| lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW); |
| return (h + l) * scaleFIG; |
| } |
| |
| #endif |
| |
| |
| /* convert a 'Rand64' to a 'lua_Unsigned' */ |
| static lua_Unsigned I2UInt (Rand64 x) { |
| return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l); |
| } |
| |
| /* convert a 'lua_Unsigned' to a 'Rand64' */ |
| static Rand64 Int2I (lua_Unsigned n) { |
| return packI((l_uint32)((n >> 31) >> 1), (l_uint32)n); |
| } |
| |
| #endif /* } */ |
| |
| |
| /* |
| ** A state uses four 'Rand64' values. |
| */ |
| typedef struct { |
| Rand64 s[4]; |
| } RanState; |
| |
| |
| /* |
| ** Project the random integer 'ran' into the interval [0, n]. |
| ** Because 'ran' has 2^B possible values, the projection can only be |
| ** uniform when the size of the interval is a power of 2 (exact |
| ** division). Otherwise, to get a uniform projection into [0, n], we |
| ** first compute 'lim', the smallest Mersenne number not smaller than |
| ** 'n'. We then project 'ran' into the interval [0, lim]. If the result |
| ** is inside [0, n], we are done. Otherwise, we try with another 'ran', |
| ** until we have a result inside the interval. |
| */ |
| static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n, |
| RanState *state) { |
| if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */ |
| return ran & n; /* no bias */ |
| else { |
| lua_Unsigned lim = n; |
| /* compute the smallest (2^b - 1) not smaller than 'n' */ |
| lim |= (lim >> 1); |
| lim |= (lim >> 2); |
| lim |= (lim >> 4); |
| lim |= (lim >> 8); |
| lim |= (lim >> 16); |
| #if (LUA_MAXUNSIGNED >> 31) >= 3 |
| lim |= (lim >> 32); /* integer type has more than 32 bits */ |
| #endif |
| lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */ |
| && lim >= n /* not smaller than 'n', */ |
| && (lim >> 1) < n); /* and it is the smallest one */ |
| while ((ran &= lim) > n) /* project 'ran' into [0..lim] */ |
| ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */ |
| return ran; |
| } |
| } |
| |
| |
| static int math_random (lua_State *L) { |
| lua_Integer low, up; |
| lua_Unsigned p; |
| RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); |
| Rand64 rv = nextrand(state->s); /* next pseudo-random value */ |
| switch (lua_gettop(L)) { /* check number of arguments */ |
| case 0: { /* no arguments */ |
| lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */ |
| return 1; |
| } |
| case 1: { /* only upper limit */ |
| low = 1; |
| up = luaL_checkinteger(L, 1); |
| if (up == 0) { /* single 0 as argument? */ |
| lua_pushinteger(L, l_castU2S(I2UInt(rv))); /* full random integer */ |
| return 1; |
| } |
| break; |
| } |
| case 2: { /* lower and upper limits */ |
| low = luaL_checkinteger(L, 1); |
| up = luaL_checkinteger(L, 2); |
| break; |
| } |
| default: return luaL_error(L, "wrong number of arguments"); |
| } |
| /* random integer in the interval [low, up] */ |
| luaL_argcheck(L, low <= up, 1, "interval is empty"); |
| /* project random integer into the interval [0, up - low] */ |
| p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state); |
| lua_pushinteger(L, l_castU2S(p) + low); |
| return 1; |
| } |
| |
| |
| static void setseed (lua_State *L, Rand64 *state, |
| lua_Unsigned n1, lua_Unsigned n2) { |
| int i; |
| state[0] = Int2I(n1); |
| state[1] = Int2I(0xff); /* avoid a zero state */ |
| state[2] = Int2I(n2); |
| state[3] = Int2I(0); |
| for (i = 0; i < 16; i++) |
| nextrand(state); /* discard initial values to "spread" seed */ |
| lua_pushinteger(L, l_castU2S(n1)); |
| lua_pushinteger(L, l_castU2S(n2)); |
| } |
| |
| |
| static int math_randomseed (lua_State *L) { |
| RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); |
| lua_Unsigned n1, n2; |
| if (lua_isnone(L, 1)) { |
| n1 = luaL_makeseed(L); /* "random" seed */ |
| n2 = I2UInt(nextrand(state->s)); /* in case seed is not that random... */ |
| } |
| else { |
| n1 = l_castS2U(luaL_checkinteger(L, 1)); |
| n2 = l_castS2U(luaL_optinteger(L, 2, 0)); |
| } |
| setseed(L, state->s, n1, n2); |
| return 2; /* return seeds */ |
| } |
| |
| |
| static const luaL_Reg randfuncs[] = { |
| {"random", math_random}, |
| {"randomseed", math_randomseed}, |
| {NULL, NULL} |
| }; |
| |
| |
| /* |
| ** Register the random functions and initialize their state. |
| */ |
| static void setrandfunc (lua_State *L) { |
| RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0); |
| setseed(L, state->s, luaL_makeseed(L), 0); /* initialize with random seed */ |
| lua_pop(L, 2); /* remove pushed seeds */ |
| luaL_setfuncs(L, randfuncs, 1); |
| } |
| |
| /* }================================================================== */ |
| |
| |
| /* |
| ** {================================================================== |
| ** Deprecated functions (for compatibility only) |
| ** =================================================================== |
| */ |
| #if defined(LUA_COMPAT_MATHLIB) |
| |
| static int math_cosh (lua_State *L) { |
| lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| static int math_sinh (lua_State *L) { |
| lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| static int math_tanh (lua_State *L) { |
| lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| static int math_pow (lua_State *L) { |
| lua_Number x = luaL_checknumber(L, 1); |
| lua_Number y = luaL_checknumber(L, 2); |
| lua_pushnumber(L, l_mathop(pow)(x, y)); |
| return 1; |
| } |
| |
| static int math_frexp (lua_State *L) { |
| int e; |
| lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e)); |
| lua_pushinteger(L, e); |
| return 2; |
| } |
| |
| static int math_ldexp (lua_State *L) { |
| lua_Number x = luaL_checknumber(L, 1); |
| int ep = (int)luaL_checkinteger(L, 2); |
| lua_pushnumber(L, l_mathop(ldexp)(x, ep)); |
| return 1; |
| } |
| |
| static int math_log10 (lua_State *L) { |
| lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1))); |
| return 1; |
| } |
| |
| #endif |
| /* }================================================================== */ |
| |
| |
| |
| static const luaL_Reg mathlib[] = { |
| {"abs", math_abs}, |
| {"acos", math_acos}, |
| {"asin", math_asin}, |
| {"atan", math_atan}, |
| {"ceil", math_ceil}, |
| {"cos", math_cos}, |
| {"deg", math_deg}, |
| {"exp", math_exp}, |
| {"tointeger", math_toint}, |
| {"floor", math_floor}, |
| {"fmod", math_fmod}, |
| {"ult", math_ult}, |
| {"log", math_log}, |
| {"max", math_max}, |
| {"min", math_min}, |
| {"modf", math_modf}, |
| {"rad", math_rad}, |
| {"sin", math_sin}, |
| {"sqrt", math_sqrt}, |
| {"tan", math_tan}, |
| {"type", math_type}, |
| #if defined(LUA_COMPAT_MATHLIB) |
| {"atan2", math_atan}, |
| {"cosh", math_cosh}, |
| {"sinh", math_sinh}, |
| {"tanh", math_tanh}, |
| {"pow", math_pow}, |
| {"frexp", math_frexp}, |
| {"ldexp", math_ldexp}, |
| {"log10", math_log10}, |
| #endif |
| /* placeholders */ |
| {"random", NULL}, |
| {"randomseed", NULL}, |
| {"pi", NULL}, |
| {"huge", NULL}, |
| {"maxinteger", NULL}, |
| {"mininteger", NULL}, |
| {NULL, NULL} |
| }; |
| |
| |
| /* |
| ** Open math library |
| */ |
| LUAMOD_API int luaopen_math (lua_State *L) { |
| luaL_newlib(L, mathlib); |
| lua_pushnumber(L, PI); |
| lua_setfield(L, -2, "pi"); |
| lua_pushnumber(L, (lua_Number)HUGE_VAL); |
| lua_setfield(L, -2, "huge"); |
| lua_pushinteger(L, LUA_MAXINTEGER); |
| lua_setfield(L, -2, "maxinteger"); |
| lua_pushinteger(L, LUA_MININTEGER); |
| lua_setfield(L, -2, "mininteger"); |
| setrandfunc(L); |
| return 1; |
| } |
| |