| // Copyright 2024 the Vello Authors |
| // SPDX-License-Identifier: Apache-2.0 OR MIT |
| |
| //! This utility provides conservative size estimation for buffer allocations backing |
| //! GPU bump memory. This estimate relies on heuristics and naturally overestimates. |
| |
| use super::{BufferSize, BumpAllocatorMemory, Transform}; |
| use peniko::kurbo::{Cap, Join, PathEl, Stroke, Vec2}; |
| |
| const RSQRT_OF_TOL: f64 = 2.2360679775; // tol = 0.2 |
| |
| #[derive(Clone, Default)] |
| pub struct BumpEstimator { |
| // TODO: support binning |
| // TODO: support ptcl |
| // TODO: support tile |
| // TODO: support segment counts |
| // TODO: support segments |
| lines: LineSoup, |
| } |
| |
| impl BumpEstimator { |
| pub fn new() -> Self { |
| Self::default() |
| } |
| |
| pub fn reset(&mut self) { |
| *self = Self::default(); |
| } |
| |
| /// Combine the counts of this estimator with `other` after applying an optional `transform`. |
| pub fn append(&mut self, other: &Self, transform: Option<&Transform>) { |
| self.lines.add(&other.lines, transform_scale(transform)); |
| } |
| |
| pub fn count_path( |
| &mut self, |
| path: impl Iterator<Item = PathEl>, |
| t: &Transform, |
| stroke: Option<&Stroke>, |
| ) { |
| let mut caps = 1; |
| let mut joins: u32 = 0; |
| let mut lineto_lines = 0; |
| let mut fill_close_lines = 1; |
| let mut curve_lines = 0; |
| let mut curve_count = 0; |
| |
| // Track the path state to correctly count empty paths and close joins. |
| let mut first_pt = None; |
| let mut last_pt = None; |
| for el in path { |
| match el { |
| PathEl::MoveTo(p0) => { |
| first_pt = Some(p0); |
| if last_pt.is_none() { |
| continue; |
| } |
| caps += 1; |
| joins = joins.saturating_sub(1); |
| last_pt = None; |
| fill_close_lines += 1; |
| } |
| PathEl::ClosePath => { |
| if last_pt.is_some() { |
| joins += 1; |
| lineto_lines += 1; |
| } |
| last_pt = first_pt; |
| } |
| PathEl::LineTo(p0) => { |
| last_pt = Some(p0); |
| joins += 1; |
| lineto_lines += 1; |
| } |
| PathEl::QuadTo(p1, p2) => { |
| let Some(p0) = last_pt.or(first_pt) else { |
| continue; |
| }; |
| curve_count += 1; |
| curve_lines += |
| wang::quadratic(RSQRT_OF_TOL, p0.to_vec2(), p1.to_vec2(), p2.to_vec2(), t); |
| last_pt = Some(p2); |
| joins += 1; |
| } |
| PathEl::CurveTo(p1, p2, p3) => { |
| let Some(p0) = last_pt.or(first_pt) else { |
| continue; |
| }; |
| curve_count += 1; |
| curve_lines += wang::cubic( |
| RSQRT_OF_TOL, |
| p0.to_vec2(), |
| p1.to_vec2(), |
| p2.to_vec2(), |
| p3.to_vec2(), |
| t, |
| ); |
| last_pt = Some(p3); |
| joins += 1; |
| } |
| } |
| } |
| let Some(style) = stroke else { |
| self.lines.linetos += lineto_lines + fill_close_lines; |
| self.lines.curves += curve_lines; |
| self.lines.curve_count += curve_count; |
| return; |
| }; |
| |
| // For strokes, double-count the lines to estimate offset curves. |
| self.lines.linetos += 2 * lineto_lines; |
| self.lines.curves += 2 * curve_lines; |
| self.lines.curve_count += 2 * curve_count; |
| |
| let round_scale = transform_scale(Some(t)); |
| let width = style.width as f32; |
| self.count_stroke_caps(style.start_cap, width, caps, round_scale); |
| self.count_stroke_caps(style.end_cap, width, caps, round_scale); |
| self.count_stroke_joins(style.join, width, joins, round_scale); |
| } |
| |
| /// Produce the final total, applying an optional transform to all content. |
| pub fn tally(&self, transform: Option<&Transform>) -> BumpAllocatorMemory { |
| let scale = transform_scale(transform); |
| let binning = BufferSize::new(0); |
| let ptcl = BufferSize::new(0); |
| let tile = BufferSize::new(0); |
| let seg_counts = BufferSize::new(0); |
| let segments = BufferSize::new(0); |
| let lines = BufferSize::new(self.lines.tally(scale)); |
| BumpAllocatorMemory { |
| total: binning.size_in_bytes() |
| + ptcl.size_in_bytes() |
| + tile.size_in_bytes() |
| + seg_counts.size_in_bytes() |
| + lines.size_in_bytes(), |
| binning, |
| ptcl, |
| tile, |
| seg_counts, |
| segments, |
| lines, |
| } |
| } |
| |
| fn count_stroke_caps(&mut self, style: Cap, width: f32, count: u32, scale: f32) { |
| match style { |
| Cap::Butt => self.lines.linetos += count, |
| Cap::Square => self.lines.linetos += 3 * count, |
| Cap::Round => { |
| self.lines.curves += count * estimate_arc_lines(width, scale); |
| self.lines.curve_count += 1; |
| } |
| } |
| } |
| |
| fn count_stroke_joins(&mut self, style: Join, width: f32, count: u32, scale: f32) { |
| match style { |
| Join::Bevel => self.lines.linetos += count, |
| Join::Miter => self.lines.linetos += 2 * count, |
| Join::Round => { |
| self.lines.curves += count * estimate_arc_lines(width, scale); |
| self.lines.curve_count += 1; |
| } |
| } |
| } |
| } |
| |
| fn estimate_arc_lines(stroke_width: f32, scale: f32) -> u32 { |
| // These constants need to be kept consistent with the definitions in `flatten_arc` in |
| // flatten.wgsl. |
| const MIN_THETA: f32 = 1e-4; |
| const TOL: f32 = 0.1; |
| let radius = TOL.max(scale * stroke_width * 0.5); |
| let theta = (2. * (1. - TOL / radius).acos()).max(MIN_THETA); |
| ((std::f32::consts::FRAC_PI_2 / theta).ceil() as u32).max(1) |
| } |
| |
| #[derive(Clone, Default)] |
| struct LineSoup { |
| // Explicit lines (such as linetos and non-round stroke caps/joins) and Bezier curves |
| // get tracked separately to ensure that explicit lines remain scale invariant. |
| linetos: u32, |
| curves: u32, |
| |
| // Curve count is simply used to ensure a minimum number of lines get counted for each curve |
| // at very small scales to reduce the chance of under-allocating. |
| curve_count: u32, |
| } |
| |
| impl LineSoup { |
| fn tally(&self, scale: f32) -> u32 { |
| let curves = self |
| .scaled_curve_line_count(scale) |
| .max(5 * self.curve_count); |
| |
| self.linetos + curves |
| } |
| |
| fn scaled_curve_line_count(&self, scale: f32) -> u32 { |
| (self.curves as f32 * scale.sqrt()).ceil() as u32 |
| } |
| |
| fn add(&mut self, other: &LineSoup, scale: f32) { |
| self.linetos += other.linetos; |
| self.curves += other.scaled_curve_line_count(scale); |
| self.curve_count += other.curve_count; |
| } |
| } |
| |
| // TODO: The 32-bit Vec2 definition from cpu_shaders/util.rs could come in handy here. |
| fn transform(t: &Transform, v: Vec2) -> Vec2 { |
| Vec2::new( |
| t.matrix[0] as f64 * v.x + t.matrix[2] as f64 * v.y, |
| t.matrix[1] as f64 * v.x + t.matrix[3] as f64 * v.y, |
| ) |
| } |
| |
| fn transform_scale(t: Option<&Transform>) -> f32 { |
| match t { |
| Some(t) => { |
| let m = t.matrix; |
| let v1x = m[0] + m[3]; |
| let v2x = m[0] - m[3]; |
| let v1y = m[1] - m[2]; |
| let v2y = m[1] + m[2]; |
| (v1x * v1x + v1y * v1y).sqrt() + (v2x * v2x + v2y * v2y).sqrt() |
| } |
| None => 1., |
| } |
| } |
| |
| /// Wang's Formula (as described in Pyramid Algorithms by Ron Goldman, 2003, Chapter 5, Section |
| /// 5.6.3 on Bezier Approximation) is a fast method for computing a lower bound on the number of |
| /// recursive subdivisions required to approximate a Bezier curve within a certain tolerance. The |
| /// formula for a Bezier curve of degree `n`, control points p[0]...p[n], and number of levels of |
| /// subdivision `l`, and flattening tolerance `tol` is defined as follows: |
| /// |
| /// ```ignore |
| /// m = max([length(p[k+2] - 2 * p[k+1] + p[k]) for (0 <= k <= n-2)]) |
| /// l >= log_4((n * (n - 1) * m) / (8 * tol)) |
| /// ``` |
| /// |
| /// For recursive subdivisions that split a curve into 2 segments at each level, the minimum number |
| /// of segments is given by 2^l. From the formula above it follows that: |
| /// |
| /// ```ignore |
| /// segments >= 2^l >= 2^log_4(x) (1) |
| /// segments^2 >= 2^(2*log_4(x)) >= 4^log_4(x) (2) |
| /// segments^2 >= x |
| /// segments >= sqrt((n * (n - 1) * m) / (8 * tol)) (3) |
| /// ``` |
| /// |
| /// Wang's formula computes an error bound on recursive subdivision based on the second derivative |
| /// which tends to result in a suboptimal estimate when the curvature within the curve has a lot of |
| /// variation. This is expected to frequently overshoot the flattening formula used in vello, which |
| /// is closer to optimal (vello uses a method based on a numerical approximation of the integral |
| /// over the continuous change in the number of flattened segments, with an error expressed in terms |
| /// of curvature and infinitesimal arclength). |
| mod wang { |
| use super::*; |
| |
| // The curve degree term sqrt(n * (n - 1) / 8) specialized for cubics: |
| // |
| // sqrt(3 * (3 - 1) / 8) |
| // |
| const SQRT_OF_DEGREE_TERM_CUBIC: f64 = 0.86602540378; |
| |
| // The curve degree term sqrt(n * (n - 1) / 8) specialized for quadratics: |
| // |
| // sqrt(2 * (2 - 1) / 8) |
| // |
| const SQRT_OF_DEGREE_TERM_QUAD: f64 = 0.5; |
| |
| pub fn quadratic(rsqrt_of_tol: f64, p0: Vec2, p1: Vec2, p2: Vec2, t: &Transform) -> u32 { |
| let v = -2. * p1 + p0 + p2; |
| let v = transform(t, v); // transform is distributive |
| let m = v.length(); |
| (SQRT_OF_DEGREE_TERM_QUAD * m.sqrt() * rsqrt_of_tol).ceil() as u32 |
| } |
| |
| pub fn cubic(rsqrt_of_tol: f64, p0: Vec2, p1: Vec2, p2: Vec2, p3: Vec2, t: &Transform) -> u32 { |
| let v1 = -2. * p1 + p0 + p2; |
| let v2 = -2. * p2 + p1 + p3; |
| let v1 = transform(t, v1); |
| let v2 = transform(t, v2); |
| let m = v1.length().max(v2.length()) as f64; |
| (SQRT_OF_DEGREE_TERM_CUBIC * m.sqrt() * rsqrt_of_tol).ceil() as u32 |
| } |
| } |