blob: d655d9dc4ef7df23d4f24b399cd1e6d8e1ef632b [file] [log] [blame]
/*
Simple DirectMedia Layer
Copyright (C) 1997-2024 Sam Lantinga <slouken@libsdl.org>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SDL_internal.h"
/* This file contains portable stdlib functions for SDL */
#include "../libm/math_libm.h"
double SDL_atan(double x)
{
#ifdef HAVE_ATAN
return atan(x);
#else
return SDL_uclibc_atan(x);
#endif
}
float SDL_atanf(float x)
{
#ifdef HAVE_ATANF
return atanf(x);
#else
return (float)SDL_atan((double)x);
#endif
}
double SDL_atan2(double y, double x)
{
#ifdef HAVE_ATAN2
return atan2(y, x);
#else
return SDL_uclibc_atan2(y, x);
#endif
}
float SDL_atan2f(float y, float x)
{
#ifdef HAVE_ATAN2F
return atan2f(y, x);
#else
return (float)SDL_atan2((double)y, (double)x);
#endif
}
double SDL_acos(double val)
{
#ifdef HAVE_ACOS
return acos(val);
#else
double result;
if (val == -1.0) {
result = SDL_PI_D;
} else {
result = SDL_atan(SDL_sqrt(1.0 - val * val) / val);
if (result < 0.0) {
result += SDL_PI_D;
}
}
return result;
#endif
}
float SDL_acosf(float val)
{
#ifdef HAVE_ACOSF
return acosf(val);
#else
return (float)SDL_acos((double)val);
#endif
}
double SDL_asin(double val)
{
#ifdef HAVE_ASIN
return asin(val);
#else
double result;
if (val == -1.0) {
result = -(SDL_PI_D / 2.0);
} else {
result = (SDL_PI_D / 2.0) - SDL_acos(val);
}
return result;
#endif
}
float SDL_asinf(float val)
{
#ifdef HAVE_ASINF
return asinf(val);
#else
return (float)SDL_asin((double)val);
#endif
}
double SDL_ceil(double x)
{
#ifdef HAVE_CEIL
return ceil(x);
#else
double integer = SDL_floor(x);
double fraction = x - integer;
if (fraction > 0.0) {
integer += 1.0;
}
return integer;
#endif /* HAVE_CEIL */
}
float SDL_ceilf(float x)
{
#ifdef HAVE_CEILF
return ceilf(x);
#else
return (float)SDL_ceil((double)x);
#endif
}
double SDL_copysign(double x, double y)
{
#ifdef HAVE_COPYSIGN
return copysign(x, y);
#elif defined(HAVE__COPYSIGN)
return _copysign(x, y);
#elif defined(__WATCOMC__) && defined(__386__)
/* this is nasty as hell, but it works.. */
unsigned int *xi = (unsigned int *)&x,
*yi = (unsigned int *)&y;
xi[1] = (yi[1] & 0x80000000) | (xi[1] & 0x7fffffff);
return x;
#else
return SDL_uclibc_copysign(x, y);
#endif /* HAVE_COPYSIGN */
}
float SDL_copysignf(float x, float y)
{
#ifdef HAVE_COPYSIGNF
return copysignf(x, y);
#else
return (float)SDL_copysign((double)x, (double)y);
#endif
}
double SDL_cos(double x)
{
#ifdef HAVE_COS
return cos(x);
#else
return SDL_uclibc_cos(x);
#endif
}
float SDL_cosf(float x)
{
#ifdef HAVE_COSF
return cosf(x);
#else
return (float)SDL_cos((double)x);
#endif
}
double SDL_exp(double x)
{
#ifdef HAVE_EXP
return exp(x);
#else
return SDL_uclibc_exp(x);
#endif
}
float SDL_expf(float x)
{
#ifdef HAVE_EXPF
return expf(x);
#else
return (float)SDL_exp((double)x);
#endif
}
double SDL_fabs(double x)
{
#ifdef HAVE_FABS
return fabs(x);
#else
return SDL_uclibc_fabs(x);
#endif
}
float SDL_fabsf(float x)
{
#ifdef HAVE_FABSF
return fabsf(x);
#else
return (float)SDL_fabs((double)x);
#endif
}
double SDL_floor(double x)
{
#ifdef HAVE_FLOOR
return floor(x);
#else
return SDL_uclibc_floor(x);
#endif
}
float SDL_floorf(float x)
{
#ifdef HAVE_FLOORF
return floorf(x);
#else
return (float)SDL_floor((double)x);
#endif
}
double SDL_trunc(double x)
{
#ifdef HAVE_TRUNC
return trunc(x);
#else
if (x >= 0.0f) {
return SDL_floor(x);
} else {
return SDL_ceil(x);
}
#endif
}
float SDL_truncf(float x)
{
#ifdef HAVE_TRUNCF
return truncf(x);
#else
return (float)SDL_trunc((double)x);
#endif
}
double SDL_fmod(double x, double y)
{
#ifdef HAVE_FMOD
return fmod(x, y);
#else
return SDL_uclibc_fmod(x, y);
#endif
}
float SDL_fmodf(float x, float y)
{
#ifdef HAVE_FMODF
return fmodf(x, y);
#else
return (float)SDL_fmod((double)x, (double)y);
#endif
}
double SDL_log(double x)
{
#ifdef HAVE_LOG
return log(x);
#else
return SDL_uclibc_log(x);
#endif
}
float SDL_logf(float x)
{
#ifdef HAVE_LOGF
return logf(x);
#else
return (float)SDL_log((double)x);
#endif
}
double SDL_log10(double x)
{
#ifdef HAVE_LOG10
return log10(x);
#else
return SDL_uclibc_log10(x);
#endif
}
float SDL_log10f(float x)
{
#ifdef HAVE_LOG10F
return log10f(x);
#else
return (float)SDL_log10((double)x);
#endif
}
double SDL_modf(double x, double *y)
{
#ifdef HAVE_MODF
return modf(x, y);
#else
return SDL_uclibc_modf(x, y);
#endif
}
float SDL_modff(float x, float *y)
{
#ifdef HAVE_MODFF
return modff(x, y);
#else
double double_result, double_y;
double_result = SDL_modf((double)x, &double_y);
*y = (float)double_y;
return (float)double_result;
#endif
}
double SDL_pow(double x, double y)
{
#ifdef HAVE_POW
return pow(x, y);
#else
return SDL_uclibc_pow(x, y);
#endif
}
float SDL_powf(float x, float y)
{
#ifdef HAVE_POWF
return powf(x, y);
#else
return (float)SDL_pow((double)x, (double)y);
#endif
}
double SDL_round(double arg)
{
#if defined HAVE_ROUND
return round(arg);
#else
if (arg >= 0.0) {
return SDL_floor(arg + 0.5);
} else {
return SDL_ceil(arg - 0.5);
}
#endif
}
float SDL_roundf(float arg)
{
#if defined HAVE_ROUNDF
return roundf(arg);
#else
return (float)SDL_round((double)arg);
#endif
}
long SDL_lround(double arg)
{
#if defined HAVE_LROUND
return lround(arg);
#else
return (long)SDL_round(arg);
#endif
}
long SDL_lroundf(float arg)
{
#if defined HAVE_LROUNDF
return lroundf(arg);
#else
return (long)SDL_round((double)arg);
#endif
}
double SDL_scalbn(double x, int n)
{
#ifdef HAVE_SCALBN
return scalbn(x, n);
#elif defined(HAVE__SCALB)
return _scalb(x, n);
#elif defined(HAVE_LIBC) && defined(HAVE_FLOAT_H) && (FLT_RADIX == 2)
/* from scalbn(3): If FLT_RADIX equals 2 (which is
* usual), then scalbn() is equivalent to ldexp(3). */
return ldexp(x, n);
#else
return SDL_uclibc_scalbn(x, n);
#endif
}
float SDL_scalbnf(float x, int n)
{
#ifdef HAVE_SCALBNF
return scalbnf(x, n);
#else
return (float)SDL_scalbn((double)x, n);
#endif
}
double SDL_sin(double x)
{
#ifdef HAVE_SIN
return sin(x);
#else
return SDL_uclibc_sin(x);
#endif
}
float SDL_sinf(float x)
{
#ifdef HAVE_SINF
return sinf(x);
#else
return (float)SDL_sin((double)x);
#endif
}
double SDL_sqrt(double x)
{
#ifdef HAVE_SQRT
return sqrt(x);
#else
return SDL_uclibc_sqrt(x);
#endif
}
float SDL_sqrtf(float x)
{
#ifdef HAVE_SQRTF
return sqrtf(x);
#else
return (float)SDL_sqrt((double)x);
#endif
}
double SDL_tan(double x)
{
#ifdef HAVE_TAN
return tan(x);
#else
return SDL_uclibc_tan(x);
#endif
}
float SDL_tanf(float x)
{
#ifdef HAVE_TANF
return tanf(x);
#else
return (float)SDL_tan((double)x);
#endif
}
int SDL_abs(int x)
{
#ifdef HAVE_ABS
return abs(x);
#else
return (x < 0) ? -x : x;
#endif
}
int SDL_isalpha(int x) { return (SDL_isupper(x)) || (SDL_islower(x)); }
int SDL_isalnum(int x) { return (SDL_isalpha(x)) || (SDL_isdigit(x)); }
int SDL_isdigit(int x) { return ((x) >= '0') && ((x) <= '9'); }
int SDL_isxdigit(int x) { return (((x) >= 'A') && ((x) <= 'F')) || (((x) >= 'a') && ((x) <= 'f')) || (SDL_isdigit(x)); }
int SDL_ispunct(int x) { return (SDL_isgraph(x)) && (!SDL_isalnum(x)); }
int SDL_isspace(int x) { return ((x) == ' ') || ((x) == '\t') || ((x) == '\r') || ((x) == '\n') || ((x) == '\f') || ((x) == '\v'); }
int SDL_isupper(int x) { return ((x) >= 'A') && ((x) <= 'Z'); }
int SDL_islower(int x) { return ((x) >= 'a') && ((x) <= 'z'); }
int SDL_isprint(int x) { return ((x) >= ' ') && ((x) < '\x7f'); }
int SDL_isgraph(int x) { return (SDL_isprint(x)) && ((x) != ' '); }
int SDL_iscntrl(int x) { return (((x) >= '\0') && ((x) <= '\x1f')) || ((x) == '\x7f'); }
int SDL_toupper(int x) { return ((x) >= 'a') && ((x) <= 'z') ? ('A' + ((x) - 'a')) : (x); }
int SDL_tolower(int x) { return ((x) >= 'A') && ((x) <= 'Z') ? ('a' + ((x) - 'A')) : (x); }
int SDL_isblank(int x) { return ((x) == ' ') || ((x) == '\t'); }
void *SDL_aligned_alloc(size_t alignment, size_t size)
{
size_t padding;
Uint8 *retval = NULL;
if (alignment < sizeof(void*)) {
alignment = sizeof(void*);
}
padding = (alignment - (size % alignment));
if (SDL_size_add_overflow(size, alignment, &size) == 0 &&
SDL_size_add_overflow(size, sizeof(void *), &size) == 0 &&
SDL_size_add_overflow(size, padding, &size) == 0) {
void *original = SDL_malloc(size);
if (original) {
/* Make sure we have enough space to store the original pointer */
retval = (Uint8 *)original + sizeof(original);
/* Align the pointer we're going to return */
retval += alignment - (((size_t)retval) % alignment);
/* Store the original pointer right before the returned value */
SDL_memcpy(retval - sizeof(original), &original, sizeof(original));
}
}
return retval;
}
void SDL_aligned_free(void *mem)
{
if (mem) {
void *original;
SDL_memcpy(&original, ((Uint8 *)mem - sizeof(original)), sizeof(original));
SDL_free(original);
}
}