| /* |
| * jdsample.c |
| * |
| * This file was part of the Independent JPEG Group's software: |
| * Copyright (C) 1991-1996, Thomas G. Lane. |
| * libjpeg-turbo Modifications: |
| * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
| * Copyright (C) 2010, 2015-2016, 2022, D. R. Commander. |
| * Copyright (C) 2014, MIPS Technologies, Inc., California. |
| * Copyright (C) 2015, Google, Inc. |
| * Copyright (C) 2019-2020, Arm Limited. |
| * For conditions of distribution and use, see the accompanying README.ijg |
| * file. |
| * |
| * This file contains upsampling routines. |
| * |
| * Upsampling input data is counted in "row groups". A row group |
| * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) |
| * sample rows of each component. Upsampling will normally produce |
| * max_v_samp_factor pixel rows from each row group (but this could vary |
| * if the upsampler is applying a scale factor of its own). |
| * |
| * An excellent reference for image resampling is |
| * Digital Image Warping, George Wolberg, 1990. |
| * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
| */ |
| |
| #include "jinclude.h" |
| #include "jdsample.h" |
| #include "jsimd.h" |
| #include "jpegapicomp.h" |
| |
| |
| |
| #if BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED) |
| |
| /* |
| * Initialize for an upsampling pass. |
| */ |
| |
| METHODDEF(void) |
| start_pass_upsample(j_decompress_ptr cinfo) |
| { |
| my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample; |
| |
| /* Mark the conversion buffer empty */ |
| upsample->next_row_out = cinfo->max_v_samp_factor; |
| /* Initialize total-height counter for detecting bottom of image */ |
| upsample->rows_to_go = cinfo->output_height; |
| } |
| |
| |
| /* |
| * Control routine to do upsampling (and color conversion). |
| * |
| * In this version we upsample each component independently. |
| * We upsample one row group into the conversion buffer, then apply |
| * color conversion a row at a time. |
| */ |
| |
| METHODDEF(void) |
| sep_upsample(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf, |
| JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, |
| _JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
| JDIMENSION out_rows_avail) |
| { |
| my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample; |
| int ci; |
| jpeg_component_info *compptr; |
| JDIMENSION num_rows; |
| |
| /* Fill the conversion buffer, if it's empty */ |
| if (upsample->next_row_out >= cinfo->max_v_samp_factor) { |
| for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| ci++, compptr++) { |
| /* Invoke per-component upsample method. Notice we pass a POINTER |
| * to color_buf[ci], so that fullsize_upsample can change it. |
| */ |
| (*upsample->methods[ci]) (cinfo, compptr, |
| input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), |
| upsample->color_buf + ci); |
| } |
| upsample->next_row_out = 0; |
| } |
| |
| /* Color-convert and emit rows */ |
| |
| /* How many we have in the buffer: */ |
| num_rows = (JDIMENSION)(cinfo->max_v_samp_factor - upsample->next_row_out); |
| /* Not more than the distance to the end of the image. Need this test |
| * in case the image height is not a multiple of max_v_samp_factor: |
| */ |
| if (num_rows > upsample->rows_to_go) |
| num_rows = upsample->rows_to_go; |
| /* And not more than what the client can accept: */ |
| out_rows_avail -= *out_row_ctr; |
| if (num_rows > out_rows_avail) |
| num_rows = out_rows_avail; |
| |
| (*cinfo->cconvert->_color_convert) (cinfo, upsample->color_buf, |
| (JDIMENSION)upsample->next_row_out, |
| output_buf + *out_row_ctr, |
| (int)num_rows); |
| |
| /* Adjust counts */ |
| *out_row_ctr += num_rows; |
| upsample->rows_to_go -= num_rows; |
| upsample->next_row_out += num_rows; |
| /* When the buffer is emptied, declare this input row group consumed */ |
| if (upsample->next_row_out >= cinfo->max_v_samp_factor) |
| (*in_row_group_ctr)++; |
| } |
| |
| |
| /* |
| * These are the routines invoked by sep_upsample to upsample pixel values |
| * of a single component. One row group is processed per call. |
| */ |
| |
| |
| /* |
| * For full-size components, we just make color_buf[ci] point at the |
| * input buffer, and thus avoid copying any data. Note that this is |
| * safe only because sep_upsample doesn't declare the input row group |
| * "consumed" until we are done color converting and emitting it. |
| */ |
| |
| METHODDEF(void) |
| fullsize_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
| _JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr) |
| { |
| *output_data_ptr = input_data; |
| } |
| |
| |
| /* |
| * This is a no-op version used for "uninteresting" components. |
| * These components will not be referenced by color conversion. |
| */ |
| |
| METHODDEF(void) |
| noop_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
| _JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr) |
| { |
| *output_data_ptr = NULL; /* safety check */ |
| } |
| |
| |
| /* |
| * This version handles any integral sampling ratios. |
| * This is not used for typical JPEG files, so it need not be fast. |
| * Nor, for that matter, is it particularly accurate: the algorithm is |
| * simple replication of the input pixel onto the corresponding output |
| * pixels. The hi-falutin sampling literature refers to this as a |
| * "box filter". A box filter tends to introduce visible artifacts, |
| * so if you are actually going to use 3:1 or 4:1 sampling ratios |
| * you would be well advised to improve this code. |
| */ |
| |
| METHODDEF(void) |
| int_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
| _JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr) |
| { |
| my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample; |
| _JSAMPARRAY output_data = *output_data_ptr; |
| register _JSAMPROW inptr, outptr; |
| register _JSAMPLE invalue; |
| register int h; |
| _JSAMPROW outend; |
| int h_expand, v_expand; |
| int inrow, outrow; |
| |
| h_expand = upsample->h_expand[compptr->component_index]; |
| v_expand = upsample->v_expand[compptr->component_index]; |
| |
| inrow = outrow = 0; |
| while (outrow < cinfo->max_v_samp_factor) { |
| /* Generate one output row with proper horizontal expansion */ |
| inptr = input_data[inrow]; |
| outptr = output_data[outrow]; |
| outend = outptr + cinfo->output_width; |
| while (outptr < outend) { |
| invalue = *inptr++; |
| for (h = h_expand; h > 0; h--) { |
| *outptr++ = invalue; |
| } |
| } |
| /* Generate any additional output rows by duplicating the first one */ |
| if (v_expand > 1) { |
| _jcopy_sample_rows(output_data, outrow, output_data, outrow + 1, |
| v_expand - 1, cinfo->output_width); |
| } |
| inrow++; |
| outrow += v_expand; |
| } |
| } |
| |
| |
| /* |
| * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. |
| * It's still a box filter. |
| */ |
| |
| METHODDEF(void) |
| h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
| _JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr) |
| { |
| _JSAMPARRAY output_data = *output_data_ptr; |
| register _JSAMPROW inptr, outptr; |
| register _JSAMPLE invalue; |
| _JSAMPROW outend; |
| int inrow; |
| |
| for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
| inptr = input_data[inrow]; |
| outptr = output_data[inrow]; |
| outend = outptr + cinfo->output_width; |
| while (outptr < outend) { |
| invalue = *inptr++; |
| *outptr++ = invalue; |
| *outptr++ = invalue; |
| } |
| } |
| } |
| |
| |
| /* |
| * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. |
| * It's still a box filter. |
| */ |
| |
| METHODDEF(void) |
| h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
| _JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr) |
| { |
| _JSAMPARRAY output_data = *output_data_ptr; |
| register _JSAMPROW inptr, outptr; |
| register _JSAMPLE invalue; |
| _JSAMPROW outend; |
| int inrow, outrow; |
| |
| inrow = outrow = 0; |
| while (outrow < cinfo->max_v_samp_factor) { |
| inptr = input_data[inrow]; |
| outptr = output_data[outrow]; |
| outend = outptr + cinfo->output_width; |
| while (outptr < outend) { |
| invalue = *inptr++; |
| *outptr++ = invalue; |
| *outptr++ = invalue; |
| } |
| _jcopy_sample_rows(output_data, outrow, output_data, outrow + 1, 1, |
| cinfo->output_width); |
| inrow++; |
| outrow += 2; |
| } |
| } |
| |
| |
| /* |
| * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. |
| * |
| * The upsampling algorithm is linear interpolation between pixel centers, |
| * also known as a "triangle filter". This is a good compromise between |
| * speed and visual quality. The centers of the output pixels are 1/4 and 3/4 |
| * of the way between input pixel centers. |
| * |
| * A note about the "bias" calculations: when rounding fractional values to |
| * integer, we do not want to always round 0.5 up to the next integer. |
| * If we did that, we'd introduce a noticeable bias towards larger values. |
| * Instead, this code is arranged so that 0.5 will be rounded up or down at |
| * alternate pixel locations (a simple ordered dither pattern). |
| */ |
| |
| METHODDEF(void) |
| h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
| _JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr) |
| { |
| _JSAMPARRAY output_data = *output_data_ptr; |
| register _JSAMPROW inptr, outptr; |
| register int invalue; |
| register JDIMENSION colctr; |
| int inrow; |
| |
| for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
| inptr = input_data[inrow]; |
| outptr = output_data[inrow]; |
| /* Special case for first column */ |
| invalue = *inptr++; |
| *outptr++ = (_JSAMPLE)invalue; |
| *outptr++ = (_JSAMPLE)((invalue * 3 + inptr[0] + 2) >> 2); |
| |
| for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
| /* General case: 3/4 * nearer pixel + 1/4 * further pixel */ |
| invalue = (*inptr++) * 3; |
| *outptr++ = (_JSAMPLE)((invalue + inptr[-2] + 1) >> 2); |
| *outptr++ = (_JSAMPLE)((invalue + inptr[0] + 2) >> 2); |
| } |
| |
| /* Special case for last column */ |
| invalue = *inptr; |
| *outptr++ = (_JSAMPLE)((invalue * 3 + inptr[-1] + 1) >> 2); |
| *outptr++ = (_JSAMPLE)invalue; |
| } |
| } |
| |
| |
| /* |
| * Fancy processing for 1:1 horizontal and 2:1 vertical (4:4:0 subsampling). |
| * |
| * This is a less common case, but it can be encountered when losslessly |
| * rotating/transposing a JPEG file that uses 4:2:2 chroma subsampling. |
| */ |
| |
| METHODDEF(void) |
| h1v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
| _JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr) |
| { |
| _JSAMPARRAY output_data = *output_data_ptr; |
| _JSAMPROW inptr0, inptr1, outptr; |
| #if BITS_IN_JSAMPLE == 8 |
| int thiscolsum, bias; |
| #else |
| JLONG thiscolsum, bias; |
| #endif |
| JDIMENSION colctr; |
| int inrow, outrow, v; |
| |
| inrow = outrow = 0; |
| while (outrow < cinfo->max_v_samp_factor) { |
| for (v = 0; v < 2; v++) { |
| /* inptr0 points to nearest input row, inptr1 points to next nearest */ |
| inptr0 = input_data[inrow]; |
| if (v == 0) { /* next nearest is row above */ |
| inptr1 = input_data[inrow - 1]; |
| bias = 1; |
| } else { /* next nearest is row below */ |
| inptr1 = input_data[inrow + 1]; |
| bias = 2; |
| } |
| outptr = output_data[outrow++]; |
| |
| for (colctr = 0; colctr < compptr->downsampled_width; colctr++) { |
| thiscolsum = (*inptr0++) * 3 + (*inptr1++); |
| *outptr++ = (_JSAMPLE)((thiscolsum + bias) >> 2); |
| } |
| } |
| inrow++; |
| } |
| } |
| |
| |
| /* |
| * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. |
| * Again a triangle filter; see comments for h2v1 case, above. |
| * |
| * It is OK for us to reference the adjacent input rows because we demanded |
| * context from the main buffer controller (see initialization code). |
| */ |
| |
| METHODDEF(void) |
| h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
| _JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr) |
| { |
| _JSAMPARRAY output_data = *output_data_ptr; |
| register _JSAMPROW inptr0, inptr1, outptr; |
| #if BITS_IN_JSAMPLE == 8 |
| register int thiscolsum, lastcolsum, nextcolsum; |
| #else |
| register JLONG thiscolsum, lastcolsum, nextcolsum; |
| #endif |
| register JDIMENSION colctr; |
| int inrow, outrow, v; |
| |
| inrow = outrow = 0; |
| while (outrow < cinfo->max_v_samp_factor) { |
| for (v = 0; v < 2; v++) { |
| /* inptr0 points to nearest input row, inptr1 points to next nearest */ |
| inptr0 = input_data[inrow]; |
| if (v == 0) /* next nearest is row above */ |
| inptr1 = input_data[inrow - 1]; |
| else /* next nearest is row below */ |
| inptr1 = input_data[inrow + 1]; |
| outptr = output_data[outrow++]; |
| |
| /* Special case for first column */ |
| thiscolsum = (*inptr0++) * 3 + (*inptr1++); |
| nextcolsum = (*inptr0++) * 3 + (*inptr1++); |
| *outptr++ = (_JSAMPLE)((thiscolsum * 4 + 8) >> 4); |
| *outptr++ = (_JSAMPLE)((thiscolsum * 3 + nextcolsum + 7) >> 4); |
| lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
| |
| for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
| /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ |
| /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ |
| nextcolsum = (*inptr0++) * 3 + (*inptr1++); |
| *outptr++ = (_JSAMPLE)((thiscolsum * 3 + lastcolsum + 8) >> 4); |
| *outptr++ = (_JSAMPLE)((thiscolsum * 3 + nextcolsum + 7) >> 4); |
| lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
| } |
| |
| /* Special case for last column */ |
| *outptr++ = (_JSAMPLE)((thiscolsum * 3 + lastcolsum + 8) >> 4); |
| *outptr++ = (_JSAMPLE)((thiscolsum * 4 + 7) >> 4); |
| } |
| inrow++; |
| } |
| } |
| |
| |
| /* |
| * Module initialization routine for upsampling. |
| */ |
| |
| GLOBAL(void) |
| _jinit_upsampler(j_decompress_ptr cinfo) |
| { |
| my_upsample_ptr upsample; |
| int ci; |
| jpeg_component_info *compptr; |
| boolean need_buffer, do_fancy; |
| int h_in_group, v_in_group, h_out_group, v_out_group; |
| |
| if (cinfo->data_precision != BITS_IN_JSAMPLE) |
| ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
| |
| if (!cinfo->master->jinit_upsampler_no_alloc) { |
| upsample = (my_upsample_ptr) |
| (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
| sizeof(my_upsampler)); |
| cinfo->upsample = (struct jpeg_upsampler *)upsample; |
| upsample->pub.start_pass = start_pass_upsample; |
| upsample->pub._upsample = sep_upsample; |
| upsample->pub.need_context_rows = FALSE; /* until we find out differently */ |
| } else |
| upsample = (my_upsample_ptr)cinfo->upsample; |
| |
| if (cinfo->CCIR601_sampling) /* this isn't supported */ |
| ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
| |
| /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1, |
| * so don't ask for it. |
| */ |
| do_fancy = cinfo->do_fancy_upsampling && cinfo->_min_DCT_scaled_size > 1; |
| |
| /* Verify we can handle the sampling factors, select per-component methods, |
| * and create storage as needed. |
| */ |
| for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| ci++, compptr++) { |
| /* Compute size of an "input group" after IDCT scaling. This many samples |
| * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. |
| */ |
| h_in_group = (compptr->h_samp_factor * compptr->_DCT_scaled_size) / |
| cinfo->_min_DCT_scaled_size; |
| v_in_group = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / |
| cinfo->_min_DCT_scaled_size; |
| h_out_group = cinfo->max_h_samp_factor; |
| v_out_group = cinfo->max_v_samp_factor; |
| upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ |
| need_buffer = TRUE; |
| if (!compptr->component_needed) { |
| /* Don't bother to upsample an uninteresting component. */ |
| upsample->methods[ci] = noop_upsample; |
| need_buffer = FALSE; |
| } else if (h_in_group == h_out_group && v_in_group == v_out_group) { |
| /* Fullsize components can be processed without any work. */ |
| upsample->methods[ci] = fullsize_upsample; |
| need_buffer = FALSE; |
| } else if (h_in_group * 2 == h_out_group && v_in_group == v_out_group) { |
| /* Special cases for 2h1v upsampling */ |
| if (do_fancy && compptr->downsampled_width > 2) { |
| #ifdef WITH_SIMD |
| if (jsimd_can_h2v1_fancy_upsample()) |
| upsample->methods[ci] = jsimd_h2v1_fancy_upsample; |
| else |
| #endif |
| upsample->methods[ci] = h2v1_fancy_upsample; |
| } else { |
| #ifdef WITH_SIMD |
| if (jsimd_can_h2v1_upsample()) |
| upsample->methods[ci] = jsimd_h2v1_upsample; |
| else |
| #endif |
| upsample->methods[ci] = h2v1_upsample; |
| } |
| } else if (h_in_group == h_out_group && |
| v_in_group * 2 == v_out_group && do_fancy) { |
| /* Non-fancy upsampling is handled by the generic method */ |
| #if defined(WITH_SIMD) && (defined(__arm__) || defined(__aarch64__) || \ |
| defined(_M_ARM) || defined(_M_ARM64)) |
| if (jsimd_can_h1v2_fancy_upsample()) |
| upsample->methods[ci] = jsimd_h1v2_fancy_upsample; |
| else |
| #endif |
| upsample->methods[ci] = h1v2_fancy_upsample; |
| upsample->pub.need_context_rows = TRUE; |
| } else if (h_in_group * 2 == h_out_group && |
| v_in_group * 2 == v_out_group) { |
| /* Special cases for 2h2v upsampling */ |
| if (do_fancy && compptr->downsampled_width > 2) { |
| #ifdef WITH_SIMD |
| if (jsimd_can_h2v2_fancy_upsample()) |
| upsample->methods[ci] = jsimd_h2v2_fancy_upsample; |
| else |
| #endif |
| upsample->methods[ci] = h2v2_fancy_upsample; |
| upsample->pub.need_context_rows = TRUE; |
| } else { |
| #ifdef WITH_SIMD |
| if (jsimd_can_h2v2_upsample()) |
| upsample->methods[ci] = jsimd_h2v2_upsample; |
| else |
| #endif |
| upsample->methods[ci] = h2v2_upsample; |
| } |
| } else if ((h_out_group % h_in_group) == 0 && |
| (v_out_group % v_in_group) == 0) { |
| /* Generic integral-factors upsampling method */ |
| #if defined(WITH_SIMD) && defined(__mips__) |
| if (jsimd_can_int_upsample()) |
| upsample->methods[ci] = jsimd_int_upsample; |
| else |
| #endif |
| upsample->methods[ci] = int_upsample; |
| upsample->h_expand[ci] = (UINT8)(h_out_group / h_in_group); |
| upsample->v_expand[ci] = (UINT8)(v_out_group / v_in_group); |
| } else |
| ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
| if (need_buffer && !cinfo->master->jinit_upsampler_no_alloc) { |
| upsample->color_buf[ci] = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray) |
| ((j_common_ptr)cinfo, JPOOL_IMAGE, |
| (JDIMENSION)jround_up((long)cinfo->output_width, |
| (long)cinfo->max_h_samp_factor), |
| (JDIMENSION)cinfo->max_v_samp_factor); |
| } |
| } |
| } |
| |
| #endif /* BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED) */ |