| /* |
| * jidctint.c |
| * |
| * Copyright (C) 1991-1998, Thomas G. Lane. |
| * Modification developed 2002-2009 by Guido Vollbeding. |
| * This file is part of the Independent JPEG Group's software. |
| * For conditions of distribution and use, see the accompanying README file. |
| * |
| * This file contains a slow-but-accurate integer implementation of the |
| * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
| * must also perform dequantization of the input coefficients. |
| * |
| * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
| * on each row (or vice versa, but it's more convenient to emit a row at |
| * a time). Direct algorithms are also available, but they are much more |
| * complex and seem not to be any faster when reduced to code. |
| * |
| * This implementation is based on an algorithm described in |
| * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
| * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
| * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
| * The primary algorithm described there uses 11 multiplies and 29 adds. |
| * We use their alternate method with 12 multiplies and 32 adds. |
| * The advantage of this method is that no data path contains more than one |
| * multiplication; this allows a very simple and accurate implementation in |
| * scaled fixed-point arithmetic, with a minimal number of shifts. |
| * |
| * We also provide IDCT routines with various output sample block sizes for |
| * direct resolution reduction or enlargement and for direct resolving the |
| * common 2x1 and 1x2 subsampling cases without additional resampling: NxN |
| * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 input DCT block. |
| * |
| * For N<8 we simply take the corresponding low-frequency coefficients of |
| * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block |
| * to yield the downscaled outputs. |
| * This can be seen as direct low-pass downsampling from the DCT domain |
| * point of view rather than the usual spatial domain point of view, |
| * yielding significant computational savings and results at least |
| * as good as common bilinear (averaging) spatial downsampling. |
| * |
| * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as |
| * lower frequencies and higher frequencies assumed to be zero. |
| * It turns out that the computational effort is similar to the 8x8 IDCT |
| * regarding the output size. |
| * Furthermore, the scaling and descaling is the same for all IDCT sizes. |
| * |
| * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases |
| * since there would be too many additional constants to pre-calculate. |
| */ |
| |
| #define JPEG_INTERNALS |
| #include "jinclude.h" |
| #include "jpeglib.h" |
| #include "jdct.h" /* Private declarations for DCT subsystem */ |
| |
| #ifdef DCT_ISLOW_SUPPORTED |
| |
| |
| /* |
| * This module is specialized to the case DCTSIZE = 8. |
| */ |
| |
| #if DCTSIZE != 8 |
| Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ |
| #endif |
| |
| |
| /* |
| * The poop on this scaling stuff is as follows: |
| * |
| * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) |
| * larger than the true IDCT outputs. The final outputs are therefore |
| * a factor of N larger than desired; since N=8 this can be cured by |
| * a simple right shift at the end of the algorithm. The advantage of |
| * this arrangement is that we save two multiplications per 1-D IDCT, |
| * because the y0 and y4 inputs need not be divided by sqrt(N). |
| * |
| * We have to do addition and subtraction of the integer inputs, which |
| * is no problem, and multiplication by fractional constants, which is |
| * a problem to do in integer arithmetic. We multiply all the constants |
| * by CONST_SCALE and convert them to integer constants (thus retaining |
| * CONST_BITS bits of precision in the constants). After doing a |
| * multiplication we have to divide the product by CONST_SCALE, with proper |
| * rounding, to produce the correct output. This division can be done |
| * cheaply as a right shift of CONST_BITS bits. We postpone shifting |
| * as long as possible so that partial sums can be added together with |
| * full fractional precision. |
| * |
| * The outputs of the first pass are scaled up by PASS1_BITS bits so that |
| * they are represented to better-than-integral precision. These outputs |
| * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
| * with the recommended scaling. (To scale up 12-bit sample data further, an |
| * intermediate INT32 array would be needed.) |
| * |
| * To avoid overflow of the 32-bit intermediate results in pass 2, we must |
| * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
| * shows that the values given below are the most effective. |
| */ |
| |
| #if BITS_IN_JSAMPLE == 8 |
| #define CONST_BITS 13 |
| #define PASS1_BITS 2 |
| #else |
| #define CONST_BITS 13 |
| #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
| #endif |
| |
| /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
| * causing a lot of useless floating-point operations at run time. |
| * To get around this we use the following pre-calculated constants. |
| * If you change CONST_BITS you may want to add appropriate values. |
| * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
| */ |
| |
| #if CONST_BITS == 13 |
| #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ |
| #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ |
| #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ |
| #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ |
| #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ |
| #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ |
| #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ |
| #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ |
| #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ |
| #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ |
| #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ |
| #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ |
| #else |
| #define FIX_0_298631336 FIX(0.298631336) |
| #define FIX_0_390180644 FIX(0.390180644) |
| #define FIX_0_541196100 FIX(0.541196100) |
| #define FIX_0_765366865 FIX(0.765366865) |
| #define FIX_0_899976223 FIX(0.899976223) |
| #define FIX_1_175875602 FIX(1.175875602) |
| #define FIX_1_501321110 FIX(1.501321110) |
| #define FIX_1_847759065 FIX(1.847759065) |
| #define FIX_1_961570560 FIX(1.961570560) |
| #define FIX_2_053119869 FIX(2.053119869) |
| #define FIX_2_562915447 FIX(2.562915447) |
| #define FIX_3_072711026 FIX(3.072711026) |
| #endif |
| |
| |
| /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
| * For 8-bit samples with the recommended scaling, all the variable |
| * and constant values involved are no more than 16 bits wide, so a |
| * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
| * For 12-bit samples, a full 32-bit multiplication will be needed. |
| */ |
| |
| #if BITS_IN_JSAMPLE == 8 |
| #define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
| #else |
| #define MULTIPLY(var,const) ((var) * (const)) |
| #endif |
| |
| |
| /* Dequantize a coefficient by multiplying it by the multiplier-table |
| * entry; produce an int result. In this module, both inputs and result |
| * are 16 bits or less, so either int or short multiply will work. |
| */ |
| |
| #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients. |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp0, tmp1, tmp2, tmp3; |
| INT32 tmp10, tmp11, tmp12, tmp13; |
| INT32 z1, z2, z3; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[DCTSIZE2]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ |
| /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = DCTSIZE; ctr > 0; ctr--) { |
| /* Due to quantization, we will usually find that many of the input |
| * coefficients are zero, especially the AC terms. We can exploit this |
| * by short-circuiting the IDCT calculation for any column in which all |
| * the AC terms are zero. In that case each output is equal to the |
| * DC coefficient (with scale factor as needed). |
| * With typical images and quantization tables, half or more of the |
| * column DCT calculations can be simplified this way. |
| */ |
| |
| if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
| inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
| inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
| inptr[DCTSIZE*7] == 0) { |
| /* AC terms all zero */ |
| int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; |
| |
| wsptr[DCTSIZE*0] = dcval; |
| wsptr[DCTSIZE*1] = dcval; |
| wsptr[DCTSIZE*2] = dcval; |
| wsptr[DCTSIZE*3] = dcval; |
| wsptr[DCTSIZE*4] = dcval; |
| wsptr[DCTSIZE*5] = dcval; |
| wsptr[DCTSIZE*6] = dcval; |
| wsptr[DCTSIZE*7] = dcval; |
| |
| inptr++; /* advance pointers to next column */ |
| quantptr++; |
| wsptr++; |
| continue; |
| } |
| |
| /* Even part: reverse the even part of the forward DCT. */ |
| /* The rotator is sqrt(2)*c(-6). */ |
| |
| z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
| |
| z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
| tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); |
| tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); |
| |
| z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| z2 <<= CONST_BITS; |
| z3 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| z2 += ONE << (CONST_BITS-PASS1_BITS-1); |
| |
| tmp0 = z2 + z3; |
| tmp1 = z2 - z3; |
| |
| tmp10 = tmp0 + tmp2; |
| tmp13 = tmp0 - tmp2; |
| tmp11 = tmp1 + tmp3; |
| tmp12 = tmp1 - tmp3; |
| |
| /* Odd part per figure 8; the matrix is unitary and hence its |
| * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
| */ |
| |
| tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
| tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
| tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| |
| z2 = tmp0 + tmp2; |
| z3 = tmp1 + tmp3; |
| |
| z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ |
| z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
| z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
| z2 += z1; |
| z3 += z1; |
| |
| z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
| tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
| tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
| tmp0 += z1 + z2; |
| tmp3 += z1 + z3; |
| |
| z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
| tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
| tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
| tmp1 += z1 + z3; |
| tmp2 += z1 + z2; |
| |
| /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
| |
| wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS); |
| wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS); |
| wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS); |
| wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS); |
| wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS); |
| wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS); |
| wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS); |
| wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS); |
| |
| inptr++; /* advance pointers to next column */ |
| quantptr++; |
| wsptr++; |
| } |
| |
| /* Pass 2: process rows from work array, store into output array. */ |
| /* Note that we must descale the results by a factor of 8 == 2**3, */ |
| /* and also undo the PASS1_BITS scaling. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < DCTSIZE; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| /* Rows of zeroes can be exploited in the same way as we did with columns. |
| * However, the column calculation has created many nonzero AC terms, so |
| * the simplification applies less often (typically 5% to 10% of the time). |
| * On machines with very fast multiplication, it's possible that the |
| * test takes more time than it's worth. In that case this section |
| * may be commented out. |
| */ |
| |
| #ifndef NO_ZERO_ROW_TEST |
| if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
| wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
| /* AC terms all zero */ |
| JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| outptr[0] = dcval; |
| outptr[1] = dcval; |
| outptr[2] = dcval; |
| outptr[3] = dcval; |
| outptr[4] = dcval; |
| outptr[5] = dcval; |
| outptr[6] = dcval; |
| outptr[7] = dcval; |
| |
| wsptr += DCTSIZE; /* advance pointer to next row */ |
| continue; |
| } |
| #endif |
| |
| /* Even part: reverse the even part of the forward DCT. */ |
| /* The rotator is sqrt(2)*c(-6). */ |
| |
| z2 = (INT32) wsptr[2]; |
| z3 = (INT32) wsptr[6]; |
| |
| z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
| tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); |
| tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); |
| |
| /* Add fudge factor here for final descale. */ |
| z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| z3 = (INT32) wsptr[4]; |
| |
| tmp0 = (z2 + z3) << CONST_BITS; |
| tmp1 = (z2 - z3) << CONST_BITS; |
| |
| tmp10 = tmp0 + tmp2; |
| tmp13 = tmp0 - tmp2; |
| tmp11 = tmp1 + tmp3; |
| tmp12 = tmp1 - tmp3; |
| |
| /* Odd part per figure 8; the matrix is unitary and hence its |
| * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
| */ |
| |
| tmp0 = (INT32) wsptr[7]; |
| tmp1 = (INT32) wsptr[5]; |
| tmp2 = (INT32) wsptr[3]; |
| tmp3 = (INT32) wsptr[1]; |
| |
| z2 = tmp0 + tmp2; |
| z3 = tmp1 + tmp3; |
| |
| z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ |
| z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
| z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
| z2 += z1; |
| z3 += z1; |
| |
| z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
| tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
| tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
| tmp0 += z1 + z2; |
| tmp3 += z1 + z3; |
| |
| z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
| tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
| tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
| tmp1 += z1 + z3; |
| tmp2 += z1 + z2; |
| |
| /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += DCTSIZE; /* advance pointer to next row */ |
| } |
| } |
| |
| #ifdef IDCT_SCALING_SUPPORTED |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a 7x7 output block. |
| * |
| * Optimized algorithm with 12 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/14). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13; |
| INT32 z1, z2, z3; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[7*7]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| tmp13 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| tmp13 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| tmp13 += ONE << (CONST_BITS-PASS1_BITS-1); |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
| |
| tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ |
| tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ |
| tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ |
| tmp0 = z1 + z3; |
| z2 -= tmp0; |
| tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ |
| tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ |
| tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ |
| tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ |
| |
| /* Odd part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
| |
| tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
| tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
| tmp0 = tmp1 - tmp2; |
| tmp1 += tmp2; |
| tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ |
| tmp1 += tmp2; |
| z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ |
| tmp0 += z2; |
| tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ |
| |
| /* Final output stage */ |
| |
| wsptr[7*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
| wsptr[7*6] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
| wsptr[7*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); |
| wsptr[7*5] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); |
| wsptr[7*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); |
| wsptr[7*4] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); |
| wsptr[7*3] = (int) RIGHT_SHIFT(tmp13, CONST_BITS-PASS1_BITS); |
| } |
| |
| /* Pass 2: process 7 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 7; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| tmp13 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| tmp13 <<= CONST_BITS; |
| |
| z1 = (INT32) wsptr[2]; |
| z2 = (INT32) wsptr[4]; |
| z3 = (INT32) wsptr[6]; |
| |
| tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ |
| tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ |
| tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ |
| tmp0 = z1 + z3; |
| z2 -= tmp0; |
| tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ |
| tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ |
| tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ |
| tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ |
| |
| /* Odd part */ |
| |
| z1 = (INT32) wsptr[1]; |
| z2 = (INT32) wsptr[3]; |
| z3 = (INT32) wsptr[5]; |
| |
| tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
| tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
| tmp0 = tmp1 - tmp2; |
| tmp1 += tmp2; |
| tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ |
| tmp1 += tmp2; |
| z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ |
| tmp0 += z2; |
| tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 7; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a reduced-size 6x6 output block. |
| * |
| * Optimized algorithm with 3 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/12). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12; |
| INT32 z1, z2, z3; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[6*6]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| tmp0 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); |
| tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ |
| tmp1 = tmp0 + tmp10; |
| tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS); |
| tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ |
| tmp10 = tmp1 + tmp0; |
| tmp12 = tmp1 - tmp0; |
| |
| /* Odd part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
| tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ |
| tmp0 = tmp1 + ((z1 + z2) << CONST_BITS); |
| tmp2 = tmp1 + ((z3 - z2) << CONST_BITS); |
| tmp1 = (z1 - z2 - z3) << PASS1_BITS; |
| |
| /* Final output stage */ |
| |
| wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
| wsptr[6*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
| wsptr[6*1] = (int) (tmp11 + tmp1); |
| wsptr[6*4] = (int) (tmp11 - tmp1); |
| wsptr[6*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); |
| wsptr[6*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); |
| } |
| |
| /* Pass 2: process 6 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 6; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| tmp0 <<= CONST_BITS; |
| tmp2 = (INT32) wsptr[4]; |
| tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ |
| tmp1 = tmp0 + tmp10; |
| tmp11 = tmp0 - tmp10 - tmp10; |
| tmp10 = (INT32) wsptr[2]; |
| tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ |
| tmp10 = tmp1 + tmp0; |
| tmp12 = tmp1 - tmp0; |
| |
| /* Odd part */ |
| |
| z1 = (INT32) wsptr[1]; |
| z2 = (INT32) wsptr[3]; |
| z3 = (INT32) wsptr[5]; |
| tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ |
| tmp0 = tmp1 + ((z1 + z2) << CONST_BITS); |
| tmp2 = tmp1 + ((z3 - z2) << CONST_BITS); |
| tmp1 = (z1 - z2 - z3) << CONST_BITS; |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 6; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a reduced-size 5x5 output block. |
| * |
| * Optimized algorithm with 5 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/10). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp0, tmp1, tmp10, tmp11, tmp12; |
| INT32 z1, z2, z3; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[5*5]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| tmp12 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| tmp12 += ONE << (CONST_BITS-PASS1_BITS-1); |
| tmp0 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| tmp1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ |
| z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ |
| z3 = tmp12 + z2; |
| tmp10 = z3 + z1; |
| tmp11 = z3 - z1; |
| tmp12 -= z2 << 2; |
| |
| /* Odd part */ |
| |
| z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| |
| z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ |
| tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ |
| tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ |
| |
| /* Final output stage */ |
| |
| wsptr[5*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
| wsptr[5*4] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
| wsptr[5*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); |
| wsptr[5*3] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); |
| wsptr[5*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS); |
| } |
| |
| /* Pass 2: process 5 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 5; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| tmp12 <<= CONST_BITS; |
| tmp0 = (INT32) wsptr[2]; |
| tmp1 = (INT32) wsptr[4]; |
| z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ |
| z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ |
| z3 = tmp12 + z2; |
| tmp10 = z3 + z1; |
| tmp11 = z3 - z1; |
| tmp12 -= z2 << 2; |
| |
| /* Odd part */ |
| |
| z2 = (INT32) wsptr[1]; |
| z3 = (INT32) wsptr[3]; |
| |
| z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ |
| tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ |
| tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 5; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a reduced-size 4x4 output block. |
| * |
| * Optimized algorithm with 3 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT]. |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp0, tmp2, tmp10, tmp12; |
| INT32 z1, z2, z3; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[4*4]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| |
| tmp10 = (tmp0 + tmp2) << PASS1_BITS; |
| tmp12 = (tmp0 - tmp2) << PASS1_BITS; |
| |
| /* Odd part */ |
| /* Same rotation as in the even part of the 8x8 LL&M IDCT */ |
| |
| z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| |
| z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ |
| /* Add fudge factor here for final descale. */ |
| z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
| tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */ |
| CONST_BITS-PASS1_BITS); |
| tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */ |
| CONST_BITS-PASS1_BITS); |
| |
| /* Final output stage */ |
| |
| wsptr[4*0] = (int) (tmp10 + tmp0); |
| wsptr[4*3] = (int) (tmp10 - tmp0); |
| wsptr[4*1] = (int) (tmp12 + tmp2); |
| wsptr[4*2] = (int) (tmp12 - tmp2); |
| } |
| |
| /* Pass 2: process 4 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 4; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| tmp2 = (INT32) wsptr[2]; |
| |
| tmp10 = (tmp0 + tmp2) << CONST_BITS; |
| tmp12 = (tmp0 - tmp2) << CONST_BITS; |
| |
| /* Odd part */ |
| /* Same rotation as in the even part of the 8x8 LL&M IDCT */ |
| |
| z2 = (INT32) wsptr[1]; |
| z3 = (INT32) wsptr[3]; |
| |
| z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ |
| tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ |
| tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 4; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a reduced-size 3x3 output block. |
| * |
| * Optimized algorithm with 2 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/6). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp0, tmp2, tmp10, tmp12; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[3*3]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| tmp0 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); |
| tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ |
| tmp10 = tmp0 + tmp12; |
| tmp2 = tmp0 - tmp12 - tmp12; |
| |
| /* Odd part */ |
| |
| tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ |
| |
| /* Final output stage */ |
| |
| wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
| wsptr[3*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
| wsptr[3*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS); |
| } |
| |
| /* Pass 2: process 3 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 3; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| tmp0 <<= CONST_BITS; |
| tmp2 = (INT32) wsptr[2]; |
| tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ |
| tmp10 = tmp0 + tmp12; |
| tmp2 = tmp0 - tmp12 - tmp12; |
| |
| /* Odd part */ |
| |
| tmp12 = (INT32) wsptr[1]; |
| tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 3; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a reduced-size 2x2 output block. |
| * |
| * Multiplication-less algorithm. |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
| ISLOW_MULT_TYPE * quantptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input. */ |
| |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| |
| /* Column 0 */ |
| tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| /* Add fudge factor here for final descale. */ |
| tmp4 += ONE << 2; |
| |
| tmp0 = tmp4 + tmp5; |
| tmp2 = tmp4 - tmp5; |
| |
| /* Column 1 */ |
| tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0+1], quantptr[DCTSIZE*0+1]); |
| tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1+1], quantptr[DCTSIZE*1+1]); |
| |
| tmp1 = tmp4 + tmp5; |
| tmp3 = tmp4 - tmp5; |
| |
| /* Pass 2: process 2 rows, store into output array. */ |
| |
| /* Row 0 */ |
| outptr = output_buf[0] + output_col; |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK]; |
| |
| /* Row 1 */ |
| outptr = output_buf[1] + output_col; |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp2 + tmp3, 3) & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2 - tmp3, 3) & RANGE_MASK]; |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a reduced-size 1x1 output block. |
| * |
| * We hardly need an inverse DCT routine for this: just take the |
| * average pixel value, which is one-eighth of the DC coefficient. |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| int dcval; |
| ISLOW_MULT_TYPE * quantptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| SHIFT_TEMPS |
| |
| /* 1x1 is trivial: just take the DC coefficient divided by 8. */ |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| dcval = DEQUANTIZE(coef_block[0], quantptr[0]); |
| dcval = (int) DESCALE((INT32) dcval, 3); |
| |
| output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a 9x9 output block. |
| * |
| * Optimized algorithm with 10 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/18). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14; |
| INT32 z1, z2, z3, z4; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[8*9]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| tmp0 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
| |
| tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ |
| tmp1 = tmp0 + tmp3; |
| tmp2 = tmp0 - tmp3 - tmp3; |
| |
| tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ |
| tmp11 = tmp2 + tmp0; |
| tmp14 = tmp2 - tmp0 - tmp0; |
| |
| tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ |
| tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ |
| tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ |
| |
| tmp10 = tmp1 + tmp0 - tmp3; |
| tmp12 = tmp1 - tmp0 + tmp2; |
| tmp13 = tmp1 - tmp2 + tmp3; |
| |
| /* Odd part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
| z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
| |
| z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */ |
| |
| tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ |
| tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ |
| tmp0 = tmp2 + tmp3 - z2; |
| tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ |
| tmp2 += z2 - tmp1; |
| tmp3 += z2 + tmp1; |
| tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ |
| |
| /* Final output stage */ |
| |
| wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
| wsptr[8*8] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
| wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); |
| wsptr[8*7] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); |
| wsptr[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); |
| wsptr[8*6] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); |
| wsptr[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS-PASS1_BITS); |
| wsptr[8*5] = (int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS-PASS1_BITS); |
| wsptr[8*4] = (int) RIGHT_SHIFT(tmp14, CONST_BITS-PASS1_BITS); |
| } |
| |
| /* Pass 2: process 9 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 9; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| tmp0 <<= CONST_BITS; |
| |
| z1 = (INT32) wsptr[2]; |
| z2 = (INT32) wsptr[4]; |
| z3 = (INT32) wsptr[6]; |
| |
| tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ |
| tmp1 = tmp0 + tmp3; |
| tmp2 = tmp0 - tmp3 - tmp3; |
| |
| tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ |
| tmp11 = tmp2 + tmp0; |
| tmp14 = tmp2 - tmp0 - tmp0; |
| |
| tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ |
| tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ |
| tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ |
| |
| tmp10 = tmp1 + tmp0 - tmp3; |
| tmp12 = tmp1 - tmp0 + tmp2; |
| tmp13 = tmp1 - tmp2 + tmp3; |
| |
| /* Odd part */ |
| |
| z1 = (INT32) wsptr[1]; |
| z2 = (INT32) wsptr[3]; |
| z3 = (INT32) wsptr[5]; |
| z4 = (INT32) wsptr[7]; |
| |
| z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */ |
| |
| tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ |
| tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ |
| tmp0 = tmp2 + tmp3 - z2; |
| tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ |
| tmp2 += z2 - tmp1; |
| tmp3 += z2 + tmp1; |
| tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp3, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp3, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 8; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a 10x10 output block. |
| * |
| * Optimized algorithm with 12 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/20). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
| INT32 tmp20, tmp21, tmp22, tmp23, tmp24; |
| INT32 z1, z2, z3, z4, z5; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[8*10]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| z3 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| z3 += ONE << (CONST_BITS-PASS1_BITS-1); |
| z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ |
| z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ |
| tmp10 = z3 + z1; |
| tmp11 = z3 - z2; |
| |
| tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */ |
| CONST_BITS-PASS1_BITS); |
| |
| z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
| |
| z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ |
| tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ |
| tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ |
| |
| tmp20 = tmp10 + tmp12; |
| tmp24 = tmp10 - tmp12; |
| tmp21 = tmp11 + tmp13; |
| tmp23 = tmp11 - tmp13; |
| |
| /* Odd part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
| z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
| |
| tmp11 = z2 + z4; |
| tmp13 = z2 - z4; |
| |
| tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ |
| z5 = z3 << CONST_BITS; |
| |
| z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ |
| z4 = z5 + tmp12; |
| |
| tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ |
| tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ |
| |
| z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ |
| z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1)); |
| |
| tmp12 = (z1 - tmp13 - z3) << PASS1_BITS; |
| |
| tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ |
| tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ |
| |
| /* Final output stage */ |
| |
| wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*2] = (int) (tmp22 + tmp12); |
| wsptr[8*7] = (int) (tmp22 - tmp12); |
| wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
| wsptr[8*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
| wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
| wsptr[8*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
| } |
| |
| /* Pass 2: process 10 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 10; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| z3 <<= CONST_BITS; |
| z4 = (INT32) wsptr[4]; |
| z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ |
| z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ |
| tmp10 = z3 + z1; |
| tmp11 = z3 - z2; |
| |
| tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */ |
| |
| z2 = (INT32) wsptr[2]; |
| z3 = (INT32) wsptr[6]; |
| |
| z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ |
| tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ |
| tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ |
| |
| tmp20 = tmp10 + tmp12; |
| tmp24 = tmp10 - tmp12; |
| tmp21 = tmp11 + tmp13; |
| tmp23 = tmp11 - tmp13; |
| |
| /* Odd part */ |
| |
| z1 = (INT32) wsptr[1]; |
| z2 = (INT32) wsptr[3]; |
| z3 = (INT32) wsptr[5]; |
| z3 <<= CONST_BITS; |
| z4 = (INT32) wsptr[7]; |
| |
| tmp11 = z2 + z4; |
| tmp13 = z2 - z4; |
| |
| tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ |
| |
| z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ |
| z4 = z3 + tmp12; |
| |
| tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ |
| tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ |
| |
| z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ |
| z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1)); |
| |
| tmp12 = ((z1 - tmp13) << CONST_BITS) - z3; |
| |
| tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ |
| tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 8; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a 11x11 output block. |
| * |
| * Optimized algorithm with 24 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/22). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
| INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; |
| INT32 z1, z2, z3, z4; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[8*11]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| tmp10 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| tmp10 += ONE << (CONST_BITS-PASS1_BITS-1); |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
| |
| tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ |
| tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ |
| z4 = z1 + z3; |
| tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */ |
| z4 -= z2; |
| tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ |
| tmp21 = tmp20 + tmp23 + tmp25 - |
| MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ |
| tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ |
| tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ |
| tmp24 += tmp25; |
| tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ |
| tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ |
| MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ |
| tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ |
| |
| /* Odd part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
| z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
| |
| tmp11 = z1 + z2; |
| tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ |
| tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ |
| tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ |
| tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ |
| tmp10 = tmp11 + tmp12 + tmp13 - |
| MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ |
| z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ |
| tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ |
| tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ |
| z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */ |
| tmp11 += z1; |
| tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ |
| tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */ |
| MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ |
| MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ |
| |
| /* Final output stage */ |
| |
| wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*10] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*9] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
| wsptr[8*8] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
| wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
| wsptr[8*7] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
| wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
| wsptr[8*6] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
| wsptr[8*5] = (int) RIGHT_SHIFT(tmp25, CONST_BITS-PASS1_BITS); |
| } |
| |
| /* Pass 2: process 11 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 11; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| tmp10 <<= CONST_BITS; |
| |
| z1 = (INT32) wsptr[2]; |
| z2 = (INT32) wsptr[4]; |
| z3 = (INT32) wsptr[6]; |
| |
| tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ |
| tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ |
| z4 = z1 + z3; |
| tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */ |
| z4 -= z2; |
| tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ |
| tmp21 = tmp20 + tmp23 + tmp25 - |
| MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ |
| tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ |
| tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ |
| tmp24 += tmp25; |
| tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ |
| tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ |
| MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ |
| tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ |
| |
| /* Odd part */ |
| |
| z1 = (INT32) wsptr[1]; |
| z2 = (INT32) wsptr[3]; |
| z3 = (INT32) wsptr[5]; |
| z4 = (INT32) wsptr[7]; |
| |
| tmp11 = z1 + z2; |
| tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ |
| tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ |
| tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ |
| tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ |
| tmp10 = tmp11 + tmp12 + tmp13 - |
| MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ |
| z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ |
| tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ |
| tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ |
| z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */ |
| tmp11 += z1; |
| tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ |
| tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */ |
| MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ |
| MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 8; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a 12x12 output block. |
| * |
| * Optimized algorithm with 15 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/24). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
| INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; |
| INT32 z1, z2, z3, z4; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[8*12]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| z3 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| z3 += ONE << (CONST_BITS-PASS1_BITS-1); |
| |
| z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ |
| |
| tmp10 = z3 + z4; |
| tmp11 = z3 - z4; |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ |
| z1 <<= CONST_BITS; |
| z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
| z2 <<= CONST_BITS; |
| |
| tmp12 = z1 - z2; |
| |
| tmp21 = z3 + tmp12; |
| tmp24 = z3 - tmp12; |
| |
| tmp12 = z4 + z2; |
| |
| tmp20 = tmp10 + tmp12; |
| tmp25 = tmp10 - tmp12; |
| |
| tmp12 = z4 - z1 - z2; |
| |
| tmp22 = tmp11 + tmp12; |
| tmp23 = tmp11 - tmp12; |
| |
| /* Odd part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
| z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
| |
| tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ |
| tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ |
| |
| tmp10 = z1 + z3; |
| tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ |
| tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ |
| tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ |
| tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ |
| tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ |
| tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ |
| tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ |
| MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ |
| |
| z1 -= z4; |
| z2 -= z3; |
| z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ |
| tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ |
| tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ |
| |
| /* Final output stage */ |
| |
| wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
| wsptr[8*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
| wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
| wsptr[8*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
| wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
| wsptr[8*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
| wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); |
| wsptr[8*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); |
| } |
| |
| /* Pass 2: process 12 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 12; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| z3 <<= CONST_BITS; |
| |
| z4 = (INT32) wsptr[4]; |
| z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ |
| |
| tmp10 = z3 + z4; |
| tmp11 = z3 - z4; |
| |
| z1 = (INT32) wsptr[2]; |
| z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ |
| z1 <<= CONST_BITS; |
| z2 = (INT32) wsptr[6]; |
| z2 <<= CONST_BITS; |
| |
| tmp12 = z1 - z2; |
| |
| tmp21 = z3 + tmp12; |
| tmp24 = z3 - tmp12; |
| |
| tmp12 = z4 + z2; |
| |
| tmp20 = tmp10 + tmp12; |
| tmp25 = tmp10 - tmp12; |
| |
| tmp12 = z4 - z1 - z2; |
| |
| tmp22 = tmp11 + tmp12; |
| tmp23 = tmp11 - tmp12; |
| |
| /* Odd part */ |
| |
| z1 = (INT32) wsptr[1]; |
| z2 = (INT32) wsptr[3]; |
| z3 = (INT32) wsptr[5]; |
| z4 = (INT32) wsptr[7]; |
| |
| tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ |
| tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ |
| |
| tmp10 = z1 + z3; |
| tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ |
| tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ |
| tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ |
| tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ |
| tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ |
| tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ |
| tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ |
| MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ |
| |
| z1 -= z4; |
| z2 -= z3; |
| z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ |
| tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ |
| tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 8; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a 13x13 output block. |
| * |
| * Optimized algorithm with 29 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/26). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
| INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; |
| INT32 z1, z2, z3, z4; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[8*13]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| z1 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
| |
| z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
| |
| tmp10 = z3 + z4; |
| tmp11 = z3 - z4; |
| |
| tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */ |
| tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */ |
| |
| tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */ |
| tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */ |
| |
| tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */ |
| tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */ |
| |
| tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */ |
| tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */ |
| |
| tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */ |
| tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */ |
| |
| tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */ |
| tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */ |
| |
| tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */ |
| |
| /* Odd part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
| z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
| |
| tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */ |
| tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */ |
| tmp15 = z1 + z4; |
| tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */ |
| tmp10 = tmp11 + tmp12 + tmp13 - |
| MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */ |
| tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */ |
| tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */ |
| tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */ |
| tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */ |
| tmp11 += tmp14; |
| tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */ |
| tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */ |
| tmp12 += tmp14; |
| tmp13 += tmp14; |
| tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */ |
| tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */ |
| MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */ |
| z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */ |
| tmp14 += z1; |
| tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */ |
| MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */ |
| |
| /* Final output stage */ |
| |
| wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*12] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*11] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
| wsptr[8*10] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
| wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
| wsptr[8*9] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
| wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
| wsptr[8*8] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
| wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); |
| wsptr[8*7] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); |
| wsptr[8*6] = (int) RIGHT_SHIFT(tmp26, CONST_BITS-PASS1_BITS); |
| } |
| |
| /* Pass 2: process 13 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 13; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| z1 <<= CONST_BITS; |
| |
| z2 = (INT32) wsptr[2]; |
| z3 = (INT32) wsptr[4]; |
| z4 = (INT32) wsptr[6]; |
| |
| tmp10 = z3 + z4; |
| tmp11 = z3 - z4; |
| |
| tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */ |
| tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */ |
| |
| tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */ |
| tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */ |
| |
| tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */ |
| tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */ |
| |
| tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */ |
| tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */ |
| |
| tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */ |
| tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */ |
| |
| tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */ |
| tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */ |
| |
| tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */ |
| |
| /* Odd part */ |
| |
| z1 = (INT32) wsptr[1]; |
| z2 = (INT32) wsptr[3]; |
| z3 = (INT32) wsptr[5]; |
| z4 = (INT32) wsptr[7]; |
| |
| tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */ |
| tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */ |
| tmp15 = z1 + z4; |
| tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */ |
| tmp10 = tmp11 + tmp12 + tmp13 - |
| MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */ |
| tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */ |
| tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */ |
| tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */ |
| tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */ |
| tmp11 += tmp14; |
| tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */ |
| tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */ |
| tmp12 += tmp14; |
| tmp13 += tmp14; |
| tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */ |
| tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */ |
| MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */ |
| z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */ |
| tmp14 += z1; |
| tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */ |
| MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */ |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 8; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a 14x14 output block. |
| * |
| * Optimized algorithm with 20 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/28). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
| INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; |
| INT32 z1, z2, z3, z4; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[8*14]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| z1 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
| z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ |
| z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ |
| z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ |
| |
| tmp10 = z1 + z2; |
| tmp11 = z1 + z3; |
| tmp12 = z1 - z4; |
| |
| tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */ |
| CONST_BITS-PASS1_BITS); |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
| |
| z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ |
| |
| tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ |
| tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ |
| tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ |
| MULTIPLY(z2, FIX(1.378756276)); /* c2 */ |
| |
| tmp20 = tmp10 + tmp13; |
| tmp26 = tmp10 - tmp13; |
| tmp21 = tmp11 + tmp14; |
| tmp25 = tmp11 - tmp14; |
| tmp22 = tmp12 + tmp15; |
| tmp24 = tmp12 - tmp15; |
| |
| /* Odd part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
| z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
| tmp13 = z4 << CONST_BITS; |
| |
| tmp14 = z1 + z3; |
| tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ |
| tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ |
| tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ |
| tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ |
| tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ |
| z1 -= z2; |
| tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */ |
| tmp16 += tmp15; |
| z1 += z4; |
| z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */ |
| tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ |
| tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ |
| z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ |
| tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ |
| tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ |
| |
| tmp13 = (z1 - z3) << PASS1_BITS; |
| |
| /* Final output stage */ |
| |
| wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
| wsptr[8*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
| wsptr[8*3] = (int) (tmp23 + tmp13); |
| wsptr[8*10] = (int) (tmp23 - tmp13); |
| wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
| wsptr[8*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
| wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); |
| wsptr[8*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); |
| wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS); |
| wsptr[8*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS); |
| } |
| |
| /* Pass 2: process 14 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 14; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| z1 <<= CONST_BITS; |
| z4 = (INT32) wsptr[4]; |
| z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ |
| z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ |
| z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ |
| |
| tmp10 = z1 + z2; |
| tmp11 = z1 + z3; |
| tmp12 = z1 - z4; |
| |
| tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */ |
| |
| z1 = (INT32) wsptr[2]; |
| z2 = (INT32) wsptr[6]; |
| |
| z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ |
| |
| tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ |
| tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ |
| tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ |
| MULTIPLY(z2, FIX(1.378756276)); /* c2 */ |
| |
| tmp20 = tmp10 + tmp13; |
| tmp26 = tmp10 - tmp13; |
| tmp21 = tmp11 + tmp14; |
| tmp25 = tmp11 - tmp14; |
| tmp22 = tmp12 + tmp15; |
| tmp24 = tmp12 - tmp15; |
| |
| /* Odd part */ |
| |
| z1 = (INT32) wsptr[1]; |
| z2 = (INT32) wsptr[3]; |
| z3 = (INT32) wsptr[5]; |
| z4 = (INT32) wsptr[7]; |
| z4 <<= CONST_BITS; |
| |
| tmp14 = z1 + z3; |
| tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ |
| tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ |
| tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ |
| tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ |
| tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ |
| z1 -= z2; |
| tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */ |
| tmp16 += tmp15; |
| tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */ |
| tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ |
| tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ |
| tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ |
| tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ |
| tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ |
| |
| tmp13 = ((z1 - z3) << CONST_BITS) + z4; |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 8; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a 15x15 output block. |
| * |
| * Optimized algorithm with 22 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/30). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
| INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; |
| INT32 z1, z2, z3, z4; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[8*15]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| z1 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
| |
| z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
| z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
| |
| tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */ |
| tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */ |
| |
| tmp12 = z1 - tmp10; |
| tmp13 = z1 + tmp11; |
| z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */ |
| |
| z4 = z2 - z3; |
| z3 += z2; |
| tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */ |
| tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */ |
| z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */ |
| |
| tmp20 = tmp13 + tmp10 + tmp11; |
| tmp23 = tmp12 - tmp10 + tmp11 + z2; |
| |
| tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */ |
| tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */ |
| |
| tmp25 = tmp13 - tmp10 - tmp11; |
| tmp26 = tmp12 + tmp10 - tmp11 - z2; |
| |
| tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */ |
| tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */ |
| |
| tmp21 = tmp12 + tmp10 + tmp11; |
| tmp24 = tmp13 - tmp10 + tmp11; |
| tmp11 += tmp11; |
| tmp22 = z1 + tmp11; /* c10 = c6-c12 */ |
| tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */ |
| |
| /* Odd part */ |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
| z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
| z4 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
| z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */ |
| z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
| |
| tmp13 = z2 - z4; |
| tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */ |
| tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */ |
| tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */ |
| |
| tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */ |
| tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */ |
| z2 = z1 - z4; |
| tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */ |
| |
| tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */ |
| tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */ |
| tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */ |
| z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */ |
| tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */ |
| tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */ |
| |
| /* Final output stage */ |
| |
| wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*14] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
| wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*13] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
| wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
| wsptr[8*12] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
| wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
| wsptr[8*11] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
| wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
| wsptr[8*10] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
| wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); |
| wsptr[8*9] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); |
| wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS); |
| wsptr[8*8] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS); |
| wsptr[8*7] = (int) RIGHT_SHIFT(tmp27, CONST_BITS-PASS1_BITS); |
| } |
| |
| /* Pass 2: process 15 rows from work array, store into output array. */ |
| |
| wsptr = workspace; |
| for (ctr = 0; ctr < 15; ctr++) { |
| outptr = output_buf[ctr] + output_col; |
| |
| /* Even part */ |
| |
| /* Add fudge factor here for final descale. */ |
| z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
| z1 <<= CONST_BITS; |
| |
| z2 = (INT32) wsptr[2]; |
| z3 = (INT32) wsptr[4]; |
| z4 = (INT32) wsptr[6]; |
| |
| tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */ |
| tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */ |
| |
| tmp12 = z1 - tmp10; |
| tmp13 = z1 + tmp11; |
| z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */ |
| |
| z4 = z2 - z3; |
| z3 += z2; |
| tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */ |
| tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */ |
| z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */ |
| |
| tmp20 = tmp13 + tmp10 + tmp11; |
| tmp23 = tmp12 - tmp10 + tmp11 + z2; |
| |
| tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */ |
| tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */ |
| |
| tmp25 = tmp13 - tmp10 - tmp11; |
| tmp26 = tmp12 + tmp10 - tmp11 - z2; |
| |
| tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */ |
| tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */ |
| |
| tmp21 = tmp12 + tmp10 + tmp11; |
| tmp24 = tmp13 - tmp10 + tmp11; |
| tmp11 += tmp11; |
| tmp22 = z1 + tmp11; /* c10 = c6-c12 */ |
| tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */ |
| |
| /* Odd part */ |
| |
| z1 = (INT32) wsptr[1]; |
| z2 = (INT32) wsptr[3]; |
| z4 = (INT32) wsptr[5]; |
| z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */ |
| z4 = (INT32) wsptr[7]; |
| |
| tmp13 = z2 - z4; |
| tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */ |
| tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */ |
| tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */ |
| |
| tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */ |
| tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */ |
| z2 = z1 - z4; |
| tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */ |
| |
| tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */ |
| tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */ |
| tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */ |
| z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */ |
| tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */ |
| tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */ |
| |
| /* Final output stage */ |
| |
| outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27, |
| CONST_BITS+PASS1_BITS+3) |
| & RANGE_MASK]; |
| |
| wsptr += 8; /* advance pointer to next row */ |
| } |
| } |
| |
| |
| /* |
| * Perform dequantization and inverse DCT on one block of coefficients, |
| * producing a 16x16 output block. |
| * |
| * Optimized algorithm with 28 multiplications in the 1-D kernel. |
| * cK represents sqrt(2) * cos(K*pi/32). |
| */ |
| |
| GLOBAL(void) |
| jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| JCOEFPTR coef_block, |
| JSAMPARRAY output_buf, JDIMENSION output_col) |
| { |
| INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13; |
| INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; |
| INT32 z1, z2, z3, z4; |
| JCOEFPTR inptr; |
| ISLOW_MULT_TYPE * quantptr; |
| int * wsptr; |
| JSAMPROW outptr; |
| JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
| int ctr; |
| int workspace[8*16]; /* buffers data between passes */ |
| SHIFT_TEMPS |
| |
| /* Pass 1: process columns from input, store into work array. */ |
| |
| inptr = coef_block; |
| quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| wsptr = workspace; |
| for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
| /* Even part */ |
| |
| tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
| tmp0 <<= CONST_BITS; |
| /* Add fudge factor here for final descale. */ |
| tmp0 += 1 << (CONST_BITS-PASS1_BITS-1); |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
| tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ |
| tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ |
| |
| tmp10 = tmp0 + tmp1; |
| tmp11 = tmp0 - tmp1; |
| tmp12 = tmp0 + tmp2; |
| tmp13 = tmp0 - tmp2; |
| |
| z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
|