| // Copyright 2022 The piet-gpu authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // Also licensed under MIT license, at your choice. |
| |
| // This module is based in part on kurbo (https://github.com/linebender/kurbo) |
| |
| use bytemuck::{Pod, Zeroable}; |
| use core::borrow::Borrow; |
| use core::hash::{Hash, Hasher}; |
| |
| /// Two dimensional point. |
| #[derive(Copy, Clone, PartialEq, PartialOrd, Default, Debug, Pod, Zeroable)] |
| #[repr(C)] |
| pub struct Point { |
| pub x: f32, |
| pub y: f32, |
| } |
| |
| impl Hash for Point { |
| fn hash<H: Hasher>(&self, state: &mut H) { |
| self.x.to_bits().hash(state); |
| self.y.to_bits().hash(state); |
| } |
| } |
| |
| impl Point { |
| pub const fn new(x: f32, y: f32) -> Self { |
| Self { x, y } |
| } |
| |
| pub fn transform(&self, affine: &Affine) -> Self { |
| Self { |
| x: self.x * affine.xx + self.y * affine.yx + affine.dx, |
| y: self.y * affine.yy + self.y * affine.xy + affine.dy, |
| } |
| } |
| } |
| |
| impl From<[f32; 2]> for Point { |
| fn from(value: [f32; 2]) -> Self { |
| Self::new(value[0], value[1]) |
| } |
| } |
| |
| impl From<(f32, f32)> for Point { |
| fn from(value: (f32, f32)) -> Self { |
| Self::new(value.0, value.1) |
| } |
| } |
| |
| /// Affine transformation matrix. |
| #[derive(Copy, Clone, Debug, Pod, Zeroable)] |
| #[repr(C)] |
| pub struct Affine { |
| pub xx: f32, |
| pub yx: f32, |
| pub xy: f32, |
| pub yy: f32, |
| pub dx: f32, |
| pub dy: f32, |
| } |
| |
| impl Affine { |
| pub const IDENTITY: Self = Self { |
| xx: 1.0, |
| yx: 0.0, |
| xy: 0.0, |
| yy: 1.0, |
| dx: 0.0, |
| dy: 0.0, |
| }; |
| |
| pub const fn new(elements: &[f32; 6]) -> Self { |
| Self { |
| xx: elements[0], |
| yx: elements[1], |
| xy: elements[2], |
| yy: elements[3], |
| dx: elements[4], |
| dy: elements[5], |
| } |
| } |
| |
| /// Creates a new affine transform representing the specified scale along the |
| /// x and y axes. |
| pub fn scale(x: f32, y: f32) -> Self { |
| Self::new(&[x, 0., 0., y, 0., 0.]) |
| } |
| |
| /// Creates a new affine transform representing the specified translation. |
| pub fn translate(x: f32, y: f32) -> Self { |
| Self::new(&[1., 0., 0., 1., x, y]) |
| } |
| |
| /// Creates a new affine transform representing a counter-clockwise |
| /// rotation for the specified angle in radians. |
| pub fn rotate(th: f32) -> Self { |
| let (s, c) = th.sin_cos(); |
| Self::new(&[c, s, -s, c, 0., 0.]) |
| } |
| |
| /// Creates a new skew transform |
| pub fn skew(x: f32, y: f32) -> Self { |
| Self::new(&[1., x.tan(), y.tan(), 1., 0., 0.]) |
| } |
| |
| pub fn around_center(&self, x: f32, y: f32) -> Self { |
| Self::translate(x, y) * *self * Self::translate(-x, -y) |
| } |
| |
| /// Transforms the specified point. |
| pub fn transform_point(&self, point: Point) -> Point { |
| Point { |
| x: point.x * self.xx + point.y * self.yx + self.dx, |
| y: point.y * self.yy + point.y * self.xy + self.dy, |
| } |
| } |
| |
| /// Compute the determinant of this transform. |
| pub fn determinant(self) -> f32 { |
| self.xx * self.yy - self.yx * self.xy |
| } |
| |
| /// Compute the inverse transform. |
| /// |
| /// Produces NaN values when the determinant is zero. |
| pub fn inverse(self) -> Self { |
| let inv_det = self.determinant().recip(); |
| Self::new(&[ |
| inv_det * self.yy, |
| -inv_det * self.yx, |
| -inv_det * self.xy, |
| inv_det * self.xx, |
| inv_det * (self.xy * self.dy - self.yy * self.dx), |
| inv_det * (self.yx * self.dx - self.xx * self.dy), |
| ]) |
| } |
| } |
| |
| impl Default for Affine { |
| fn default() -> Self { |
| Self::IDENTITY |
| } |
| } |
| |
| impl std::ops::Mul for Affine { |
| type Output = Self; |
| fn mul(self, other: Self) -> Self { |
| Self::new(&[ |
| self.xx * other.xx + self.xy * other.yx, |
| self.yx * other.xx + self.yy * other.yx, |
| self.xx * other.xy + self.xy * other.yy, |
| self.yx * other.xy + self.yy * other.yy, |
| self.xx * other.dx + self.xy * other.dy + self.dx, |
| self.yx * other.dx + self.yy * other.dy + self.dy, |
| ]) |
| } |
| } |
| |
| /// Axis-aligned rectangle represented as minimum and maximum points. |
| #[derive(Copy, Clone, Default, Debug, Pod, Zeroable)] |
| #[repr(C)] |
| pub struct Rect { |
| pub min: Point, |
| pub max: Point, |
| } |
| |
| impl Rect { |
| /// Creates a new rectangle that encloses the specified collection of |
| /// points. |
| pub fn from_points<I>(points: I) -> Self |
| where |
| I: IntoIterator, |
| I::Item: Borrow<Point>, |
| { |
| let mut rect = Self { |
| min: Point::new(f32::MAX, f32::MAX), |
| max: Point::new(f32::MIN, f32::MIN), |
| }; |
| let mut count = 0; |
| for point in points { |
| rect.add(*point.borrow()); |
| count += 1; |
| } |
| if count != 0 { |
| rect |
| } else { |
| Self::default() |
| } |
| } |
| |
| /// Returns the width of the rectangle. |
| pub fn width(&self) -> f32 { |
| self.max.x - self.min.x |
| } |
| |
| /// Returns the height of the rectangle. |
| pub fn height(&self) -> f32 { |
| self.max.y - self.min.y |
| } |
| |
| /// Extends the rectangle to include the specified point. |
| pub fn add(&mut self, point: Point) { |
| self.min.x = self.min.x.min(point.x); |
| self.min.y = self.min.y.min(point.y); |
| self.max.x = self.max.x.max(point.x); |
| self.max.y = self.max.y.max(point.y); |
| } |
| |
| /// Returns a new rectangle that encloses the minimum and maximum points |
| /// of this rectangle after applying the specified transform to each. |
| pub fn transform(&self, affine: &Affine) -> Self { |
| Self::from_points([self.min.transform(affine), self.max.transform(affine)]) |
| } |
| } |