blob: 79f0ca52cc7da31a54d40225b135f67eb9aa60d1 [file] [log] [blame]
;
; jchuff-sse2.asm - Huffman entropy encoding (SSE2)
;
; Copyright (C) 2009-2011, 2014-2017, D. R. Commander.
; Copyright (C) 2015, Matthieu Darbois.
;
; Based on the x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains an SSE2 implementation for Huffman coding of one block.
; The following code is based directly on jchuff.c; see jchuff.c for more
; details.
%include "jsimdext.inc"
; --------------------------------------------------------------------------
SECTION SEG_CONST
alignz 32
GLOBAL_DATA(jconst_huff_encode_one_block)
EXTN(jconst_huff_encode_one_block):
%include "jpeg_nbits_table.inc"
alignz 32
; --------------------------------------------------------------------------
SECTION SEG_TEXT
BITS 32
; These macros perform the same task as the emit_bits() function in the
; original libjpeg code. In addition to reducing overhead by explicitly
; inlining the code, additional performance is achieved by taking into
; account the size of the bit buffer and waiting until it is almost full
; before emptying it. This mostly benefits 64-bit platforms, since 6
; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
%macro EMIT_BYTE 0
sub put_bits, 8 ; put_bits -= 8;
mov edx, put_buffer
mov ecx, put_bits
shr edx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
mov byte [eax], dl ; *buffer++ = c;
add eax, 1
cmp dl, 0xFF ; need to stuff a zero byte?
jne %%.EMIT_BYTE_END
mov byte [eax], 0 ; *buffer++ = 0;
add eax, 1
%%.EMIT_BYTE_END:
%endmacro
%macro PUT_BITS 1
add put_bits, ecx ; put_bits += size;
shl put_buffer, cl ; put_buffer = (put_buffer << size);
or put_buffer, %1
%endmacro
%macro CHECKBUF15 0
cmp put_bits, 16 ; if (put_bits > 31) {
jl %%.CHECKBUF15_END
mov eax, POINTER [esp+buffer]
EMIT_BYTE
EMIT_BYTE
mov POINTER [esp+buffer], eax
%%.CHECKBUF15_END:
%endmacro
%macro EMIT_BITS 1
PUT_BITS %1
CHECKBUF15
%endmacro
%macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
pxor xmm4, xmm4 ; __m128i neg = _mm_setzero_si128();
pxor xmm5, xmm5 ; __m128i neg = _mm_setzero_si128();
pxor xmm6, xmm6 ; __m128i neg = _mm_setzero_si128();
pxor xmm7, xmm7 ; __m128i neg = _mm_setzero_si128();
pinsrw %34, word [esi + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0];
pinsrw %35, word [esi + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8];
pinsrw %36, word [esi + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16];
pinsrw %37, word [esi + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24];
pinsrw %34, word [esi + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1];
pinsrw %35, word [esi + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9];
pinsrw %36, word [esi + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17];
pinsrw %37, word [esi + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25];
pinsrw %34, word [esi + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2];
pinsrw %35, word [esi + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10];
pinsrw %36, word [esi + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18];
pinsrw %37, word [esi + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26];
pinsrw %34, word [esi + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3];
pinsrw %35, word [esi + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11];
pinsrw %36, word [esi + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19];
pinsrw %37, word [esi + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27];
pinsrw %34, word [esi + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4];
pinsrw %35, word [esi + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12];
pinsrw %36, word [esi + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20];
pinsrw %37, word [esi + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28];
pinsrw %34, word [esi + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5];
pinsrw %35, word [esi + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13];
pinsrw %36, word [esi + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21];
pinsrw %37, word [esi + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29];
pinsrw %34, word [esi + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6];
pinsrw %35, word [esi + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14];
pinsrw %36, word [esi + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22];
pinsrw %37, word [esi + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30];
pinsrw %34, word [esi + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7];
pinsrw %35, word [esi + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15];
pinsrw %36, word [esi + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23];
%if %1 != 32
pinsrw %37, word [esi + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31];
%else
pinsrw %37, ecx, 7 ; xmm_shadow[31] = block[jno31];
%endif
pcmpgtw xmm4, %34 ; neg = _mm_cmpgt_epi16(neg, x1);
pcmpgtw xmm5, %35 ; neg = _mm_cmpgt_epi16(neg, x1);
pcmpgtw xmm6, %36 ; neg = _mm_cmpgt_epi16(neg, x1);
pcmpgtw xmm7, %37 ; neg = _mm_cmpgt_epi16(neg, x1);
paddw %34, xmm4 ; x1 = _mm_add_epi16(x1, neg);
paddw %35, xmm5 ; x1 = _mm_add_epi16(x1, neg);
paddw %36, xmm6 ; x1 = _mm_add_epi16(x1, neg);
paddw %37, xmm7 ; x1 = _mm_add_epi16(x1, neg);
pxor %34, xmm4 ; x1 = _mm_xor_si128(x1, neg);
pxor %35, xmm5 ; x1 = _mm_xor_si128(x1, neg);
pxor %36, xmm6 ; x1 = _mm_xor_si128(x1, neg);
pxor %37, xmm7 ; x1 = _mm_xor_si128(x1, neg);
pxor xmm4, %34 ; neg = _mm_xor_si128(neg, x1);
pxor xmm5, %35 ; neg = _mm_xor_si128(neg, x1);
pxor xmm6, %36 ; neg = _mm_xor_si128(neg, x1);
pxor xmm7, %37 ; neg = _mm_xor_si128(neg, x1);
movdqa XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
movdqa XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
movdqa XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
movdqa XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
movdqa XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
movdqa XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
movdqa XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
movdqa XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
%endmacro
;
; Encode a single block's worth of coefficients.
;
; GLOBAL(JOCTET *)
; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer,
; JCOEFPTR block, int last_dc_val,
; c_derived_tbl *dctbl, c_derived_tbl *actbl)
;
; eax + 8 = working_state *state
; eax + 12 = JOCTET *buffer
; eax + 16 = JCOEFPTR block
; eax + 20 = int last_dc_val
; eax + 24 = c_derived_tbl *dctbl
; eax + 28 = c_derived_tbl *actbl
%define pad 6 * SIZEOF_DWORD ; Align to 16 bytes
%define t1 pad
%define t2 t1 + (DCTSIZE2 * SIZEOF_WORD)
%define block t2 + (DCTSIZE2 * SIZEOF_WORD)
%define actbl block + SIZEOF_DWORD
%define buffer actbl + SIZEOF_DWORD
%define temp buffer + SIZEOF_DWORD
%define temp2 temp + SIZEOF_DWORD
%define temp3 temp2 + SIZEOF_DWORD
%define temp4 temp3 + SIZEOF_DWORD
%define temp5 temp4 + SIZEOF_DWORD
%define gotptr temp5 + SIZEOF_DWORD ; void *gotptr
%define put_buffer ebx
%define put_bits edi
align 32
GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2)
EXTN(jsimd_huff_encode_one_block_sse2):
push ebp
mov eax, esp ; eax = original ebp
sub esp, byte 4
and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
mov [esp], eax
mov ebp, esp ; ebp = aligned ebp
sub esp, temp5+9*SIZEOF_DWORD-pad
push ebx
push ecx
; push edx ; need not be preserved
push esi
push edi
push ebp
mov esi, POINTER [eax+8] ; (working_state *state)
mov put_buffer, dword [esi+8] ; put_buffer = state->cur.put_buffer;
mov put_bits, dword [esi+12] ; put_bits = state->cur.put_bits;
push esi ; esi is now scratch
get_GOT edx ; get GOT address
movpic POINTER [esp+gotptr], edx ; save GOT address
mov ecx, POINTER [eax+28]
mov edx, POINTER [eax+16]
mov esi, POINTER [eax+12]
mov POINTER [esp+actbl], ecx
mov POINTER [esp+block], edx
mov POINTER [esp+buffer], esi
; Encode the DC coefficient difference per section F.1.2.1
mov esi, POINTER [esp+block] ; block
movsx ecx, word [esi] ; temp = temp2 = block[0] - last_dc_val;
sub ecx, dword [eax+20]
mov esi, ecx
; This is a well-known technique for obtaining the absolute value
; with out a branch. It is derived from an assembly language technique
; presented in "How to Optimize for the Pentium Processors",
; Copyright (c) 1996, 1997 by Agner Fog.
mov edx, ecx
sar edx, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
xor ecx, edx ; temp ^= temp3;
sub ecx, edx ; temp -= temp3;
; For a negative input, want temp2 = bitwise complement of abs(input)
; This code assumes we are on a two's complement machine
add esi, edx ; temp2 += temp3;
mov dword [esp+temp], esi ; backup temp2 in temp
; Find the number of bits needed for the magnitude of the coefficient
movpic ebp, POINTER [esp+gotptr] ; load GOT address (ebp)
movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)] ; nbits = JPEG_NBITS(temp);
mov dword [esp+temp2], edx ; backup nbits in temp2
; Emit the Huffman-coded symbol for the number of bits
mov ebp, POINTER [eax+24] ; After this point, arguments are not accessible anymore
mov eax, INT [ebp + edx * 4] ; code = dctbl->ehufco[nbits];
movzx ecx, byte [ebp + edx + 1024] ; size = dctbl->ehufsi[nbits];
EMIT_BITS eax ; EMIT_BITS(code, size)
mov ecx, dword [esp+temp2] ; restore nbits
; Mask off any extra bits in code
mov eax, 1
shl eax, cl
dec eax
and eax, dword [esp+temp] ; temp2 &= (((JLONG)1)<<nbits) - 1;
; Emit that number of bits of the value, if positive,
; or the complement of its magnitude, if negative.
EMIT_BITS eax ; EMIT_BITS(temp2, nbits)
; Prepare data
xor ecx, ecx
mov esi, POINTER [esp+block]
kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \
18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \
27, 20, 13, 6, 7, 14, 21, 28, 35, \
xmm0, xmm1, xmm2, xmm3
kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
53, 60, 61, 54, 47, 55, 62, 63, 63, \
xmm0, xmm1, xmm2, xmm3
pxor xmm7, xmm7
movdqa xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
movdqa xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
movdqa xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
movdqa xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
shl ecx, 16
or edx, ecx
not edx ; index = ~index;
lea esi, [esp+t1]
mov ebp, POINTER [esp+actbl] ; ebp = actbl
.BLOOP:
bsf ecx, edx ; r = __builtin_ctzl(index);
jz near .ELOOP
lea esi, [esi+ecx*2] ; k += r;
shr edx, cl ; index >>= r;
mov dword [esp+temp3], edx
.BRLOOP:
cmp ecx, 16 ; while (r > 15) {
jl near .ERLOOP
sub ecx, 16 ; r -= 16;
mov dword [esp+temp], ecx
mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
mov ecx, dword [esp+temp]
jmp .BRLOOP
.ERLOOP:
movsx eax, word [esi] ; temp = t1[k];
movpic edx, POINTER [esp+gotptr] ; load GOT address (edx)
movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)] ; nbits = JPEG_NBITS(temp);
mov dword [esp+temp2], eax
; Emit Huffman symbol for run length / number of bits
shl ecx, 4 ; temp3 = (r << 4) + nbits;
add ecx, eax
mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
EMIT_BITS eax
movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
; Mask off any extra bits in code
mov ecx, dword [esp+temp2]
mov eax, 1
shl eax, cl
dec eax
and eax, edx ; temp2 &= (((JLONG)1)<<nbits) - 1;
EMIT_BITS eax ; PUT_BITS(temp2, nbits)
mov edx, dword [esp+temp3]
add esi, 2 ; ++k;
shr edx, 1 ; index >>= 1;
jmp .BLOOP
.ELOOP:
movdqa xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
movdqa xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
movdqa xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
movdqa xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
shl ecx, 16
or edx, ecx
not edx ; index = ~index;
lea eax, [esp + t1 + (DCTSIZE2/2) * 2]
sub eax, esi
shr eax, 1
bsf ecx, edx ; r = __builtin_ctzl(index);
jz near .ELOOP2
shr edx, cl ; index >>= r;
add ecx, eax
lea esi, [esi+ecx*2] ; k += r;
mov dword [esp+temp3], edx
jmp .BRLOOP2
.BLOOP2:
bsf ecx, edx ; r = __builtin_ctzl(index);
jz near .ELOOP2
lea esi, [esi+ecx*2] ; k += r;
shr edx, cl ; index >>= r;
mov dword [esp+temp3], edx
.BRLOOP2:
cmp ecx, 16 ; while (r > 15) {
jl near .ERLOOP2
sub ecx, 16 ; r -= 16;
mov dword [esp+temp], ecx
mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
mov ecx, dword [esp+temp]
jmp .BRLOOP2
.ERLOOP2:
movsx eax, word [esi] ; temp = t1[k];
bsr eax, eax ; nbits = 32 - __builtin_clz(temp);
inc eax
mov dword [esp+temp2], eax
; Emit Huffman symbol for run length / number of bits
shl ecx, 4 ; temp3 = (r << 4) + nbits;
add ecx, eax
mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
EMIT_BITS eax
movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
; Mask off any extra bits in code
mov ecx, dword [esp+temp2]
mov eax, 1
shl eax, cl
dec eax
and eax, edx ; temp2 &= (((JLONG)1)<<nbits) - 1;
EMIT_BITS eax ; PUT_BITS(temp2, nbits)
mov edx, dword [esp+temp3]
add esi, 2 ; ++k;
shr edx, 1 ; index >>= 1;
jmp .BLOOP2
.ELOOP2:
; If the last coef(s) were zero, emit an end-of-block code
lea edx, [esp + t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k;
cmp edx, esi ; if (r > 0) {
je .EFN
mov eax, INT [ebp] ; code = actbl->ehufco[0];
movzx ecx, byte [ebp + 1024] ; size = actbl->ehufsi[0];
EMIT_BITS eax
.EFN:
mov eax, [esp+buffer]
pop esi
; Save put_buffer & put_bits
mov dword [esi+8], put_buffer ; state->cur.put_buffer = put_buffer;
mov dword [esi+12], put_bits ; state->cur.put_bits = put_bits;
pop ebp
pop edi
pop esi
; pop edx ; need not be preserved
pop ecx
pop ebx
mov esp, ebp ; esp <- aligned ebp
pop esp ; esp <- original ebp
pop ebp
ret
; For some reason, the OS X linker does not honor the request to align the
; segment unless we do this.
align 32