| #include "SDL_internal.h" |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| /* __kernel_tan( x, y, k ) |
| * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
| * Input x is assumed to be bounded by ~pi/4 in magnitude. |
| * Input y is the tail of x. |
| * Input k indicates whether tan (if k=1) or |
| * -1/tan (if k= -1) is returned. |
| * |
| * Algorithm |
| * 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
| * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
| * 3. tan(x) is approximated by a odd polynomial of degree 27 on |
| * [0,0.67434] |
| * 3 27 |
| * tan(x) ~ x + T1*x + ... + T13*x |
| * where |
| * |
| * |tan(x) 2 4 26 | -59.2 |
| * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
| * | x | |
| * |
| * Note: tan(x+y) = tan(x) + tan'(x)*y |
| * ~ tan(x) + (1+x*x)*y |
| * Therefore, for better accuracy in computing tan(x+y), let |
| * 3 2 2 2 2 |
| * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
| * then |
| * 3 2 |
| * tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
| * |
| * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
| * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
| * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
| */ |
| |
| #include "math_libm.h" |
| #include "math_private.h" |
| |
| static const double |
| one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
| pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
| pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ |
| T[] = { |
| 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ |
| 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ |
| 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ |
| 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ |
| 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ |
| 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ |
| 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ |
| 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ |
| 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ |
| 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ |
| 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ |
| -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ |
| 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ |
| }; |
| |
| double attribute_hidden __kernel_tan(double x, double y, int iy) |
| { |
| double z,r,v,w,s; |
| int32_t ix,hx; |
| GET_HIGH_WORD(hx,x); |
| ix = hx&0x7fffffff; /* high word of |x| */ |
| if(ix<0x3e300000) /* x < 2**-28 */ |
| {if((int)x==0) { /* generate inexact */ |
| u_int32_t low; |
| GET_LOW_WORD(low,x); |
| if(((ix|low)|(iy+1))==0) return one/fabs(x); |
| else return (iy==1)? x: -one/x; |
| } |
| } |
| if(ix>=0x3FE59428) { /* |x|>=0.6744 */ |
| if(hx<0) {x = -x; y = -y;} |
| z = pio4-x; |
| w = pio4lo-y; |
| x = z+w; y = 0.0; |
| } |
| z = x*x; |
| w = z*z; |
| /* Break x^5*(T[1]+x^2*T[2]+...) into |
| * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
| * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
| */ |
| r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); |
| v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); |
| s = z*x; |
| r = y + z*(s*(r+v)+y); |
| r += T[0]*s; |
| w = x+r; |
| if(ix>=0x3FE59428) { |
| v = (double)iy; |
| return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); |
| } |
| if(iy==1) return w; |
| else { /* if allow error up to 2 ulp, |
| simply return -1.0/(x+r) here */ |
| /* compute -1.0/(x+r) accurately */ |
| double a,t; |
| z = w; |
| SET_LOW_WORD(z,0); |
| v = r-(z - x); /* z+v = r+x */ |
| t = a = -1.0/w; /* a = -1.0/w */ |
| SET_LOW_WORD(t,0); |
| s = 1.0+t*z; |
| return t+a*(s+t*v); |
| } |
| } |