skia / external / github.com / libjpeg-turbo / libjpeg-turbo / 190382b75f5bf498183f77a3543e7a6a1a2e3015 / . / jidctflt.c

/* | |

* jidctflt.c | |

* | |

* This file was part of the Independent JPEG Group's software: | |

* Copyright (C) 1994-1998, Thomas G. Lane. | |

* Modified 2010 by Guido Vollbeding. | |

* libjpeg-turbo Modifications: | |

* Copyright (C) 2014, D. R. Commander. | |

* For conditions of distribution and use, see the accompanying README.ijg | |

* file. | |

* | |

* This file contains a floating-point implementation of the | |

* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine | |

* must also perform dequantization of the input coefficients. | |

* | |

* This implementation should be more accurate than either of the integer | |

* IDCT implementations. However, it may not give the same results on all | |

* machines because of differences in roundoff behavior. Speed will depend | |

* on the hardware's floating point capacity. | |

* | |

* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT | |

* on each row (or vice versa, but it's more convenient to emit a row at | |

* a time). Direct algorithms are also available, but they are much more | |

* complex and seem not to be any faster when reduced to code. | |

* | |

* This implementation is based on Arai, Agui, and Nakajima's algorithm for | |

* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |

* Japanese, but the algorithm is described in the Pennebaker & Mitchell | |

* JPEG textbook (see REFERENCES section in file README.ijg). The following | |

* code is based directly on figure 4-8 in P&M. | |

* While an 8-point DCT cannot be done in less than 11 multiplies, it is | |

* possible to arrange the computation so that many of the multiplies are | |

* simple scalings of the final outputs. These multiplies can then be | |

* folded into the multiplications or divisions by the JPEG quantization | |

* table entries. The AA&N method leaves only 5 multiplies and 29 adds | |

* to be done in the DCT itself. | |

* The primary disadvantage of this method is that with a fixed-point | |

* implementation, accuracy is lost due to imprecise representation of the | |

* scaled quantization values. However, that problem does not arise if | |

* we use floating point arithmetic. | |

*/ | |

#define JPEG_INTERNALS | |

#include "jinclude.h" | |

#include "jpeglib.h" | |

#include "jdct.h" /* Private declarations for DCT subsystem */ | |

#ifdef DCT_FLOAT_SUPPORTED | |

/* | |

* This module is specialized to the case DCTSIZE = 8. | |

*/ | |

#if DCTSIZE != 8 | |

Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |

#endif | |

/* Dequantize a coefficient by multiplying it by the multiplier-table | |

* entry; produce a float result. | |

*/ | |

#define DEQUANTIZE(coef, quantval) (((FAST_FLOAT)(coef)) * (quantval)) | |

/* | |

* Perform dequantization and inverse DCT on one block of coefficients. | |

*/ | |

GLOBAL(void) | |

jpeg_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, | |

JCOEFPTR coef_block, JSAMPARRAY output_buf, | |

JDIMENSION output_col) | |

{ | |

FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |

FAST_FLOAT tmp10, tmp11, tmp12, tmp13; | |

FAST_FLOAT z5, z10, z11, z12, z13; | |

JCOEFPTR inptr; | |

FLOAT_MULT_TYPE *quantptr; | |

FAST_FLOAT *wsptr; | |

JSAMPROW outptr; | |

JSAMPLE *range_limit = cinfo->sample_range_limit; | |

int ctr; | |

FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ | |

#define _0_125 ((FLOAT_MULT_TYPE)0.125) | |

/* Pass 1: process columns from input, store into work array. */ | |

inptr = coef_block; | |

quantptr = (FLOAT_MULT_TYPE *)compptr->dct_table; | |

wsptr = workspace; | |

for (ctr = DCTSIZE; ctr > 0; ctr--) { | |

/* Due to quantization, we will usually find that many of the input | |

* coefficients are zero, especially the AC terms. We can exploit this | |

* by short-circuiting the IDCT calculation for any column in which all | |

* the AC terms are zero. In that case each output is equal to the | |

* DC coefficient (with scale factor as needed). | |

* With typical images and quantization tables, half or more of the | |

* column DCT calculations can be simplified this way. | |

*/ | |

if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && | |

inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 && | |

inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 && | |

inptr[DCTSIZE * 7] == 0) { | |

/* AC terms all zero */ | |

FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE * 0], | |

quantptr[DCTSIZE * 0] * _0_125); | |

wsptr[DCTSIZE * 0] = dcval; | |

wsptr[DCTSIZE * 1] = dcval; | |

wsptr[DCTSIZE * 2] = dcval; | |

wsptr[DCTSIZE * 3] = dcval; | |

wsptr[DCTSIZE * 4] = dcval; | |

wsptr[DCTSIZE * 5] = dcval; | |

wsptr[DCTSIZE * 6] = dcval; | |

wsptr[DCTSIZE * 7] = dcval; | |

inptr++; /* advance pointers to next column */ | |

quantptr++; | |

wsptr++; | |

continue; | |

} | |

/* Even part */ | |

tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] * _0_125); | |

tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2] * _0_125); | |

tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4] * _0_125); | |

tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6] * _0_125); | |

tmp10 = tmp0 + tmp2; /* phase 3 */ | |

tmp11 = tmp0 - tmp2; | |

tmp13 = tmp1 + tmp3; /* phases 5-3 */ | |

tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT)1.414213562) - tmp13; /* 2*c4 */ | |

tmp0 = tmp10 + tmp13; /* phase 2 */ | |

tmp3 = tmp10 - tmp13; | |

tmp1 = tmp11 + tmp12; | |

tmp2 = tmp11 - tmp12; | |

/* Odd part */ | |

tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1] * _0_125); | |

tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3] * _0_125); | |

tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5] * _0_125); | |

tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7] * _0_125); | |

z13 = tmp6 + tmp5; /* phase 6 */ | |

z10 = tmp6 - tmp5; | |

z11 = tmp4 + tmp7; | |

z12 = tmp4 - tmp7; | |

tmp7 = z11 + z13; /* phase 5 */ | |

tmp11 = (z11 - z13) * ((FAST_FLOAT)1.414213562); /* 2*c4 */ | |

z5 = (z10 + z12) * ((FAST_FLOAT)1.847759065); /* 2*c2 */ | |

tmp10 = z5 - z12 * ((FAST_FLOAT)1.082392200); /* 2*(c2-c6) */ | |

tmp12 = z5 - z10 * ((FAST_FLOAT)2.613125930); /* 2*(c2+c6) */ | |

tmp6 = tmp12 - tmp7; /* phase 2 */ | |

tmp5 = tmp11 - tmp6; | |

tmp4 = tmp10 - tmp5; | |

wsptr[DCTSIZE * 0] = tmp0 + tmp7; | |

wsptr[DCTSIZE * 7] = tmp0 - tmp7; | |

wsptr[DCTSIZE * 1] = tmp1 + tmp6; | |

wsptr[DCTSIZE * 6] = tmp1 - tmp6; | |

wsptr[DCTSIZE * 2] = tmp2 + tmp5; | |

wsptr[DCTSIZE * 5] = tmp2 - tmp5; | |

wsptr[DCTSIZE * 3] = tmp3 + tmp4; | |

wsptr[DCTSIZE * 4] = tmp3 - tmp4; | |

inptr++; /* advance pointers to next column */ | |

quantptr++; | |

wsptr++; | |

} | |

/* Pass 2: process rows from work array, store into output array. */ | |

wsptr = workspace; | |

for (ctr = 0; ctr < DCTSIZE; ctr++) { | |

outptr = output_buf[ctr] + output_col; | |

/* Rows of zeroes can be exploited in the same way as we did with columns. | |

* However, the column calculation has created many nonzero AC terms, so | |

* the simplification applies less often (typically 5% to 10% of the time). | |

* And testing floats for zero is relatively expensive, so we don't bother. | |

*/ | |

/* Even part */ | |

/* Apply signed->unsigned and prepare float->int conversion */ | |

z5 = wsptr[0] + ((FAST_FLOAT)CENTERJSAMPLE + (FAST_FLOAT)0.5); | |

tmp10 = z5 + wsptr[4]; | |

tmp11 = z5 - wsptr[4]; | |

tmp13 = wsptr[2] + wsptr[6]; | |

tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT)1.414213562) - tmp13; | |

tmp0 = tmp10 + tmp13; | |

tmp3 = tmp10 - tmp13; | |

tmp1 = tmp11 + tmp12; | |

tmp2 = tmp11 - tmp12; | |

/* Odd part */ | |

z13 = wsptr[5] + wsptr[3]; | |

z10 = wsptr[5] - wsptr[3]; | |

z11 = wsptr[1] + wsptr[7]; | |

z12 = wsptr[1] - wsptr[7]; | |

tmp7 = z11 + z13; | |

tmp11 = (z11 - z13) * ((FAST_FLOAT)1.414213562); | |

z5 = (z10 + z12) * ((FAST_FLOAT)1.847759065); /* 2*c2 */ | |

tmp10 = z5 - z12 * ((FAST_FLOAT)1.082392200); /* 2*(c2-c6) */ | |

tmp12 = z5 - z10 * ((FAST_FLOAT)2.613125930); /* 2*(c2+c6) */ | |

tmp6 = tmp12 - tmp7; | |

tmp5 = tmp11 - tmp6; | |

tmp4 = tmp10 - tmp5; | |

/* Final output stage: float->int conversion and range-limit */ | |

outptr[0] = range_limit[((int)(tmp0 + tmp7)) & RANGE_MASK]; | |

outptr[7] = range_limit[((int)(tmp0 - tmp7)) & RANGE_MASK]; | |

outptr[1] = range_limit[((int)(tmp1 + tmp6)) & RANGE_MASK]; | |

outptr[6] = range_limit[((int)(tmp1 - tmp6)) & RANGE_MASK]; | |

outptr[2] = range_limit[((int)(tmp2 + tmp5)) & RANGE_MASK]; | |

outptr[5] = range_limit[((int)(tmp2 - tmp5)) & RANGE_MASK]; | |

outptr[3] = range_limit[((int)(tmp3 + tmp4)) & RANGE_MASK]; | |

outptr[4] = range_limit[((int)(tmp3 - tmp4)) & RANGE_MASK]; | |

wsptr += DCTSIZE; /* advance pointer to next row */ | |

} | |

} | |

#endif /* DCT_FLOAT_SUPPORTED */ |