| /* |
| * jclhuff.c |
| * |
| * This file was part of the Independent JPEG Group's software: |
| * Copyright (C) 1991-1998, Thomas G. Lane. |
| * Lossless JPEG Modifications: |
| * Copyright (C) 1999, Ken Murchison. |
| * For conditions of distribution and use, see the accompanying README file. |
| * |
| * This file contains Huffman entropy encoding routines for lossless JPEG. |
| * |
| * Much of the complexity here has to do with supporting output suspension. |
| * If the data destination module demands suspension, we want to be able to |
| * back up to the start of the current MCU. To do this, we copy state |
| * variables into local working storage, and update them back to the |
| * permanent JPEG objects only upon successful completion of an MCU. |
| */ |
| |
| #define JPEG_INTERNALS |
| #include "jinclude.h" |
| #include "jpeglib.h" |
| #include "jlossls.h" /* Private declarations for lossless codec */ |
| #include "jchuff.h" /* Declarations shared with jc*huff.c */ |
| |
| |
| /* Expanded entropy encoder object for Huffman encoding. |
| * |
| * The savable_state subrecord contains fields that change within an MCU, |
| * but must not be updated permanently until we complete the MCU. |
| */ |
| |
| typedef struct { |
| INT32 put_buffer; /* current bit-accumulation buffer */ |
| int put_bits; /* # of bits now in it */ |
| } savable_state; |
| |
| /* This macro is to work around compilers with missing or broken |
| * structure assignment. You'll need to fix this code if you have |
| * such a compiler and you change MAX_COMPS_IN_SCAN. |
| */ |
| |
| #ifndef NO_STRUCT_ASSIGN |
| #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
| #else |
| #define ASSIGN_STATE(dest,src) \ |
| ((dest).put_buffer = (src).put_buffer, \ |
| (dest).put_bits = (src).put_bits) |
| #endif |
| |
| |
| typedef struct { |
| int ci, yoffset, MCU_width; |
| } lhe_input_ptr_info; |
| |
| |
| typedef struct { |
| savable_state saved; /* Bit buffer at start of MCU */ |
| |
| /* These fields are NOT loaded into local working state. */ |
| unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
| int next_restart_num; /* next restart number to write (0-7) */ |
| |
| /* Pointers to derived tables (these workspaces have image lifespan) */ |
| c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
| |
| /* Pointers to derived tables to be used for each data unit within an MCU */ |
| c_derived_tbl * cur_tbls[C_MAX_DATA_UNITS_IN_MCU]; |
| |
| #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ |
| long * count_ptrs[NUM_HUFF_TBLS]; |
| |
| /* Pointers to stats tables to be used for each data unit within an MCU */ |
| long * cur_counts[C_MAX_DATA_UNITS_IN_MCU]; |
| #endif |
| |
| /* Pointers to the proper input difference row for each group of data units |
| * within an MCU. For each component, there are Vi groups of Hi data units. |
| */ |
| JDIFFROW input_ptr[C_MAX_DATA_UNITS_IN_MCU]; |
| |
| /* Number of input pointers in use for the current MCU. This is the sum |
| * of all Vi in the MCU. |
| */ |
| int num_input_ptrs; |
| |
| /* Information used for positioning the input pointers within the input |
| * difference rows. |
| */ |
| lhe_input_ptr_info input_ptr_info[C_MAX_DATA_UNITS_IN_MCU]; |
| |
| /* Index of the proper input pointer for each data unit within an MCU */ |
| int input_ptr_index[C_MAX_DATA_UNITS_IN_MCU]; |
| |
| } lhuff_entropy_encoder; |
| |
| typedef lhuff_entropy_encoder * lhuff_entropy_ptr; |
| |
| /* Working state while writing an MCU. |
| * This struct contains all the fields that are needed by subroutines. |
| */ |
| |
| typedef struct { |
| JOCTET * next_output_byte; /* => next byte to write in buffer */ |
| size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
| savable_state cur; /* Current bit buffer & DC state */ |
| j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
| } working_state; |
| |
| |
| /* Forward declarations */ |
| METHODDEF(JDIMENSION) encode_mcus_huff (j_compress_ptr cinfo, |
| JDIFFIMAGE diff_buf, |
| JDIMENSION MCU_row_num, |
| JDIMENSION MCU_col_num, |
| JDIMENSION nMCU); |
| METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); |
| #ifdef ENTROPY_OPT_SUPPORTED |
| METHODDEF(JDIMENSION) encode_mcus_gather (j_compress_ptr cinfo, |
| JDIFFIMAGE diff_buf, |
| JDIMENSION MCU_row_num, |
| JDIMENSION MCU_col_num, |
| JDIMENSION nMCU); |
| METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); |
| #endif |
| |
| |
| /* |
| * Initialize for a Huffman-compressed scan. |
| * If gather_statistics is TRUE, we do not output anything during the scan, |
| * just count the Huffman symbols used and generate Huffman code tables. |
| */ |
| |
| METHODDEF(void) |
| start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
| { |
| j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; |
| lhuff_entropy_ptr entropy = (lhuff_entropy_ptr) losslsc->entropy_private; |
| int ci, dctbl, sampn, ptrn, yoffset, xoffset; |
| jpeg_component_info * compptr; |
| |
| if (gather_statistics) { |
| #ifdef ENTROPY_OPT_SUPPORTED |
| losslsc->entropy_encode_mcus = encode_mcus_gather; |
| losslsc->pub.entropy_finish_pass = finish_pass_gather; |
| #else |
| ERREXIT(cinfo, JERR_NOT_COMPILED); |
| #endif |
| } else { |
| losslsc->entropy_encode_mcus = encode_mcus_huff; |
| losslsc->pub.entropy_finish_pass = finish_pass_huff; |
| } |
| |
| for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| compptr = cinfo->cur_comp_info[ci]; |
| dctbl = compptr->dc_tbl_no; |
| if (gather_statistics) { |
| #ifdef ENTROPY_OPT_SUPPORTED |
| /* Check for invalid table indexes */ |
| /* (make_c_derived_tbl does this in the other path) */ |
| if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) |
| ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); |
| /* Allocate and zero the statistics tables */ |
| /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
| if (entropy->count_ptrs[dctbl] == NULL) |
| entropy->count_ptrs[dctbl] = (long *) |
| (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 257 * SIZEOF(long)); |
| MEMZERO(entropy->count_ptrs[dctbl], 257 * SIZEOF(long)); |
| #endif |
| } else { |
| /* Compute derived values for Huffman tables */ |
| /* We may do this more than once for a table, but it's not expensive */ |
| jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, |
| & entropy->derived_tbls[dctbl]); |
| } |
| } |
| |
| /* Precalculate encoding info for each sample in an MCU of this scan */ |
| for (sampn = 0, ptrn = 0; sampn < cinfo->data_units_in_MCU;) { |
| compptr = cinfo->cur_comp_info[cinfo->MCU_membership[sampn]]; |
| ci = compptr->component_index; |
| /* ci = cinfo->MCU_membership[sampn]; |
| compptr = cinfo->cur_comp_info[ci];*/ |
| for (yoffset = 0; yoffset < compptr->MCU_height; yoffset++, ptrn++) { |
| /* Precalculate the setup info for each input pointer */ |
| entropy->input_ptr_info[ptrn].ci = ci; |
| entropy->input_ptr_info[ptrn].yoffset = yoffset; |
| entropy->input_ptr_info[ptrn].MCU_width = compptr->MCU_width; |
| for (xoffset = 0; xoffset < compptr->MCU_width; xoffset++, sampn++) { |
| /* Precalculate the input pointer index for each sample */ |
| entropy->input_ptr_index[sampn] = ptrn; |
| /* Precalculate which tables to use for each sample */ |
| entropy->cur_tbls[sampn] = entropy->derived_tbls[compptr->dc_tbl_no]; |
| entropy->cur_counts[sampn] = entropy->count_ptrs[compptr->dc_tbl_no]; |
| } |
| } |
| } |
| entropy->num_input_ptrs = ptrn; |
| |
| /* Initialize bit buffer to empty */ |
| entropy->saved.put_buffer = 0; |
| entropy->saved.put_bits = 0; |
| |
| /* Initialize restart stuff */ |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num = 0; |
| } |
| |
| |
| /* Outputting bytes to the file */ |
| |
| /* Emit a byte, taking 'action' if must suspend. */ |
| #define emit_byte(state,val,action) \ |
| { *(state)->next_output_byte++ = (JOCTET) (val); \ |
| if (--(state)->free_in_buffer == 0) \ |
| if (! dump_buffer(state)) \ |
| { action; } } |
| |
| |
| LOCAL(boolean) |
| dump_buffer (working_state * state) |
| /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
| { |
| struct jpeg_destination_mgr * dest = state->cinfo->dest; |
| |
| if (! (*dest->empty_output_buffer) (state->cinfo)) |
| return FALSE; |
| /* After a successful buffer dump, must reset buffer pointers */ |
| state->next_output_byte = dest->next_output_byte; |
| state->free_in_buffer = dest->free_in_buffer; |
| return TRUE; |
| } |
| |
| |
| /* Outputting bits to the file */ |
| |
| /* Only the right 24 bits of put_buffer are used; the valid bits are |
| * left-justified in this part. At most 16 bits can be passed to emit_bits |
| * in one call, and we never retain more than 7 bits in put_buffer |
| * between calls, so 24 bits are sufficient. |
| */ |
| |
| INLINE |
| LOCAL(boolean) |
| emit_bits (working_state * state, unsigned int code, int size) |
| /* Emit some bits; return TRUE if successful, FALSE if must suspend */ |
| { |
| /* This routine is heavily used, so it's worth coding tightly. */ |
| register INT32 put_buffer = (INT32) code; |
| register int put_bits = state->cur.put_bits; |
| |
| /* if size is 0, caller used an invalid Huffman table entry */ |
| if (size == 0) |
| ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); |
| |
| put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
| |
| put_bits += size; /* new number of bits in buffer */ |
| |
| put_buffer <<= 24 - put_bits; /* align incoming bits */ |
| |
| put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ |
| |
| while (put_bits >= 8) { |
| int c = (int) ((put_buffer >> 16) & 0xFF); |
| |
| emit_byte(state, c, return FALSE); |
| if (c == 0xFF) { /* need to stuff a zero byte? */ |
| emit_byte(state, 0, return FALSE); |
| } |
| put_buffer <<= 8; |
| put_bits -= 8; |
| } |
| |
| state->cur.put_buffer = put_buffer; /* update state variables */ |
| state->cur.put_bits = put_bits; |
| |
| return TRUE; |
| } |
| |
| |
| LOCAL(boolean) |
| flush_bits (working_state * state) |
| { |
| if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */ |
| return FALSE; |
| state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
| state->cur.put_bits = 0; |
| return TRUE; |
| } |
| |
| |
| /* |
| * Emit a restart marker & resynchronize predictions. |
| */ |
| |
| LOCAL(boolean) |
| emit_restart (working_state * state, int restart_num) |
| { |
| int ci; |
| |
| if (! flush_bits(state)) |
| return FALSE; |
| |
| emit_byte(state, 0xFF, return FALSE); |
| emit_byte(state, JPEG_RST0 + restart_num, return FALSE); |
| |
| /* The restart counter is not updated until we successfully write the MCU. */ |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * Encode and output one nMCU's worth of Huffman-compressed differences. |
| */ |
| |
| METHODDEF(JDIMENSION) |
| encode_mcus_huff (j_compress_ptr cinfo, JDIFFIMAGE diff_buf, |
| JDIMENSION MCU_row_num, JDIMENSION MCU_col_num, |
| JDIMENSION nMCU) |
| { |
| j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; |
| lhuff_entropy_ptr entropy = (lhuff_entropy_ptr) losslsc->entropy_private; |
| working_state state; |
| int mcu_num, sampn, ci, yoffset, MCU_width, ptrn; |
| jpeg_component_info * compptr; |
| |
| /* Load up working state */ |
| state.next_output_byte = cinfo->dest->next_output_byte; |
| state.free_in_buffer = cinfo->dest->free_in_buffer; |
| ASSIGN_STATE(state.cur, entropy->saved); |
| state.cinfo = cinfo; |
| |
| /* Emit restart marker if needed */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) |
| if (! emit_restart(&state, entropy->next_restart_num)) |
| return 0; |
| } |
| |
| /* Set input pointer locations based on MCU_col_num */ |
| for (ptrn = 0; ptrn < entropy->num_input_ptrs; ptrn++) { |
| ci = entropy->input_ptr_info[ptrn].ci; |
| yoffset = entropy->input_ptr_info[ptrn].yoffset; |
| MCU_width = entropy->input_ptr_info[ptrn].MCU_width; |
| entropy->input_ptr[ptrn] = |
| diff_buf[ci][MCU_row_num + yoffset] + (MCU_col_num * MCU_width); |
| } |
| |
| for (mcu_num = 0; mcu_num < nMCU; mcu_num++) { |
| |
| /* Inner loop handles the samples in the MCU */ |
| for (sampn = 0; sampn < cinfo->data_units_in_MCU; sampn++) { |
| register int temp, temp2, temp3; |
| register int nbits; |
| c_derived_tbl *dctbl = entropy->cur_tbls[sampn]; |
| |
| /* Encode the difference per section H.1.2.2 */ |
| |
| /* Input the sample difference */ |
| temp = *entropy->input_ptr[entropy->input_ptr_index[sampn]]++; |
| |
| if (temp & 0x8000) { /* instead of temp < 0 */ |
| temp = (-temp) & 0x7FFF; /* absolute value, mod 2^16 */ |
| if (temp == 0) /* special case: magnitude = 32768 */ |
| temp2 = temp = 0x8000; |
| temp2 = ~ temp; /* one's complement of magnitude */ |
| } else { |
| temp &= 0x7FFF; /* abs value mod 2^16 */ |
| temp2 = temp; /* magnitude */ |
| } |
| |
| /* Find the number of bits needed for the magnitude of the difference */ |
| nbits = 0; |
| while (temp) { |
| nbits++; |
| temp >>= 1; |
| } |
| /* Check for out-of-range difference values. |
| */ |
| if (nbits > MAX_DIFF_BITS) |
| ERREXIT(cinfo, JERR_BAD_DIFF); |
| |
| /* Emit the Huffman-coded symbol for the number of bits */ |
| if (! emit_bits(&state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) |
| return mcu_num; |
| |
| /* Emit that number of bits of the value, if positive, */ |
| /* or the complement of its magnitude, if negative. */ |
| if (nbits && /* emit_bits rejects calls with size 0 */ |
| nbits != 16) /* special case: no bits should be emitted */ |
| if (! emit_bits(&state, (unsigned int) temp2, nbits)) |
| return mcu_num; |
| } |
| |
| /* Completed MCU, so update state */ |
| cinfo->dest->next_output_byte = state.next_output_byte; |
| cinfo->dest->free_in_buffer = state.free_in_buffer; |
| ASSIGN_STATE(entropy->saved, state.cur); |
| |
| /* Update restart-interval state too */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num++; |
| entropy->next_restart_num &= 7; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| } |
| |
| return nMCU; |
| } |
| |
| |
| /* |
| * Finish up at the end of a Huffman-compressed scan. |
| */ |
| |
| METHODDEF(void) |
| finish_pass_huff (j_compress_ptr cinfo) |
| { |
| j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; |
| lhuff_entropy_ptr entropy = (lhuff_entropy_ptr) losslsc->entropy_private; |
| working_state state; |
| |
| /* Load up working state ... flush_bits needs it */ |
| state.next_output_byte = cinfo->dest->next_output_byte; |
| state.free_in_buffer = cinfo->dest->free_in_buffer; |
| ASSIGN_STATE(state.cur, entropy->saved); |
| state.cinfo = cinfo; |
| |
| /* Flush out the last data */ |
| if (! flush_bits(&state)) |
| ERREXIT(cinfo, JERR_CANT_SUSPEND); |
| |
| /* Update state */ |
| cinfo->dest->next_output_byte = state.next_output_byte; |
| cinfo->dest->free_in_buffer = state.free_in_buffer; |
| ASSIGN_STATE(entropy->saved, state.cur); |
| } |
| |
| |
| /* |
| * Huffman coding optimization. |
| * |
| * We first scan the supplied data and count the number of uses of each symbol |
| * that is to be Huffman-coded. (This process MUST agree with the code above.) |
| * Then we build a Huffman coding tree for the observed counts. |
| * Symbols which are not needed at all for the particular image are not |
| * assigned any code, which saves space in the DHT marker as well as in |
| * the compressed data. |
| */ |
| |
| #ifdef ENTROPY_OPT_SUPPORTED |
| |
| /* |
| * Trial-encode one nMCU's worth of Huffman-compressed differences. |
| * No data is actually output, so no suspension return is possible. |
| */ |
| |
| METHODDEF(JDIMENSION) |
| encode_mcus_gather (j_compress_ptr cinfo, JDIFFIMAGE diff_buf, |
| JDIMENSION MCU_row_num, JDIMENSION MCU_col_num, |
| JDIMENSION nMCU) |
| { |
| j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; |
| lhuff_entropy_ptr entropy = (lhuff_entropy_ptr) losslsc->entropy_private; |
| int mcu_num, sampn, ci, yoffset, MCU_width, ptrn; |
| jpeg_component_info * compptr; |
| |
| /* Take care of restart intervals if needed */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| /* Update restart state */ |
| entropy->restarts_to_go = cinfo->restart_interval; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| /* Set input pointer locations based on MCU_col_num */ |
| for (ptrn = 0; ptrn < entropy->num_input_ptrs; ptrn++) { |
| ci = entropy->input_ptr_info[ptrn].ci; |
| yoffset = entropy->input_ptr_info[ptrn].yoffset; |
| MCU_width = entropy->input_ptr_info[ptrn].MCU_width; |
| entropy->input_ptr[ptrn] = |
| diff_buf[ci][MCU_row_num + yoffset] + (MCU_col_num * MCU_width); |
| } |
| |
| for (mcu_num = 0; mcu_num < nMCU; mcu_num++) { |
| |
| /* Inner loop handles the samples in the MCU */ |
| for (sampn = 0; sampn < cinfo->data_units_in_MCU; sampn++) { |
| register int temp; |
| register int nbits; |
| c_derived_tbl *dctbl = entropy->cur_tbls[sampn]; |
| long * counts = entropy->cur_counts[sampn]; |
| |
| /* Encode the difference per section H.1.2.2 */ |
| |
| /* Input the sample difference */ |
| temp = *entropy->input_ptr[entropy->input_ptr_index[sampn]]++; |
| |
| if (temp & 0x8000) { /* instead of temp < 0 */ |
| temp = (-temp) & 0x7FFF; /* absolute value, mod 2^16 */ |
| if (temp == 0) /* special case: magnitude = 32768 */ |
| temp = 0x8000; |
| } else |
| temp &= 0x7FFF; /* abs value mod 2^16 */ |
| |
| /* Find the number of bits needed for the magnitude of the difference */ |
| nbits = 0; |
| while (temp) { |
| nbits++; |
| temp >>= 1; |
| } |
| /* Check for out-of-range difference values. |
| */ |
| if (nbits > MAX_DIFF_BITS) |
| ERREXIT(cinfo, JERR_BAD_DIFF); |
| |
| /* Count the Huffman symbol for the number of bits */ |
| counts[nbits]++; |
| } |
| } |
| |
| return nMCU; |
| } |
| |
| |
| /* |
| * Finish up a statistics-gathering pass and create the new Huffman tables. |
| */ |
| |
| METHODDEF(void) |
| finish_pass_gather (j_compress_ptr cinfo) |
| { |
| j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; |
| lhuff_entropy_ptr entropy = (lhuff_entropy_ptr) losslsc->entropy_private; |
| int ci, dctbl; |
| jpeg_component_info * compptr; |
| JHUFF_TBL **htblptr; |
| boolean did_dc[NUM_HUFF_TBLS]; |
| |
| /* It's important not to apply jpeg_gen_optimal_table more than once |
| * per table, because it clobbers the input frequency counts! |
| */ |
| MEMZERO(did_dc, SIZEOF(did_dc)); |
| |
| for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| compptr = cinfo->cur_comp_info[ci]; |
| dctbl = compptr->dc_tbl_no; |
| if (! did_dc[dctbl]) { |
| htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; |
| if (*htblptr == NULL) |
| *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
| jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[dctbl]); |
| did_dc[dctbl] = TRUE; |
| } |
| } |
| } |
| |
| |
| #endif /* ENTROPY_OPT_SUPPORTED */ |
| |
| |
| METHODDEF(boolean) |
| need_optimization_pass (j_compress_ptr cinfo) |
| { |
| return TRUE; |
| } |
| |
| |
| /* |
| * Module initialization routine for Huffman entropy encoding. |
| */ |
| |
| GLOBAL(void) |
| jinit_lhuff_encoder (j_compress_ptr cinfo) |
| { |
| j_lossless_c_ptr losslsc = (j_lossless_c_ptr) cinfo->codec; |
| lhuff_entropy_ptr entropy; |
| int i; |
| |
| entropy = (lhuff_entropy_ptr) |
| (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| SIZEOF(lhuff_entropy_encoder)); |
| losslsc->entropy_private = (struct jpeg_entropy_encoder *) entropy; |
| losslsc->pub.entropy_start_pass = start_pass_huff; |
| losslsc->pub.need_optimization_pass = need_optimization_pass; |
| |
| /* Mark tables unallocated */ |
| for (i = 0; i < NUM_HUFF_TBLS; i++) { |
| entropy->derived_tbls[i] = NULL; |
| #ifdef ENTROPY_OPT_SUPPORTED |
| entropy->count_ptrs[i] = NULL; |
| #endif |
| } |
| } |