| // SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense |
| |
| // The coarse rasterizer stage of the pipeline. |
| // |
| // As input we have the ordered partitions of paths from the binning phase and |
| // the annotated tile list of segments and backdrop per path. |
| // |
| // Each workgroup operating on one bin by stream compacting |
| // the elements corresponding to the bin. |
| // |
| // As output we have an ordered command stream per tile. Every tile from a path (backdrop + segment list) will be |
| // encoded. |
| |
| #version 450 |
| #extension GL_GOOGLE_include_directive : enable |
| |
| #include "mem.h" |
| #include "setup.h" |
| |
| layout(local_size_x = N_TILE, local_size_y = 1) in; |
| |
| layout(binding = 1) readonly buffer ConfigBuf { |
| Config conf; |
| }; |
| |
| layout(binding = 2) readonly buffer SceneBuf { |
| uint[] scene; |
| }; |
| |
| #include "drawtag.h" |
| #include "bins.h" |
| #include "tile.h" |
| #include "ptcl.h" |
| #include "blend.h" |
| |
| #define LG_N_PART_READ (7 + LG_WG_FACTOR) |
| #define N_PART_READ (1 << LG_N_PART_READ) |
| |
| shared uint sh_elements[N_TILE]; |
| |
| // Number of elements in the partition; prefix sum. |
| shared uint sh_part_count[N_PART_READ]; |
| shared Alloc sh_part_elements[N_PART_READ]; |
| |
| shared uint sh_bitmaps[N_SLICE][N_TILE]; |
| |
| shared uint sh_tile_count[N_TILE]; |
| // The width of the tile rect for the element, intersected with this bin |
| shared uint sh_tile_width[N_TILE]; |
| shared uint sh_tile_x0[N_TILE]; |
| shared uint sh_tile_y0[N_TILE]; |
| |
| // These are set up so base + tile_y * stride + tile_x points to a Tile. |
| shared uint sh_tile_base[N_TILE]; |
| shared uint sh_tile_stride[N_TILE]; |
| |
| #ifdef MEM_DEBUG |
| // Store allocs only when MEM_DEBUG to save shared memory traffic. |
| shared Alloc sh_tile_alloc[N_TILE]; |
| |
| void write_tile_alloc(uint el_ix, Alloc a) { |
| sh_tile_alloc[el_ix] = a; |
| } |
| |
| Alloc read_tile_alloc(uint el_ix, bool mem_ok) { |
| return sh_tile_alloc[el_ix]; |
| } |
| #else |
| void write_tile_alloc(uint el_ix, Alloc a) { |
| // No-op |
| } |
| |
| Alloc read_tile_alloc(uint el_ix, bool mem_ok) { |
| // All memory. |
| return new_alloc(0, memory.length() * 4, mem_ok); |
| } |
| #endif |
| |
| // The maximum number of commands per annotated element. |
| #define ANNO_COMMANDS 2 |
| |
| // Perhaps cmd_alloc should be a global? This is a style question. |
| bool alloc_cmd(inout Alloc cmd_alloc, inout CmdRef cmd_ref, inout uint cmd_limit) { |
| if (cmd_ref.offset < cmd_limit) { |
| return true; |
| } |
| MallocResult new_cmd = malloc(PTCL_INITIAL_ALLOC); |
| if (new_cmd.failed) { |
| return false; |
| } |
| CmdJump jump = CmdJump(new_cmd.alloc.offset); |
| Cmd_Jump_write(cmd_alloc, cmd_ref, jump); |
| cmd_alloc = new_cmd.alloc; |
| cmd_ref = CmdRef(cmd_alloc.offset); |
| // Reserve space for the maximum number of commands and a potential jump. |
| cmd_limit = cmd_alloc.offset + PTCL_INITIAL_ALLOC - (ANNO_COMMANDS + 1) * Cmd_size; |
| return true; |
| } |
| |
| void write_fill(Alloc alloc, inout CmdRef cmd_ref, Tile tile, float linewidth) { |
| if (linewidth < 0.0) { |
| if (tile.tile.offset != 0) { |
| CmdFill cmd_fill = CmdFill(tile.tile.offset, tile.backdrop); |
| Cmd_Fill_write(alloc, cmd_ref, cmd_fill); |
| cmd_ref.offset += 4 + CmdFill_size; |
| } else { |
| Cmd_Solid_write(alloc, cmd_ref); |
| cmd_ref.offset += 4; |
| } |
| } else { |
| CmdStroke cmd_stroke = CmdStroke(tile.tile.offset, 0.5 * linewidth); |
| Cmd_Stroke_write(alloc, cmd_ref, cmd_stroke); |
| cmd_ref.offset += 4 + CmdStroke_size; |
| } |
| } |
| |
| void main() { |
| // Could use either linear or 2d layouts for both dispatch and |
| // invocations within the workgroup. We'll use variables to abstract. |
| uint width_in_bins = (conf.width_in_tiles + N_TILE_X - 1) / N_TILE_X; |
| uint bin_ix = width_in_bins * gl_WorkGroupID.y + gl_WorkGroupID.x; |
| uint partition_ix = 0; |
| uint n_partitions = (conf.n_elements + N_TILE - 1) / N_TILE; |
| uint th_ix = gl_LocalInvocationID.x; |
| |
| // Coordinates of top left of bin, in tiles. |
| uint bin_tile_x = N_TILE_X * gl_WorkGroupID.x; |
| uint bin_tile_y = N_TILE_Y * gl_WorkGroupID.y; |
| |
| // Per-tile state |
| uint tile_x = gl_LocalInvocationID.x % N_TILE_X; |
| uint tile_y = gl_LocalInvocationID.x / N_TILE_X; |
| uint this_tile_ix = (bin_tile_y + tile_y) * conf.width_in_tiles + bin_tile_x + tile_x; |
| Alloc cmd_alloc = slice_mem(conf.ptcl_alloc, this_tile_ix * PTCL_INITIAL_ALLOC, PTCL_INITIAL_ALLOC); |
| CmdRef cmd_ref = CmdRef(cmd_alloc.offset); |
| // Reserve space for the maximum number of commands and a potential jump. |
| uint cmd_limit = cmd_ref.offset + PTCL_INITIAL_ALLOC - (ANNO_COMMANDS + 1) * Cmd_size; |
| // The nesting depth of the clip stack |
| uint clip_depth = 0; |
| // State for the "clip zero" optimization. If it's nonzero, then we are |
| // currently in a clip for which the entire tile has an alpha of zero, and |
| // the value is the depth after the "begin clip" of that element. |
| uint clip_zero_depth = 0; |
| |
| // I'm sure we can figure out how to do this with at least one fewer register... |
| // Items up to rd_ix have been read from sh_elements |
| uint rd_ix = 0; |
| // Items up to wr_ix have been written into sh_elements |
| uint wr_ix = 0; |
| // Items between part_start_ix and ready_ix are ready to be transferred from sh_part_elements |
| uint part_start_ix = 0; |
| uint ready_ix = 0; |
| |
| Alloc scratch_alloc = slice_mem(cmd_alloc, 0, Alloc_size); |
| cmd_ref.offset += 4; |
| // Accounting for allocation of blend memory |
| uint render_blend_depth = 0; |
| uint max_blend_depth = 0; |
| |
| uint drawmonoid_start = conf.drawmonoid_alloc.offset >> 2; |
| uint drawtag_start = conf.drawtag_offset >> 2; |
| uint drawdata_start = conf.drawdata_offset >> 2; |
| uint drawinfo_start = conf.drawinfo_alloc.offset >> 2; |
| bool mem_ok = mem_error == NO_ERROR; |
| while (true) { |
| for (uint i = 0; i < N_SLICE; i++) { |
| sh_bitmaps[i][th_ix] = 0; |
| } |
| |
| // parallel read of input partitions |
| do { |
| if (ready_ix == wr_ix && partition_ix < n_partitions) { |
| part_start_ix = ready_ix; |
| uint count = 0; |
| if (th_ix < N_PART_READ && partition_ix + th_ix < n_partitions) { |
| uint in_ix = (conf.bin_alloc.offset >> 2) + ((partition_ix + th_ix) * N_TILE + bin_ix) * 2; |
| count = read_mem(conf.bin_alloc, in_ix); |
| uint offset = read_mem(conf.bin_alloc, in_ix + 1); |
| sh_part_elements[th_ix] = new_alloc(offset, count * BinInstance_size, mem_ok); |
| } |
| // prefix sum of counts |
| for (uint i = 0; i < LG_N_PART_READ; i++) { |
| if (th_ix < N_PART_READ) { |
| sh_part_count[th_ix] = count; |
| } |
| barrier(); |
| if (th_ix < N_PART_READ) { |
| if (th_ix >= (1u << i)) { |
| count += sh_part_count[th_ix - (1u << i)]; |
| } |
| } |
| barrier(); |
| } |
| if (th_ix < N_PART_READ) { |
| sh_part_count[th_ix] = part_start_ix + count; |
| } |
| barrier(); |
| ready_ix = sh_part_count[N_PART_READ - 1]; |
| partition_ix += N_PART_READ; |
| } |
| // use binary search to find element to read |
| uint ix = rd_ix + th_ix; |
| if (ix >= wr_ix && ix < ready_ix && mem_ok) { |
| uint part_ix = 0; |
| for (uint i = 0; i < LG_N_PART_READ; i++) { |
| uint probe = part_ix + (uint(N_PART_READ / 2) >> i); |
| if (ix >= sh_part_count[probe - 1]) { |
| part_ix = probe; |
| } |
| } |
| ix -= part_ix > 0 ? sh_part_count[part_ix - 1] : part_start_ix; |
| Alloc bin_alloc = sh_part_elements[part_ix]; |
| BinInstanceRef inst_ref = BinInstanceRef(bin_alloc.offset); |
| BinInstance inst = BinInstance_read(bin_alloc, BinInstance_index(inst_ref, ix)); |
| sh_elements[th_ix] = inst.element_ix; |
| } |
| barrier(); |
| |
| wr_ix = min(rd_ix + N_TILE, ready_ix); |
| } while (wr_ix - rd_ix < N_TILE && (wr_ix < ready_ix || partition_ix < n_partitions)); |
| |
| // We've done the merge and filled the buffer. |
| |
| // Read one element, compute coverage. |
| uint tag = Drawtag_Nop; |
| uint element_ix; |
| if (th_ix + rd_ix < wr_ix) { |
| element_ix = sh_elements[th_ix]; |
| tag = scene[drawtag_start + element_ix]; |
| } |
| |
| // Bounding box of element in pixel coordinates. |
| uint tile_count; |
| switch (tag) { |
| case Drawtag_FillColor: |
| case Drawtag_FillImage: |
| case Drawtag_FillLinGradient: |
| case Drawtag_FillRadGradient: |
| case Drawtag_BeginClip: |
| case Drawtag_EndClip: |
| uint drawmonoid_base = drawmonoid_start + 4 * element_ix; |
| uint path_ix = memory[drawmonoid_base]; |
| Path path = Path_read(conf.tile_alloc, PathRef(conf.tile_alloc.offset + path_ix * Path_size)); |
| uint stride = path.bbox.z - path.bbox.x; |
| sh_tile_stride[th_ix] = stride; |
| int dx = int(path.bbox.x) - int(bin_tile_x); |
| int dy = int(path.bbox.y) - int(bin_tile_y); |
| int x0 = clamp(dx, 0, N_TILE_X); |
| int y0 = clamp(dy, 0, N_TILE_Y); |
| int x1 = clamp(int(path.bbox.z) - int(bin_tile_x), 0, N_TILE_X); |
| int y1 = clamp(int(path.bbox.w) - int(bin_tile_y), 0, N_TILE_Y); |
| sh_tile_width[th_ix] = uint(x1 - x0); |
| sh_tile_x0[th_ix] = x0; |
| sh_tile_y0[th_ix] = y0; |
| tile_count = uint(x1 - x0) * uint(y1 - y0); |
| // base relative to bin |
| uint base = path.tiles.offset - uint(dy * stride + dx) * Tile_size; |
| sh_tile_base[th_ix] = base; |
| Alloc path_alloc = new_alloc(path.tiles.offset, |
| (path.bbox.z - path.bbox.x) * (path.bbox.w - path.bbox.y) * Tile_size, mem_ok); |
| write_tile_alloc(th_ix, path_alloc); |
| break; |
| default: |
| tile_count = 0; |
| break; |
| } |
| |
| // Prefix sum of sh_tile_count |
| sh_tile_count[th_ix] = tile_count; |
| for (uint i = 0; i < LG_N_TILE; i++) { |
| barrier(); |
| if (th_ix >= (1u << i)) { |
| tile_count += sh_tile_count[th_ix - (1u << i)]; |
| } |
| barrier(); |
| sh_tile_count[th_ix] = tile_count; |
| } |
| barrier(); |
| uint total_tile_count = sh_tile_count[N_TILE - 1]; |
| for (uint ix = th_ix; ix < total_tile_count; ix += N_TILE) { |
| // Binary search to find element |
| uint el_ix = 0; |
| for (uint i = 0; i < LG_N_TILE; i++) { |
| uint probe = el_ix + (uint(N_TILE / 2) >> i); |
| if (ix >= sh_tile_count[probe - 1]) { |
| el_ix = probe; |
| } |
| } |
| uint element_ix = sh_elements[el_ix]; |
| uint tag = scene[drawtag_start + element_ix]; |
| uint seq_ix = ix - (el_ix > 0 ? sh_tile_count[el_ix - 1] : 0); |
| uint width = sh_tile_width[el_ix]; |
| uint x = sh_tile_x0[el_ix] + seq_ix % width; |
| uint y = sh_tile_y0[el_ix] + seq_ix / width; |
| bool include_tile = false; |
| if (mem_ok) { |
| Tile tile = Tile_read(read_tile_alloc(el_ix, mem_ok), |
| TileRef(sh_tile_base[el_ix] + (sh_tile_stride[el_ix] * y + x) * Tile_size)); |
| bool is_clip = (tag & 1) != 0; |
| // Always include the tile if it contains a path segment. |
| // For draws, include the tile if it is solid. |
| // For clips, include the tile if it is empty - this way, logic |
| // below will suppress the drawing of inner elements. |
| // For blends, include the tile if |
| // (blend_mode, composition_mode) != (Normal, SrcOver) |
| bool is_blend = false; |
| if (is_clip) { |
| uint drawmonoid_base = drawmonoid_start + 4 * element_ix; |
| uint scene_offset = memory[drawmonoid_base + 2]; |
| uint dd = drawdata_start + (scene_offset >> 2); |
| uint blend = scene[dd]; |
| is_blend = (blend != BlendComp_clip); |
| } |
| include_tile = tile.tile.offset != 0 || (tile.backdrop == 0) == is_clip |
| || is_blend; |
| } |
| if (include_tile) { |
| uint el_slice = el_ix / 32; |
| uint el_mask = 1u << (el_ix & 31); |
| atomicOr(sh_bitmaps[el_slice][y * N_TILE_X + x], el_mask); |
| } |
| } |
| |
| barrier(); |
| |
| // Output draw objects for this tile. The thread does a sequential walk |
| // through the draw objects. |
| uint slice_ix = 0; |
| uint bitmap = sh_bitmaps[0][th_ix]; |
| while (mem_ok) { |
| if (bitmap == 0) { |
| slice_ix++; |
| if (slice_ix == N_SLICE) { |
| break; |
| } |
| bitmap = sh_bitmaps[slice_ix][th_ix]; |
| if (bitmap == 0) { |
| continue; |
| } |
| } |
| uint element_ref_ix = slice_ix * 32 + findLSB(bitmap); |
| uint element_ix = sh_elements[element_ref_ix]; |
| |
| // Clear LSB |
| bitmap &= bitmap - 1; |
| |
| uint drawtag = scene[drawtag_start + element_ix]; |
| |
| if (clip_zero_depth == 0) { |
| Tile tile = Tile_read(read_tile_alloc(element_ref_ix, mem_ok), |
| TileRef(sh_tile_base[element_ref_ix] + |
| (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size)); |
| uint drawmonoid_base = drawmonoid_start + 4 * element_ix; |
| uint scene_offset = memory[drawmonoid_base + 2]; |
| uint info_offset = memory[drawmonoid_base + 3]; |
| uint dd = drawdata_start + (scene_offset >> 2); |
| uint di = drawinfo_start + (info_offset >> 2); |
| switch (drawtag) { |
| case Drawtag_FillColor: |
| float linewidth = uintBitsToFloat(memory[di]); |
| if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) { |
| break; |
| } |
| write_fill(cmd_alloc, cmd_ref, tile, linewidth); |
| uint rgba = scene[dd]; |
| Cmd_Color_write(cmd_alloc, cmd_ref, CmdColor(rgba)); |
| cmd_ref.offset += 4 + CmdColor_size; |
| break; |
| case Drawtag_FillLinGradient: |
| if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) { |
| break; |
| } |
| linewidth = uintBitsToFloat(memory[di]); |
| write_fill(cmd_alloc, cmd_ref, tile, linewidth); |
| CmdLinGrad cmd_lin; |
| cmd_lin.index = scene[dd]; |
| cmd_lin.line_x = uintBitsToFloat(memory[di + 1]); |
| cmd_lin.line_y = uintBitsToFloat(memory[di + 2]); |
| cmd_lin.line_c = uintBitsToFloat(memory[di + 3]); |
| Cmd_LinGrad_write(cmd_alloc, cmd_ref, cmd_lin); |
| cmd_ref.offset += 4 + CmdLinGrad_size; |
| break; |
| case Drawtag_FillRadGradient: |
| if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) { |
| break; |
| } |
| linewidth = uintBitsToFloat(memory[di]); |
| write_fill(cmd_alloc, cmd_ref, tile, linewidth); |
| CmdRadGrad cmd_rad; |
| cmd_rad.index = scene[dd]; |
| // Given that this is basically a memcpy, we might consider |
| // letting the fine raster read the info itself. |
| cmd_rad.mat = uintBitsToFloat(uvec4(memory[di + 1], memory[di + 2], |
| memory[di + 3], memory[di + 4])); |
| cmd_rad.xlat = uintBitsToFloat(uvec2(memory[di + 5], memory[di + 6])); |
| cmd_rad.c1 = uintBitsToFloat(uvec2(memory[di + 7], memory[di + 8])); |
| cmd_rad.ra = uintBitsToFloat(memory[di + 9]); |
| cmd_rad.roff = uintBitsToFloat(memory[di + 10]); |
| Cmd_RadGrad_write(cmd_alloc, cmd_ref, cmd_rad); |
| cmd_ref.offset += 4 + CmdRadGrad_size; |
| break; |
| case Drawtag_FillImage: |
| linewidth = uintBitsToFloat(memory[di]); |
| if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) { |
| break; |
| } |
| write_fill(cmd_alloc, cmd_ref, tile, linewidth); |
| uint index = scene[dd]; |
| uint raw1 = scene[dd + 1]; |
| ivec2 offset = ivec2(int(raw1 << 16) >> 16, int(raw1) >> 16); |
| Cmd_Image_write(cmd_alloc, cmd_ref, CmdImage(index, offset)); |
| cmd_ref.offset += 4 + CmdImage_size; |
| break; |
| case Drawtag_BeginClip: |
| if (tile.tile.offset == 0 && tile.backdrop == 0) { |
| clip_zero_depth = clip_depth + 1; |
| } else { |
| if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) { |
| break; |
| } |
| Cmd_BeginClip_write(cmd_alloc, cmd_ref); |
| cmd_ref.offset += 4; |
| render_blend_depth++; |
| max_blend_depth = max(max_blend_depth, render_blend_depth); |
| } |
| clip_depth++; |
| break; |
| case Drawtag_EndClip: |
| clip_depth--; |
| if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) { |
| break; |
| } |
| write_fill(cmd_alloc, cmd_ref, tile, -1.0); |
| uint blend = scene[dd]; |
| Cmd_EndClip_write(cmd_alloc, cmd_ref, CmdEndClip(blend)); |
| cmd_ref.offset += 4 + CmdEndClip_size; |
| render_blend_depth--; |
| break; |
| } |
| } else { |
| // In "clip zero" state, suppress all drawing |
| switch (drawtag) { |
| case Drawtag_BeginClip: |
| clip_depth++; |
| break; |
| case Drawtag_EndClip: |
| if (clip_depth == clip_zero_depth) { |
| clip_zero_depth = 0; |
| } |
| clip_depth--; |
| break; |
| } |
| } |
| } |
| barrier(); |
| |
| rd_ix += N_TILE; |
| if (rd_ix >= ready_ix && partition_ix >= n_partitions) |
| break; |
| } |
| if (bin_tile_x + tile_x < conf.width_in_tiles && bin_tile_y + tile_y < conf.height_in_tiles) { |
| Cmd_End_write(cmd_alloc, cmd_ref); |
| if (max_blend_depth > BLEND_STACK_SPLIT) { |
| uint scratch_size = max_blend_depth * TILE_WIDTH_PX * TILE_HEIGHT_PX * CLIP_STATE_SIZE * 4; |
| MallocResult scratch = malloc(scratch_size); |
| alloc_write(scratch_alloc, scratch_alloc.offset, scratch.alloc); |
| } |
| } |
| } |