| /* |
| * transupp.c |
| * |
| * Copyright (C) 1997-2009, Thomas G. Lane, Guido Vollbeding. |
| * This file is part of the Independent JPEG Group's software. |
| * For conditions of distribution and use, see the accompanying README file. |
| * |
| * This file contains image transformation routines and other utility code |
| * used by the jpegtran sample application. These are NOT part of the core |
| * JPEG library. But we keep these routines separate from jpegtran.c to |
| * ease the task of maintaining jpegtran-like programs that have other user |
| * interfaces. |
| */ |
| |
| /* Although this file really shouldn't have access to the library internals, |
| * it's helpful to let it call jround_up() and jcopy_block_row(). |
| */ |
| #define JPEG_INTERNALS |
| |
| #include "jinclude.h" |
| #include "jpeglib.h" |
| #include "transupp.h" /* My own external interface */ |
| #include <ctype.h> /* to declare isdigit() */ |
| |
| |
| #if TRANSFORMS_SUPPORTED |
| |
| /* |
| * Lossless image transformation routines. These routines work on DCT |
| * coefficient arrays and thus do not require any lossy decompression |
| * or recompression of the image. |
| * Thanks to Guido Vollbeding for the initial design and code of this feature, |
| * and to Ben Jackson for introducing the cropping feature. |
| * |
| * Horizontal flipping is done in-place, using a single top-to-bottom |
| * pass through the virtual source array. It will thus be much the |
| * fastest option for images larger than main memory. |
| * |
| * The other routines require a set of destination virtual arrays, so they |
| * need twice as much memory as jpegtran normally does. The destination |
| * arrays are always written in normal scan order (top to bottom) because |
| * the virtual array manager expects this. The source arrays will be scanned |
| * in the corresponding order, which means multiple passes through the source |
| * arrays for most of the transforms. That could result in much thrashing |
| * if the image is larger than main memory. |
| * |
| * If cropping or trimming is involved, the destination arrays may be smaller |
| * than the source arrays. Note it is not possible to do horizontal flip |
| * in-place when a nonzero Y crop offset is specified, since we'd have to move |
| * data from one block row to another but the virtual array manager doesn't |
| * guarantee we can touch more than one row at a time. So in that case, |
| * we have to use a separate destination array. |
| * |
| * Some notes about the operating environment of the individual transform |
| * routines: |
| * 1. Both the source and destination virtual arrays are allocated from the |
| * source JPEG object, and therefore should be manipulated by calling the |
| * source's memory manager. |
| * 2. The destination's component count should be used. It may be smaller |
| * than the source's when forcing to grayscale. |
| * 3. Likewise the destination's sampling factors should be used. When |
| * forcing to grayscale the destination's sampling factors will be all 1, |
| * and we may as well take that as the effective iMCU size. |
| * 4. When "trim" is in effect, the destination's dimensions will be the |
| * trimmed values but the source's will be untrimmed. |
| * 5. When "crop" is in effect, the destination's dimensions will be the |
| * cropped values but the source's will be uncropped. Each transform |
| * routine is responsible for picking up source data starting at the |
| * correct X and Y offset for the crop region. (The X and Y offsets |
| * passed to the transform routines are measured in iMCU blocks of the |
| * destination.) |
| * 6. All the routines assume that the source and destination buffers are |
| * padded out to a full iMCU boundary. This is true, although for the |
| * source buffer it is an undocumented property of jdcoefct.c. |
| */ |
| |
| |
| LOCAL(void) |
| do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| jvirt_barray_ptr *src_coef_arrays, |
| jvirt_barray_ptr *dst_coef_arrays) |
| /* Crop. This is only used when no rotate/flip is requested with the crop. */ |
| { |
| JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks; |
| int ci, offset_y; |
| JBLOCKARRAY src_buffer, dst_buffer; |
| jpeg_component_info *compptr; |
| |
| /* We simply have to copy the right amount of data (the destination's |
| * image size) starting at the given X and Y offsets in the source. |
| */ |
| for (ci = 0; ci < dstinfo->num_components; ci++) { |
| compptr = dstinfo->comp_info + ci; |
| x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| dst_blk_y += compptr->v_samp_factor) { |
| dst_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| (JDIMENSION) compptr->v_samp_factor, TRUE); |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| dst_blk_y + y_crop_blocks, |
| (JDIMENSION) compptr->v_samp_factor, FALSE); |
| for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, |
| dst_buffer[offset_y], |
| compptr->width_in_blocks); |
| } |
| } |
| } |
| } |
| |
| |
| LOCAL(void) |
| do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| JDIMENSION x_crop_offset, |
| jvirt_barray_ptr *src_coef_arrays) |
| /* Horizontal flip; done in-place, so no separate dest array is required. |
| * NB: this only works when y_crop_offset is zero. |
| */ |
| { |
| JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks; |
| int ci, k, offset_y; |
| JBLOCKARRAY buffer; |
| JCOEFPTR ptr1, ptr2; |
| JCOEF temp1, temp2; |
| jpeg_component_info *compptr; |
| |
| /* Horizontal mirroring of DCT blocks is accomplished by swapping |
| * pairs of blocks in-place. Within a DCT block, we perform horizontal |
| * mirroring by changing the signs of odd-numbered columns. |
| * Partial iMCUs at the right edge are left untouched. |
| */ |
| MCU_cols = srcinfo->output_width / |
| (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| |
| for (ci = 0; ci < dstinfo->num_components; ci++) { |
| compptr = dstinfo->comp_info + ci; |
| comp_width = MCU_cols * compptr->h_samp_factor; |
| x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| for (blk_y = 0; blk_y < compptr->height_in_blocks; |
| blk_y += compptr->v_samp_factor) { |
| buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y, |
| (JDIMENSION) compptr->v_samp_factor, TRUE); |
| for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| /* Do the mirroring */ |
| for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { |
| ptr1 = buffer[offset_y][blk_x]; |
| ptr2 = buffer[offset_y][comp_width - blk_x - 1]; |
| /* this unrolled loop doesn't need to know which row it's on... */ |
| for (k = 0; k < DCTSIZE2; k += 2) { |
| temp1 = *ptr1; /* swap even column */ |
| temp2 = *ptr2; |
| *ptr1++ = temp2; |
| *ptr2++ = temp1; |
| temp1 = *ptr1; /* swap odd column with sign change */ |
| temp2 = *ptr2; |
| *ptr1++ = -temp2; |
| *ptr2++ = -temp1; |
| } |
| } |
| if (x_crop_blocks > 0) { |
| /* Now left-justify the portion of the data to be kept. |
| * We can't use a single jcopy_block_row() call because that routine |
| * depends on memcpy(), whose behavior is unspecified for overlapping |
| * source and destination areas. Sigh. |
| */ |
| for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) { |
| jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks, |
| buffer[offset_y] + blk_x, |
| (JDIMENSION) 1); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| LOCAL(void) |
| do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| jvirt_barray_ptr *src_coef_arrays, |
| jvirt_barray_ptr *dst_coef_arrays) |
| /* Horizontal flip in general cropping case */ |
| { |
| JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; |
| JDIMENSION x_crop_blocks, y_crop_blocks; |
| int ci, k, offset_y; |
| JBLOCKARRAY src_buffer, dst_buffer; |
| JBLOCKROW src_row_ptr, dst_row_ptr; |
| JCOEFPTR src_ptr, dst_ptr; |
| jpeg_component_info *compptr; |
| |
| /* Here we must output into a separate array because we can't touch |
| * different rows of a single virtual array simultaneously. Otherwise, |
| * this is essentially the same as the routine above. |
| */ |
| MCU_cols = srcinfo->output_width / |
| (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| |
| for (ci = 0; ci < dstinfo->num_components; ci++) { |
| compptr = dstinfo->comp_info + ci; |
| comp_width = MCU_cols * compptr->h_samp_factor; |
| x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| dst_blk_y += compptr->v_samp_factor) { |
| dst_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| (JDIMENSION) compptr->v_samp_factor, TRUE); |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| dst_blk_y + y_crop_blocks, |
| (JDIMENSION) compptr->v_samp_factor, FALSE); |
| for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| dst_row_ptr = dst_buffer[offset_y]; |
| src_row_ptr = src_buffer[offset_y]; |
| for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| if (x_crop_blocks + dst_blk_x < comp_width) { |
| /* Do the mirrorable blocks */ |
| dst_ptr = dst_row_ptr[dst_blk_x]; |
| src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
| /* this unrolled loop doesn't need to know which row it's on... */ |
| for (k = 0; k < DCTSIZE2; k += 2) { |
| *dst_ptr++ = *src_ptr++; /* copy even column */ |
| *dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */ |
| } |
| } else { |
| /* Copy last partial block(s) verbatim */ |
| jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, |
| dst_row_ptr + dst_blk_x, |
| (JDIMENSION) 1); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| LOCAL(void) |
| do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| jvirt_barray_ptr *src_coef_arrays, |
| jvirt_barray_ptr *dst_coef_arrays) |
| /* Vertical flip */ |
| { |
| JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
| JDIMENSION x_crop_blocks, y_crop_blocks; |
| int ci, i, j, offset_y; |
| JBLOCKARRAY src_buffer, dst_buffer; |
| JBLOCKROW src_row_ptr, dst_row_ptr; |
| JCOEFPTR src_ptr, dst_ptr; |
| jpeg_component_info *compptr; |
| |
| /* We output into a separate array because we can't touch different |
| * rows of the source virtual array simultaneously. Otherwise, this |
| * is a pretty straightforward analog of horizontal flip. |
| * Within a DCT block, vertical mirroring is done by changing the signs |
| * of odd-numbered rows. |
| * Partial iMCUs at the bottom edge are copied verbatim. |
| */ |
| MCU_rows = srcinfo->output_height / |
| (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| |
| for (ci = 0; ci < dstinfo->num_components; ci++) { |
| compptr = dstinfo->comp_info + ci; |
| comp_height = MCU_rows * compptr->v_samp_factor; |
| x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| dst_blk_y += compptr->v_samp_factor) { |
| dst_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| (JDIMENSION) compptr->v_samp_factor, TRUE); |
| if (y_crop_blocks + dst_blk_y < comp_height) { |
| /* Row is within the mirrorable area. */ |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| comp_height - y_crop_blocks - dst_blk_y - |
| (JDIMENSION) compptr->v_samp_factor, |
| (JDIMENSION) compptr->v_samp_factor, FALSE); |
| } else { |
| /* Bottom-edge blocks will be copied verbatim. */ |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| dst_blk_y + y_crop_blocks, |
| (JDIMENSION) compptr->v_samp_factor, FALSE); |
| } |
| for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| if (y_crop_blocks + dst_blk_y < comp_height) { |
| /* Row is within the mirrorable area. */ |
| dst_row_ptr = dst_buffer[offset_y]; |
| src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
| src_row_ptr += x_crop_blocks; |
| for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| dst_blk_x++) { |
| dst_ptr = dst_row_ptr[dst_blk_x]; |
| src_ptr = src_row_ptr[dst_blk_x]; |
| for (i = 0; i < DCTSIZE; i += 2) { |
| /* copy even row */ |
| for (j = 0; j < DCTSIZE; j++) |
| *dst_ptr++ = *src_ptr++; |
| /* copy odd row with sign change */ |
| for (j = 0; j < DCTSIZE; j++) |
| *dst_ptr++ = - *src_ptr++; |
| } |
| } |
| } else { |
| /* Just copy row verbatim. */ |
| jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, |
| dst_buffer[offset_y], |
| compptr->width_in_blocks); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| LOCAL(void) |
| do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| jvirt_barray_ptr *src_coef_arrays, |
| jvirt_barray_ptr *dst_coef_arrays) |
| /* Transpose source into destination */ |
| { |
| JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks; |
| int ci, i, j, offset_x, offset_y; |
| JBLOCKARRAY src_buffer, dst_buffer; |
| JCOEFPTR src_ptr, dst_ptr; |
| jpeg_component_info *compptr; |
| |
| /* Transposing pixels within a block just requires transposing the |
| * DCT coefficients. |
| * Partial iMCUs at the edges require no special treatment; we simply |
| * process all the available DCT blocks for every component. |
| */ |
| for (ci = 0; ci < dstinfo->num_components; ci++) { |
| compptr = dstinfo->comp_info + ci; |
| x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| dst_blk_y += compptr->v_samp_factor) { |
| dst_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| (JDIMENSION) compptr->v_samp_factor, TRUE); |
| for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| dst_blk_x += compptr->h_samp_factor) { |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| dst_blk_x + x_crop_blocks, |
| (JDIMENSION) compptr->h_samp_factor, FALSE); |
| for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks]; |
| for (i = 0; i < DCTSIZE; i++) |
| for (j = 0; j < DCTSIZE; j++) |
| dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| LOCAL(void) |
| do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| jvirt_barray_ptr *src_coef_arrays, |
| jvirt_barray_ptr *dst_coef_arrays) |
| /* 90 degree rotation is equivalent to |
| * 1. Transposing the image; |
| * 2. Horizontal mirroring. |
| * These two steps are merged into a single processing routine. |
| */ |
| { |
| JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; |
| JDIMENSION x_crop_blocks, y_crop_blocks; |
| int ci, i, j, offset_x, offset_y; |
| JBLOCKARRAY src_buffer, dst_buffer; |
| JCOEFPTR src_ptr, dst_ptr; |
| jpeg_component_info *compptr; |
| |
| /* Because of the horizontal mirror step, we can't process partial iMCUs |
| * at the (output) right edge properly. They just get transposed and |
| * not mirrored. |
| */ |
| MCU_cols = srcinfo->output_height / |
| (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| |
| for (ci = 0; ci < dstinfo->num_components; ci++) { |
| compptr = dstinfo->comp_info + ci; |
| comp_width = MCU_cols * compptr->h_samp_factor; |
| x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| dst_blk_y += compptr->v_samp_factor) { |
| dst_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| (JDIMENSION) compptr->v_samp_factor, TRUE); |
| for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| dst_blk_x += compptr->h_samp_factor) { |
| if (x_crop_blocks + dst_blk_x < comp_width) { |
| /* Block is within the mirrorable area. */ |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| comp_width - x_crop_blocks - dst_blk_x - |
| (JDIMENSION) compptr->h_samp_factor, |
| (JDIMENSION) compptr->h_samp_factor, FALSE); |
| } else { |
| /* Edge blocks are transposed but not mirrored. */ |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| dst_blk_x + x_crop_blocks, |
| (JDIMENSION) compptr->h_samp_factor, FALSE); |
| } |
| for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| if (x_crop_blocks + dst_blk_x < comp_width) { |
| /* Block is within the mirrorable area. */ |
| src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
| [dst_blk_y + offset_y + y_crop_blocks]; |
| for (i = 0; i < DCTSIZE; i++) { |
| for (j = 0; j < DCTSIZE; j++) |
| dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| i++; |
| for (j = 0; j < DCTSIZE; j++) |
| dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| } |
| } else { |
| /* Edge blocks are transposed but not mirrored. */ |
| src_ptr = src_buffer[offset_x] |
| [dst_blk_y + offset_y + y_crop_blocks]; |
| for (i = 0; i < DCTSIZE; i++) |
| for (j = 0; j < DCTSIZE; j++) |
| dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| LOCAL(void) |
| do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| jvirt_barray_ptr *src_coef_arrays, |
| jvirt_barray_ptr *dst_coef_arrays) |
| /* 270 degree rotation is equivalent to |
| * 1. Horizontal mirroring; |
| * 2. Transposing the image. |
| * These two steps are merged into a single processing routine. |
| */ |
| { |
| JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
| JDIMENSION x_crop_blocks, y_crop_blocks; |
| int ci, i, j, offset_x, offset_y; |
| JBLOCKARRAY src_buffer, dst_buffer; |
| JCOEFPTR src_ptr, dst_ptr; |
| jpeg_component_info *compptr; |
| |
| /* Because of the horizontal mirror step, we can't process partial iMCUs |
| * at the (output) bottom edge properly. They just get transposed and |
| * not mirrored. |
| */ |
| MCU_rows = srcinfo->output_width / |
| (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| |
| for (ci = 0; ci < dstinfo->num_components; ci++) { |
| compptr = dstinfo->comp_info + ci; |
| comp_height = MCU_rows * compptr->v_samp_factor; |
| x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| dst_blk_y += compptr->v_samp_factor) { |
| dst_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| (JDIMENSION) compptr->v_samp_factor, TRUE); |
| for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| dst_blk_x += compptr->h_samp_factor) { |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| dst_blk_x + x_crop_blocks, |
| (JDIMENSION) compptr->h_samp_factor, FALSE); |
| for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| if (y_crop_blocks + dst_blk_y < comp_height) { |
| /* Block is within the mirrorable area. */ |
| src_ptr = src_buffer[offset_x] |
| [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
| for (i = 0; i < DCTSIZE; i++) { |
| for (j = 0; j < DCTSIZE; j++) { |
| dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| j++; |
| dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| } |
| } |
| } else { |
| /* Edge blocks are transposed but not mirrored. */ |
| src_ptr = src_buffer[offset_x] |
| [dst_blk_y + offset_y + y_crop_blocks]; |
| for (i = 0; i < DCTSIZE; i++) |
| for (j = 0; j < DCTSIZE; j++) |
| dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| LOCAL(void) |
| do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| jvirt_barray_ptr *src_coef_arrays, |
| jvirt_barray_ptr *dst_coef_arrays) |
| /* 180 degree rotation is equivalent to |
| * 1. Vertical mirroring; |
| * 2. Horizontal mirroring. |
| * These two steps are merged into a single processing routine. |
| */ |
| { |
| JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
| JDIMENSION x_crop_blocks, y_crop_blocks; |
| int ci, i, j, offset_y; |
| JBLOCKARRAY src_buffer, dst_buffer; |
| JBLOCKROW src_row_ptr, dst_row_ptr; |
| JCOEFPTR src_ptr, dst_ptr; |
| jpeg_component_info *compptr; |
| |
| MCU_cols = srcinfo->output_width / |
| (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| MCU_rows = srcinfo->output_height / |
| (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| |
| for (ci = 0; ci < dstinfo->num_components; ci++) { |
| compptr = dstinfo->comp_info + ci; |
| comp_width = MCU_cols * compptr->h_samp_factor; |
| comp_height = MCU_rows * compptr->v_samp_factor; |
| x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| dst_blk_y += compptr->v_samp_factor) { |
| dst_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| (JDIMENSION) compptr->v_samp_factor, TRUE); |
| if (y_crop_blocks + dst_blk_y < comp_height) { |
| /* Row is within the vertically mirrorable area. */ |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| comp_height - y_crop_blocks - dst_blk_y - |
| (JDIMENSION) compptr->v_samp_factor, |
| (JDIMENSION) compptr->v_samp_factor, FALSE); |
| } else { |
| /* Bottom-edge rows are only mirrored horizontally. */ |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| dst_blk_y + y_crop_blocks, |
| (JDIMENSION) compptr->v_samp_factor, FALSE); |
| } |
| for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| dst_row_ptr = dst_buffer[offset_y]; |
| if (y_crop_blocks + dst_blk_y < comp_height) { |
| /* Row is within the mirrorable area. */ |
| src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
| for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| dst_ptr = dst_row_ptr[dst_blk_x]; |
| if (x_crop_blocks + dst_blk_x < comp_width) { |
| /* Process the blocks that can be mirrored both ways. */ |
| src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
| for (i = 0; i < DCTSIZE; i += 2) { |
| /* For even row, negate every odd column. */ |
| for (j = 0; j < DCTSIZE; j += 2) { |
| *dst_ptr++ = *src_ptr++; |
| *dst_ptr++ = - *src_ptr++; |
| } |
| /* For odd row, negate every even column. */ |
| for (j = 0; j < DCTSIZE; j += 2) { |
| *dst_ptr++ = - *src_ptr++; |
| *dst_ptr++ = *src_ptr++; |
| } |
| } |
| } else { |
| /* Any remaining right-edge blocks are only mirrored vertically. */ |
| src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x]; |
| for (i = 0; i < DCTSIZE; i += 2) { |
| for (j = 0; j < DCTSIZE; j++) |
| *dst_ptr++ = *src_ptr++; |
| for (j = 0; j < DCTSIZE; j++) |
| *dst_ptr++ = - *src_ptr++; |
| } |
| } |
| } |
| } else { |
| /* Remaining rows are just mirrored horizontally. */ |
| src_row_ptr = src_buffer[offset_y]; |
| for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| if (x_crop_blocks + dst_blk_x < comp_width) { |
| /* Process the blocks that can be mirrored. */ |
| dst_ptr = dst_row_ptr[dst_blk_x]; |
| src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
| for (i = 0; i < DCTSIZE2; i += 2) { |
| *dst_ptr++ = *src_ptr++; |
| *dst_ptr++ = - *src_ptr++; |
| } |
| } else { |
| /* Any remaining right-edge blocks are only copied. */ |
| jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, |
| dst_row_ptr + dst_blk_x, |
| (JDIMENSION) 1); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| LOCAL(void) |
| do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| jvirt_barray_ptr *src_coef_arrays, |
| jvirt_barray_ptr *dst_coef_arrays) |
| /* Transverse transpose is equivalent to |
| * 1. 180 degree rotation; |
| * 2. Transposition; |
| * or |
| * 1. Horizontal mirroring; |
| * 2. Transposition; |
| * 3. Horizontal mirroring. |
| * These steps are merged into a single processing routine. |
| */ |
| { |
| JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
| JDIMENSION x_crop_blocks, y_crop_blocks; |
| int ci, i, j, offset_x, offset_y; |
| JBLOCKARRAY src_buffer, dst_buffer; |
| JCOEFPTR src_ptr, dst_ptr; |
| jpeg_component_info *compptr; |
| |
| MCU_cols = srcinfo->output_height / |
| (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| MCU_rows = srcinfo->output_width / |
| (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| |
| for (ci = 0; ci < dstinfo->num_components; ci++) { |
| compptr = dstinfo->comp_info + ci; |
| comp_width = MCU_cols * compptr->h_samp_factor; |
| comp_height = MCU_rows * compptr->v_samp_factor; |
| x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| dst_blk_y += compptr->v_samp_factor) { |
| dst_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| (JDIMENSION) compptr->v_samp_factor, TRUE); |
| for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| dst_blk_x += compptr->h_samp_factor) { |
| if (x_crop_blocks + dst_blk_x < comp_width) { |
| /* Block is within the mirrorable area. */ |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| comp_width - x_crop_blocks - dst_blk_x - |
| (JDIMENSION) compptr->h_samp_factor, |
| (JDIMENSION) compptr->h_samp_factor, FALSE); |
| } else { |
| src_buffer = (*srcinfo->mem->access_virt_barray) |
| ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| dst_blk_x + x_crop_blocks, |
| (JDIMENSION) compptr->h_samp_factor, FALSE); |
| } |
| for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| if (y_crop_blocks + dst_blk_y < comp_height) { |
| if (x_crop_blocks + dst_blk_x < comp_width) { |
| /* Block is within the mirrorable area. */ |
| src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
| [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
| for (i = 0; i < DCTSIZE; i++) { |
| for (j = 0; j < DCTSIZE; j++) { |
| dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| j++; |
| dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| } |
| i++; |
| for (j = 0; j < DCTSIZE; j++) { |
| dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| j++; |
| dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| } |
| } |
| } else { |
| /* Right-edge blocks are mirrored in y only */ |
| src_ptr = src_buffer[offset_x] |
| [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
| for (i = 0; i < DCTSIZE; i++) { |
| for (j = 0; j < DCTSIZE; j++) { |
| dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| j++; |
| dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| } |
| } |
| } |
| } else { |
| if (x_crop_blocks + dst_blk_x < comp_width) { |
| /* Bottom-edge blocks are mirrored in x only */ |
| src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
| [dst_blk_y + offset_y + y_crop_blocks]; |
| for (i = 0; i < DCTSIZE; i++) { |
| for (j = 0; j < DCTSIZE; j++) |
| dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| i++; |
| for (j = 0; j < DCTSIZE; j++) |
| dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| } |
| } else { |
| /* At lower right corner, just transpose, no mirroring */ |
| src_ptr = src_buffer[offset_x] |
| [dst_blk_y + offset_y + y_crop_blocks]; |
| for (i = 0; i < DCTSIZE; i++) |
| for (j = 0; j < DCTSIZE; j++) |
| dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| /* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec. |
| * Returns TRUE if valid integer found, FALSE if not. |
| * *strptr is advanced over the digit string, and *result is set to its value. |
| */ |
| |
| LOCAL(boolean) |
| jt_read_integer (const char ** strptr, JDIMENSION * result) |
| { |
| const char * ptr = *strptr; |
| JDIMENSION val = 0; |
| |
| for (; isdigit(*ptr); ptr++) { |
| val = val * 10 + (JDIMENSION) (*ptr - '0'); |
| } |
| *result = val; |
| if (ptr == *strptr) |
| return FALSE; /* oops, no digits */ |
| *strptr = ptr; |
| return TRUE; |
| } |
| |
| |
| /* Parse a crop specification (written in X11 geometry style). |
| * The routine returns TRUE if the spec string is valid, FALSE if not. |
| * |
| * The crop spec string should have the format |
| * <width>x<height>{+-}<xoffset>{+-}<yoffset> |
| * where width, height, xoffset, and yoffset are unsigned integers. |
| * Each of the elements can be omitted to indicate a default value. |
| * (A weakness of this style is that it is not possible to omit xoffset |
| * while specifying yoffset, since they look alike.) |
| * |
| * This code is loosely based on XParseGeometry from the X11 distribution. |
| */ |
| |
| GLOBAL(boolean) |
| jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec) |
| { |
| info->crop = FALSE; |
| info->crop_width_set = JCROP_UNSET; |
| info->crop_height_set = JCROP_UNSET; |
| info->crop_xoffset_set = JCROP_UNSET; |
| info->crop_yoffset_set = JCROP_UNSET; |
| |
| if (isdigit(*spec)) { |
| /* fetch width */ |
| if (! jt_read_integer(&spec, &info->crop_width)) |
| return FALSE; |
| info->crop_width_set = JCROP_POS; |
| } |
| if (*spec == 'x' || *spec == 'X') { |
| /* fetch height */ |
| spec++; |
| if (! jt_read_integer(&spec, &info->crop_height)) |
| return FALSE; |
| info->crop_height_set = JCROP_POS; |
| } |
| if (*spec == '+' || *spec == '-') { |
| /* fetch xoffset */ |
| info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; |
| spec++; |
| if (! jt_read_integer(&spec, &info->crop_xoffset)) |
| return FALSE; |
| } |
| if (*spec == '+' || *spec == '-') { |
| /* fetch yoffset */ |
| info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; |
| spec++; |
| if (! jt_read_integer(&spec, &info->crop_yoffset)) |
| return FALSE; |
| } |
| /* We had better have gotten to the end of the string. */ |
| if (*spec != '\0') |
| return FALSE; |
| info->crop = TRUE; |
| return TRUE; |
| } |
| |
| |
| /* Trim off any partial iMCUs on the indicated destination edge */ |
| |
| LOCAL(void) |
| trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width) |
| { |
| JDIMENSION MCU_cols; |
| |
| MCU_cols = info->output_width / info->iMCU_sample_width; |
| if (MCU_cols > 0 && info->x_crop_offset + MCU_cols == |
| full_width / info->iMCU_sample_width) |
| info->output_width = MCU_cols * info->iMCU_sample_width; |
| } |
| |
| LOCAL(void) |
| trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height) |
| { |
| JDIMENSION MCU_rows; |
| |
| MCU_rows = info->output_height / info->iMCU_sample_height; |
| if (MCU_rows > 0 && info->y_crop_offset + MCU_rows == |
| full_height / info->iMCU_sample_height) |
| info->output_height = MCU_rows * info->iMCU_sample_height; |
| } |
| |
| |
| /* Request any required workspace. |
| * |
| * This routine figures out the size that the output image will be |
| * (which implies that all the transform parameters must be set before |
| * it is called). |
| * |
| * We allocate the workspace virtual arrays from the source decompression |
| * object, so that all the arrays (both the original data and the workspace) |
| * will be taken into account while making memory management decisions. |
| * Hence, this routine must be called after jpeg_read_header (which reads |
| * the image dimensions) and before jpeg_read_coefficients (which realizes |
| * the source's virtual arrays). |
| * |
| * This function returns FALSE right away if -perfect is given |
| * and transformation is not perfect. Otherwise returns TRUE. |
| */ |
| |
| GLOBAL(boolean) |
| jtransform_request_workspace (j_decompress_ptr srcinfo, |
| jpeg_transform_info *info) |
| { |
| jvirt_barray_ptr *coef_arrays; |
| boolean need_workspace, transpose_it; |
| jpeg_component_info *compptr; |
| JDIMENSION xoffset, yoffset; |
| JDIMENSION width_in_iMCUs, height_in_iMCUs; |
| JDIMENSION width_in_blocks, height_in_blocks; |
| int ci, h_samp_factor, v_samp_factor; |
| |
| /* Determine number of components in output image */ |
| if (info->force_grayscale && |
| srcinfo->jpeg_color_space == JCS_YCbCr && |
| srcinfo->num_components == 3) |
| /* We'll only process the first component */ |
| info->num_components = 1; |
| else |
| /* Process all the components */ |
| info->num_components = srcinfo->num_components; |
| |
| /* Compute output image dimensions and related values. */ |
| jpeg_core_output_dimensions(srcinfo); |
| |
| /* Return right away if -perfect is given and transformation is not perfect. |
| */ |
| if (info->perfect) { |
| if (info->num_components == 1) { |
| if (!jtransform_perfect_transform(srcinfo->output_width, |
| srcinfo->output_height, |
| srcinfo->min_DCT_h_scaled_size, |
| srcinfo->min_DCT_v_scaled_size, |
| info->transform)) |
| return FALSE; |
| } else { |
| if (!jtransform_perfect_transform(srcinfo->output_width, |
| srcinfo->output_height, |
| srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size, |
| srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size, |
| info->transform)) |
| return FALSE; |
| } |
| } |
| |
| /* If there is only one output component, force the iMCU size to be 1; |
| * else use the source iMCU size. (This allows us to do the right thing |
| * when reducing color to grayscale, and also provides a handy way of |
| * cleaning up "funny" grayscale images whose sampling factors are not 1x1.) |
| */ |
| switch (info->transform) { |
| case JXFORM_TRANSPOSE: |
| case JXFORM_TRANSVERSE: |
| case JXFORM_ROT_90: |
| case JXFORM_ROT_270: |
| info->output_width = srcinfo->output_height; |
| info->output_height = srcinfo->output_width; |
| if (info->num_components == 1) { |
| info->iMCU_sample_width = srcinfo->min_DCT_v_scaled_size; |
| info->iMCU_sample_height = srcinfo->min_DCT_h_scaled_size; |
| } else { |
| info->iMCU_sample_width = |
| srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size; |
| info->iMCU_sample_height = |
| srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size; |
| } |
| break; |
| default: |
| info->output_width = srcinfo->output_width; |
| info->output_height = srcinfo->output_height; |
| if (info->num_components == 1) { |
| info->iMCU_sample_width = srcinfo->min_DCT_h_scaled_size; |
| info->iMCU_sample_height = srcinfo->min_DCT_v_scaled_size; |
| } else { |
| info->iMCU_sample_width = |
| srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size; |
| info->iMCU_sample_height = |
| srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size; |
| } |
| break; |
| } |
| |
| /* If cropping has been requested, compute the crop area's position and |
| * dimensions, ensuring that its upper left corner falls at an iMCU boundary. |
| */ |
| if (info->crop) { |
| /* Insert default values for unset crop parameters */ |
| if (info->crop_xoffset_set == JCROP_UNSET) |
| info->crop_xoffset = 0; /* default to +0 */ |
| if (info->crop_yoffset_set == JCROP_UNSET) |
| info->crop_yoffset = 0; /* default to +0 */ |
| if (info->crop_xoffset >= info->output_width || |
| info->crop_yoffset >= info->output_height) |
| ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); |
| if (info->crop_width_set == JCROP_UNSET) |
| info->crop_width = info->output_width - info->crop_xoffset; |
| if (info->crop_height_set == JCROP_UNSET) |
| info->crop_height = info->output_height - info->crop_yoffset; |
| /* Ensure parameters are valid */ |
| if (info->crop_width <= 0 || info->crop_width > info->output_width || |
| info->crop_height <= 0 || info->crop_height > info->output_height || |
| info->crop_xoffset > info->output_width - info->crop_width || |
| info->crop_yoffset > info->output_height - info->crop_height) |
| ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); |
| /* Convert negative crop offsets into regular offsets */ |
| if (info->crop_xoffset_set == JCROP_NEG) |
| xoffset = info->output_width - info->crop_width - info->crop_xoffset; |
| else |
| xoffset = info->crop_xoffset; |
| if (info->crop_yoffset_set == JCROP_NEG) |
| yoffset = info->output_height - info->crop_height - info->crop_yoffset; |
| else |
| yoffset = info->crop_yoffset; |
| /* Now adjust so that upper left corner falls at an iMCU boundary */ |
| info->output_width = |
| info->crop_width + (xoffset % info->iMCU_sample_width); |
| info->output_height = |
| info->crop_height + (yoffset % info->iMCU_sample_height); |
| /* Save x/y offsets measured in iMCUs */ |
| info->x_crop_offset = xoffset / info->iMCU_sample_width; |
| info->y_crop_offset = yoffset / info->iMCU_sample_height; |
| } else { |
| info->x_crop_offset = 0; |
| info->y_crop_offset = 0; |
| } |
| |
| /* Figure out whether we need workspace arrays, |
| * and if so whether they are transposed relative to the source. |
| */ |
| need_workspace = FALSE; |
| transpose_it = FALSE; |
| switch (info->transform) { |
| case JXFORM_NONE: |
| if (info->x_crop_offset != 0 || info->y_crop_offset != 0) |
| need_workspace = TRUE; |
| /* No workspace needed if neither cropping nor transforming */ |
| break; |
| case JXFORM_FLIP_H: |
| if (info->trim) |
| trim_right_edge(info, srcinfo->output_width); |
| if (info->y_crop_offset != 0) |
| need_workspace = TRUE; |
| /* do_flip_h_no_crop doesn't need a workspace array */ |
| break; |
| case JXFORM_FLIP_V: |
| if (info->trim) |
| trim_bottom_edge(info, srcinfo->output_height); |
| /* Need workspace arrays having same dimensions as source image. */ |
| need_workspace = TRUE; |
| break; |
| case JXFORM_TRANSPOSE: |
| /* transpose does NOT have to trim anything */ |
| /* Need workspace arrays having transposed dimensions. */ |
| need_workspace = TRUE; |
| transpose_it = TRUE; |
| break; |
| case JXFORM_TRANSVERSE: |
| if (info->trim) { |
| trim_right_edge(info, srcinfo->output_height); |
| trim_bottom_edge(info, srcinfo->output_width); |
| } |
| /* Need workspace arrays having transposed dimensions. */ |
| need_workspace = TRUE; |
| transpose_it = TRUE; |
| break; |
| case JXFORM_ROT_90: |
| if (info->trim) |
| trim_right_edge(info, srcinfo->output_height); |
| /* Need workspace arrays having transposed dimensions. */ |
| need_workspace = TRUE; |
| transpose_it = TRUE; |
| break; |
| case JXFORM_ROT_180: |
| if (info->trim) { |
| trim_right_edge(info, srcinfo->output_width); |
| trim_bottom_edge(info, srcinfo->output_height); |
| } |
| /* Need workspace arrays having same dimensions as source image. */ |
| need_workspace = TRUE; |
| break; |
| case JXFORM_ROT_270: |
| if (info->trim) |
| trim_bottom_edge(info, srcinfo->output_width); |
| /* Need workspace arrays having transposed dimensions. */ |
| need_workspace = TRUE; |
| transpose_it = TRUE; |
| break; |
| } |
| |
| /* Allocate workspace if needed. |
| * Note that we allocate arrays padded out to the next iMCU boundary, |
| * so that transform routines need not worry about missing edge blocks. |
| */ |
| if (need_workspace) { |
| coef_arrays = (jvirt_barray_ptr *) |
| (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, |
| SIZEOF(jvirt_barray_ptr) * info->num_components); |
| width_in_iMCUs = (JDIMENSION) |
| jdiv_round_up((long) info->output_width, |
| (long) info->iMCU_sample_width); |
| height_in_iMCUs = (JDIMENSION) |
| jdiv_round_up((long) info->output_height, |
| (long) info->iMCU_sample_height); |
| for (ci = 0; ci < info->num_components; ci++) { |
| compptr = srcinfo->comp_info + ci; |
| if (info->num_components == 1) { |
| /* we're going to force samp factors to 1x1 in this case */ |
| h_samp_factor = v_samp_factor = 1; |
| } else if (transpose_it) { |
| h_samp_factor = compptr->v_samp_factor; |
| v_samp_factor = compptr->h_samp_factor; |
| } else { |
| h_samp_factor = compptr->h_samp_factor; |
| v_samp_factor = compptr->v_samp_factor; |
| } |
| width_in_blocks = width_in_iMCUs * h_samp_factor; |
| height_in_blocks = height_in_iMCUs * v_samp_factor; |
| coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) |
| ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, |
| width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor); |
| } |
| info->workspace_coef_arrays = coef_arrays; |
| } else |
| info->workspace_coef_arrays = NULL; |
| |
| return TRUE; |
| } |
| |
| |
| /* Transpose destination image parameters */ |
| |
| LOCAL(void) |
| transpose_critical_parameters (j_compress_ptr dstinfo) |
| { |
| int tblno, i, j, ci, itemp; |
| jpeg_component_info *compptr; |
| JQUANT_TBL *qtblptr; |
| JDIMENSION jtemp; |
| UINT16 qtemp; |
| |
| /* Transpose image dimensions */ |
| jtemp = dstinfo->image_width; |
| dstinfo->image_width = dstinfo->image_height; |
| dstinfo->image_height = jtemp; |
| itemp = dstinfo->min_DCT_h_scaled_size; |
| dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size; |
| dstinfo->min_DCT_v_scaled_size = itemp; |
| |
| /* Transpose sampling factors */ |
| for (ci = 0; ci < dstinfo->num_components; ci++) { |
| compptr = dstinfo->comp_info + ci; |
| itemp = compptr->h_samp_factor; |
| compptr->h_samp_factor = compptr->v_samp_factor; |
| compptr->v_samp_factor = itemp; |
| } |
| |
| /* Transpose quantization tables */ |
| for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { |
| qtblptr = dstinfo->quant_tbl_ptrs[tblno]; |
| if (qtblptr != NULL) { |
| for (i = 0; i < DCTSIZE; i++) { |
| for (j = 0; j < i; j++) { |
| qtemp = qtblptr->quantval[i*DCTSIZE+j]; |
| qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i]; |
| qtblptr->quantval[j*DCTSIZE+i] = qtemp; |
| } |
| } |
| } |
| } |
| } |
| |
| |
| /* Adjust Exif image parameters. |
| * |
| * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible. |
| */ |
| |
| LOCAL(void) |
| adjust_exif_parameters (JOCTET FAR * data, unsigned int length, |
| JDIMENSION new_width, JDIMENSION new_height) |
| { |
| boolean is_motorola; /* Flag for byte order */ |
| unsigned int number_of_tags, tagnum; |
| unsigned int firstoffset, offset; |
| JDIMENSION new_value; |
| |
| if (length < 12) return; /* Length of an IFD entry */ |
| |
| /* Discover byte order */ |
| if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49) |
| is_motorola = FALSE; |
| else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D) |
| is_motorola = TRUE; |
| else |
| return; |
| |
| /* Check Tag Mark */ |
| if (is_motorola) { |
| if (GETJOCTET(data[2]) != 0) return; |
| if (GETJOCTET(data[3]) != 0x2A) return; |
| } else { |
| if (GETJOCTET(data[3]) != 0) return; |
| if (GETJOCTET(data[2]) != 0x2A) return; |
| } |
| |
| /* Get first IFD offset (offset to IFD0) */ |
| if (is_motorola) { |
| if (GETJOCTET(data[4]) != 0) return; |
| if (GETJOCTET(data[5]) != 0) return; |
| firstoffset = GETJOCTET(data[6]); |
| firstoffset <<= 8; |
| firstoffset += GETJOCTET(data[7]); |
| } else { |
| if (GETJOCTET(data[7]) != 0) return; |
| if (GETJOCTET(data[6]) != 0) return; |
| firstoffset = GETJOCTET(data[5]); |
| firstoffset <<= 8; |
| firstoffset += GETJOCTET(data[4]); |
| } |
| if (firstoffset > length - 2) return; /* check end of data segment */ |
| |
| /* Get the number of directory entries contained in this IFD */ |
| if (is_motorola) { |
| number_of_tags = GETJOCTET(data[firstoffset]); |
| number_of_tags <<= 8; |
| number_of_tags += GETJOCTET(data[firstoffset+1]); |
| } else { |
| number_of_tags = GETJOCTET(data[firstoffset+1]); |
| number_of_tags <<= 8; |
| number_of_tags += GETJOCTET(data[firstoffset]); |
| } |
| if (number_of_tags == 0) return; |
| firstoffset += 2; |
| |
| /* Search for ExifSubIFD offset Tag in IFD0 */ |
| for (;;) { |
| if (firstoffset > length - 12) return; /* check end of data segment */ |
| /* Get Tag number */ |
| if (is_motorola) { |
| tagnum = GETJOCTET(data[firstoffset]); |
| tagnum <<= 8; |
| tagnum += GETJOCTET(data[firstoffset+1]); |
| } else { |
| tagnum = GETJOCTET(data[firstoffset+1]); |
| tagnum <<= 8; |
| tagnum += GETJOCTET(data[firstoffset]); |
| } |
| if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */ |
| if (--number_of_tags == 0) return; |
| firstoffset += 12; |
| } |
| |
| /* Get the ExifSubIFD offset */ |
| if (is_motorola) { |
| if (GETJOCTET(data[firstoffset+8]) != 0) return; |
| if (GETJOCTET(data[firstoffset+9]) != 0) return; |
| offset = GETJOCTET(data[firstoffset+10]); |
| offset <<= 8; |
| offset += GETJOCTET(data[firstoffset+11]); |
| } else { |
| if (GETJOCTET(data[firstoffset+11]) != 0) return; |
| if (GETJOCTET(data[firstoffset+10]) != 0) return; |
| offset = GETJOCTET(data[firstoffset+9]); |
| offset <<= 8; |
| offset += GETJOCTET(data[firstoffset+8]); |
| } |
| if (offset > length - 2) return; /* check end of data segment */ |
| |
| /* Get the number of directory entries contained in this SubIFD */ |
| if (is_motorola) { |
| number_of_tags = GETJOCTET(data[offset]); |
| number_of_tags <<= 8; |
| number_of_tags += GETJOCTET(data[offset+1]); |
| } else { |
| number_of_tags = GETJOCTET(data[offset+1]); |
| number_of_tags <<= 8; |
| number_of_tags += GETJOCTET(data[offset]); |
| } |
| if (number_of_tags < 2) return; |
| offset += 2; |
| |
| /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */ |
| do { |
| if (offset > length - 12) return; /* check end of data segment */ |
| /* Get Tag number */ |
| if (is_motorola) { |
| tagnum = GETJOCTET(data[offset]); |
| tagnum <<= 8; |
| tagnum += GETJOCTET(data[offset+1]); |
| } else { |
| tagnum = GETJOCTET(data[offset+1]); |
| tagnum <<= 8; |
| tagnum += GETJOCTET(data[offset]); |
| } |
| if (tagnum == 0xA002 || tagnum == 0xA003) { |
| if (tagnum == 0xA002) |
| new_value = new_width; /* ExifImageWidth Tag */ |
| else |
| new_value = new_height; /* ExifImageHeight Tag */ |
| if (is_motorola) { |
| data[offset+2] = 0; /* Format = unsigned long (4 octets) */ |
| data[offset+3] = 4; |
| data[offset+4] = 0; /* Number Of Components = 1 */ |
| data[offset+5] = 0; |
| data[offset+6] = 0; |
| data[offset+7] = 1; |
| data[offset+8] = 0; |
| data[offset+9] = 0; |
| data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF); |
| data[offset+11] = (JOCTET)(new_value & 0xFF); |
| } else { |
| data[offset+2] = 4; /* Format = unsigned long (4 octets) */ |
| data[offset+3] = 0; |
| data[offset+4] = 1; /* Number Of Components = 1 */ |
| data[offset+5] = 0; |
| data[offset+6] = 0; |
| data[offset+7] = 0; |
| data[offset+8] = (JOCTET)(new_value & 0xFF); |
| data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF); |
| data[offset+10] = 0; |
| data[offset+11] = 0; |
| } |
| } |
| offset += 12; |
| } while (--number_of_tags); |
| } |
| |
| |
| /* Adjust output image parameters as needed. |
| * |
| * This must be called after jpeg_copy_critical_parameters() |
| * and before jpeg_write_coefficients(). |
| * |
| * The return value is the set of virtual coefficient arrays to be written |
| * (either the ones allocated by jtransform_request_workspace, or the |
| * original source data arrays). The caller will need to pass this value |
| * to jpeg_write_coefficients(). |
| */ |
| |
| GLOBAL(jvirt_barray_ptr *) |
| jtransform_adjust_parameters (j_decompress_ptr srcinfo, |
| j_compress_ptr dstinfo, |
| jvirt_barray_ptr *src_coef_arrays, |
| jpeg_transform_info *info) |
| { |
| /* If force-to-grayscale is requested, adjust destination parameters */ |
| if (info->force_grayscale) { |
| /* First, ensure we have YCbCr or grayscale data, and that the source's |
| * Y channel is full resolution. (No reasonable person would make Y |
| * be less than full resolution, so actually coping with that case |
| * isn't worth extra code space. But we check it to avoid crashing.) |
| */ |
| if (((dstinfo->jpeg_color_space == JCS_YCbCr && |
| dstinfo->num_components == 3) || |
| (dstinfo->jpeg_color_space == JCS_GRAYSCALE && |
| dstinfo->num_components == 1)) && |
| srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor && |
| srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) { |
| /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed |
| * properly. Among other things, it sets the target h_samp_factor & |
| * v_samp_factor to 1, which typically won't match the source. |
| * We have to preserve the source's quantization table number, however. |
| */ |
| int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; |
| jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); |
| dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; |
| } else { |
| /* Sorry, can't do it */ |
| ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); |
| } |
| } else if (info->num_components == 1) { |
| /* For a single-component source, we force the destination sampling factors |
| * to 1x1, with or without force_grayscale. This is useful because some |
| * decoders choke on grayscale images with other sampling factors. |
| */ |
| dstinfo->comp_info[0].h_samp_factor = 1; |
| dstinfo->comp_info[0].v_samp_factor = 1; |
| } |
| |
| /* Correct the destination's image dimensions as necessary |
| * for rotate/flip, resize, and crop operations. |
| */ |
| dstinfo->jpeg_width = info->output_width; |
| dstinfo->jpeg_height = info->output_height; |
| |
| /* Transpose destination image parameters */ |
| switch (info->transform) { |
| case JXFORM_TRANSPOSE: |
| case JXFORM_TRANSVERSE: |
| case JXFORM_ROT_90: |
| case JXFORM_ROT_270: |
| transpose_critical_parameters(dstinfo); |
| break; |
| default: |
| break; |
| } |
| |
| /* Adjust Exif properties */ |
| if (srcinfo->marker_list != NULL && |
| srcinfo->marker_list->marker == JPEG_APP0+1 && |
| srcinfo->marker_list->data_length >= 6 && |
| GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 && |
| GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 && |
| GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 && |
| GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 && |
| GETJOCTET(srcinfo->marker_list->data[4]) == 0 && |
| GETJOCTET(srcinfo->marker_list->data[5]) == 0) { |
| /* Suppress output of JFIF marker */ |
| dstinfo->write_JFIF_header = FALSE; |
| /* Adjust Exif image parameters */ |
| if (dstinfo->jpeg_width != srcinfo->image_width || |
| dstinfo->jpeg_height != srcinfo->image_height) |
| /* Align data segment to start of TIFF structure for parsing */ |
| adjust_exif_parameters(srcinfo->marker_list->data + 6, |
| srcinfo->marker_list->data_length - 6, |
| dstinfo->jpeg_width, dstinfo->jpeg_height); |
| } |
| |
| /* Return the appropriate output data set */ |
| if (info->workspace_coef_arrays != NULL) |
| return info->workspace_coef_arrays; |
| return src_coef_arrays; |
| } |
| |
| |
| /* Execute the actual transformation, if any. |
| * |
| * This must be called *after* jpeg_write_coefficients, because it depends |
| * on jpeg_write_coefficients to have computed subsidiary values such as |
| * the per-component width and height fields in the destination object. |
| * |
| * Note that some transformations will modify the source data arrays! |
| */ |
| |
| GLOBAL(void) |
| jtransform_execute_transform (j_decompress_ptr srcinfo, |
| j_compress_ptr dstinfo, |
| jvirt_barray_ptr *src_coef_arrays, |
| jpeg_transform_info *info) |
| { |
| jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; |
| |
| /* Note: conditions tested here should match those in switch statement |
| * in jtransform_request_workspace() |
| */ |
| switch (info->transform) { |
| case JXFORM_NONE: |
| if (info->x_crop_offset != 0 || info->y_crop_offset != 0) |
| do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| src_coef_arrays, dst_coef_arrays); |
| break; |
| case JXFORM_FLIP_H: |
| if (info->y_crop_offset != 0) |
| do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| src_coef_arrays, dst_coef_arrays); |
| else |
| do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset, |
| src_coef_arrays); |
| break; |
| case JXFORM_FLIP_V: |
| do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| src_coef_arrays, dst_coef_arrays); |
| break; |
| case JXFORM_TRANSPOSE: |
| do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| src_coef_arrays, dst_coef_arrays); |
| break; |
| case JXFORM_TRANSVERSE: |
| do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| src_coef_arrays, dst_coef_arrays); |
| break; |
| case JXFORM_ROT_90: |
| do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| src_coef_arrays, dst_coef_arrays); |
| break; |
| case JXFORM_ROT_180: |
| do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| src_coef_arrays, dst_coef_arrays); |
| break; |
| case JXFORM_ROT_270: |
| do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| src_coef_arrays, dst_coef_arrays); |
| break; |
| } |
| } |
| |
| /* jtransform_perfect_transform |
| * |
| * Determine whether lossless transformation is perfectly |
| * possible for a specified image and transformation. |
| * |
| * Inputs: |
| * image_width, image_height: source image dimensions. |
| * MCU_width, MCU_height: pixel dimensions of MCU. |
| * transform: transformation identifier. |
| * Parameter sources from initialized jpeg_struct |
| * (after reading source header): |
| * image_width = cinfo.image_width |
| * image_height = cinfo.image_height |
| * MCU_width = cinfo.max_h_samp_factor * cinfo.block_size |
| * MCU_height = cinfo.max_v_samp_factor * cinfo.block_size |
| * Result: |
| * TRUE = perfect transformation possible |
| * FALSE = perfect transformation not possible |
| * (may use custom action then) |
| */ |
| |
| GLOBAL(boolean) |
| jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height, |
| int MCU_width, int MCU_height, |
| JXFORM_CODE transform) |
| { |
| boolean result = TRUE; /* initialize TRUE */ |
| |
| switch (transform) { |
| case JXFORM_FLIP_H: |
| case JXFORM_ROT_270: |
| if (image_width % (JDIMENSION) MCU_width) |
| result = FALSE; |
| break; |
| case JXFORM_FLIP_V: |
| case JXFORM_ROT_90: |
| if (image_height % (JDIMENSION) MCU_height) |
| result = FALSE; |
| break; |
| case JXFORM_TRANSVERSE: |
| case JXFORM_ROT_180: |
| if (image_width % (JDIMENSION) MCU_width) |
| result = FALSE; |
| if (image_height % (JDIMENSION) MCU_height) |
| result = FALSE; |
| break; |
| default: |
| break; |
| } |
| |
| return result; |
| } |
| |
| #endif /* TRANSFORMS_SUPPORTED */ |
| |
| |
| /* Setup decompression object to save desired markers in memory. |
| * This must be called before jpeg_read_header() to have the desired effect. |
| */ |
| |
| GLOBAL(void) |
| jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option) |
| { |
| #ifdef SAVE_MARKERS_SUPPORTED |
| int m; |
| |
| /* Save comments except under NONE option */ |
| if (option != JCOPYOPT_NONE) { |
| jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); |
| } |
| /* Save all types of APPn markers iff ALL option */ |
| if (option == JCOPYOPT_ALL) { |
| for (m = 0; m < 16; m++) |
| jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); |
| } |
| #endif /* SAVE_MARKERS_SUPPORTED */ |
| } |
| |
| /* Copy markers saved in the given source object to the destination object. |
| * This should be called just after jpeg_start_compress() or |
| * jpeg_write_coefficients(). |
| * Note that those routines will have written the SOI, and also the |
| * JFIF APP0 or Adobe APP14 markers if selected. |
| */ |
| |
| GLOBAL(void) |
| jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| JCOPY_OPTION option) |
| { |
| jpeg_saved_marker_ptr marker; |
| |
| /* In the current implementation, we don't actually need to examine the |
| * option flag here; we just copy everything that got saved. |
| * But to avoid confusion, we do not output JFIF and Adobe APP14 markers |
| * if the encoder library already wrote one. |
| */ |
| for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { |
| if (dstinfo->write_JFIF_header && |
| marker->marker == JPEG_APP0 && |
| marker->data_length >= 5 && |
| GETJOCTET(marker->data[0]) == 0x4A && |
| GETJOCTET(marker->data[1]) == 0x46 && |
| GETJOCTET(marker->data[2]) == 0x49 && |
| GETJOCTET(marker->data[3]) == 0x46 && |
| GETJOCTET(marker->data[4]) == 0) |
| continue; /* reject duplicate JFIF */ |
| if (dstinfo->write_Adobe_marker && |
| marker->marker == JPEG_APP0+14 && |
| marker->data_length >= 5 && |
| GETJOCTET(marker->data[0]) == 0x41 && |
| GETJOCTET(marker->data[1]) == 0x64 && |
| GETJOCTET(marker->data[2]) == 0x6F && |
| GETJOCTET(marker->data[3]) == 0x62 && |
| GETJOCTET(marker->data[4]) == 0x65) |
| continue; /* reject duplicate Adobe */ |
| #ifdef NEED_FAR_POINTERS |
| /* We could use jpeg_write_marker if the data weren't FAR... */ |
| { |
| unsigned int i; |
| jpeg_write_m_header(dstinfo, marker->marker, marker->data_length); |
| for (i = 0; i < marker->data_length; i++) |
| jpeg_write_m_byte(dstinfo, marker->data[i]); |
| } |
| #else |
| jpeg_write_marker(dstinfo, marker->marker, |
| marker->data, marker->data_length); |
| #endif |
| } |
| } |