| // Copyright 2017 The Wuffs Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| // |
| // SPDX-License-Identifier: Apache-2.0 OR MIT |
| |
| // ---------------- Version |
| |
| // WUFFS_VERSION is the major.minor.patch version, as per https://semver.org/, |
| // as a uint64_t. The major number is the high 32 bits. The minor number is the |
| // middle 16 bits. The patch number is the low 16 bits. The pre-release label |
| // and build metadata are part of the string representation (such as |
| // "1.2.3-beta+456.20181231") but not the uint64_t representation. |
| // |
| // WUFFS_VERSION_PRE_RELEASE_LABEL (such as "", "beta" or "rc.1") being |
| // non-empty denotes a developer preview, not a release version, and has no |
| // backwards or forwards compatibility guarantees. |
| // |
| // WUFFS_VERSION_BUILD_METADATA_XXX, if non-zero, are the number of commits and |
| // the last commit date in the repository used to build this library. Within |
| // each major.minor branch, the commit count should increase monotonically. |
| // |
| // ยก Some code generation programs can override WUFFS_VERSION. |
| #define WUFFS_VERSION 0 |
| #define WUFFS_VERSION_MAJOR 0 |
| #define WUFFS_VERSION_MINOR 0 |
| #define WUFFS_VERSION_PATCH 0 |
| #define WUFFS_VERSION_PRE_RELEASE_LABEL "unsupported.snapshot" |
| #define WUFFS_VERSION_BUILD_METADATA_COMMIT_COUNT 0 |
| #define WUFFS_VERSION_BUILD_METADATA_COMMIT_DATE 0 |
| #define WUFFS_VERSION_STRING "0.0.0+0.00000000" |
| |
| // ---------------- Private Implementation Macros Re-definition Check |
| |
| // Users (those who #include the "wuffs-vM.N.c" file) should not define any |
| // WUFFS_PRIVATE_IMPL__ETC macros, only WUFFS_CONFIG__ETC macros (and |
| // WUFFS_IMPLEMENTATION). Mucking about with the private implementation macros |
| // is not supported and may break when upgrading to newer Wuffs versions. |
| |
| #if defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__ARM_CRC32) || \ |
| defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__ARM_NEON) || \ |
| defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64) || \ |
| defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64_V2) || \ |
| defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64_V3) || \ |
| defined(WUFFS_PRIVATE_IMPL__HPD__DECIMAL_POINT__RANGE) || \ |
| defined(WUFFS_PRIVATE_IMPL__HPD__DIGITS_PRECISION) || \ |
| defined(WUFFS_PRIVATE_IMPL__HPD__SHIFT__MAX_INCL) || \ |
| defined(WUFFS_PRIVATE_IMPL__LOW_BITS_MASK__U16) || \ |
| defined(WUFFS_PRIVATE_IMPL__LOW_BITS_MASK__U32) || \ |
| defined(WUFFS_PRIVATE_IMPL__LOW_BITS_MASK__U64) || \ |
| defined(WUFFS_PRIVATE_IMPL__LOW_BITS_MASK__U8) |
| |
| #if defined(__GNUC__) || defined(__clang__) |
| #warning "Defining WUFFS_PRIVATE_IMPL__ETC yourself is not supported" |
| #elif defined(_MSC_VER) |
| #pragma message("Defining WUFFS_PRIVATE_IMPL__ETC yourself is not supported") |
| #endif |
| |
| #endif |
| |
| // ---------------- Configuration |
| |
| // Define WUFFS_CONFIG__AVOID_CPU_ARCH to avoid any code tied to a specific CPU |
| // architecture, such as SSE SIMD for the x86 CPU family. |
| #if defined(WUFFS_CONFIG__AVOID_CPU_ARCH) // (#if-chain ref AVOID_CPU_ARCH_0) |
| // No-op. |
| #else // (#if-chain ref AVOID_CPU_ARCH_0) |
| |
| // The "defined(__clang__)" isn't redundant. While vanilla clang defines |
| // __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not. |
| #if defined(__GNUC__) || defined(__clang__) |
| #define WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET(arg) __attribute__((target(arg))) |
| #else |
| #define WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET(arg) |
| #endif // defined(__GNUC__) || defined(__clang__) |
| |
| #if defined(__GNUC__) // (#if-chain ref AVOID_CPU_ARCH_1) |
| |
| // To simplify Wuffs code, "cpu_arch >= arm_xxx" requires xxx but also |
| // unaligned little-endian load/stores. |
| #if defined(__ARM_FEATURE_UNALIGNED) && !defined(__native_client__) && \ |
| defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
| // Not all gcc versions define __ARM_ACLE, even if they support crc32 |
| // intrinsics. Look for __ARM_FEATURE_CRC32 instead. |
| #if defined(__ARM_FEATURE_CRC32) |
| #include <arm_acle.h> |
| #define WUFFS_PRIVATE_IMPL__CPU_ARCH__ARM_CRC32 |
| #endif // defined(__ARM_FEATURE_CRC32) |
| #if defined(__ARM_NEON) |
| #include <arm_neon.h> |
| #define WUFFS_PRIVATE_IMPL__CPU_ARCH__ARM_NEON |
| #endif // defined(__ARM_NEON) |
| #endif // defined(__ARM_FEATURE_UNALIGNED) etc |
| |
| // Similarly, "cpu_arch >= x86_sse42" requires SSE4.2 but also PCLMUL and |
| // POPCNT. This is checked at runtime via cpuid, not at compile time. |
| // |
| // Likewise, "cpu_arch >= x86_avx2" also requires PCLMUL, POPCNT and SSE4.2. |
| // |
| // ---- |
| // |
| // Technically, we could use the SSE family on 32-bit x86, not just 64-bit x86. |
| // But some intrinsics don't compile in 32-bit mode. It's not worth the hassle. |
| // https://github.com/google/wuffs/issues/145 |
| #if defined(__x86_64__) |
| #if !defined(__native_client__) |
| #include <cpuid.h> |
| #include <x86intrin.h> |
| #define WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64 |
| #define WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64_V2 |
| #define WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64_V3 |
| #endif // !defined(__native_client__) |
| #endif // defined(__x86_64__) |
| |
| #elif defined(_MSC_VER) // (#if-chain ref AVOID_CPU_ARCH_1) |
| |
| #if defined(_M_X64) |
| |
| // On X86_64, Microsoft Visual C/C++ (MSVC) only supports SSE2 by default. |
| // There are /arch:SSE2, /arch:AVX and /arch:AVX2 compiler flags (the AVX2 one |
| // is roughly equivalent to X86_64_V3), but there is no /arch:SSE42 compiler |
| // flag that's equivalent to X86_64_V2. |
| // |
| // For getting maximum performance with X86_64 MSVC and Wuffs, pass /arch:AVX2 |
| // (and then test on the oldest hardware you intend to support). |
| // |
| // Absent that compiler flag, either define one of the three macros listed |
| // below or else the X86_64 SIMD code will be disabled and you'll get a #pragma |
| // message stating this library "performs best with /arch:AVX2". This message |
| // is harmless and ignorable, in that the non-SIMD code is still correct and |
| // reasonably performant, but is a reminder that when combining Wuffs and MSVC, |
| // some compiler configuration is required for maximum performance. |
| // |
| // - WUFFS_CONFIG__DISABLE_MSVC_CPU_ARCH__X86_64_FAMILY |
| // - WUFFS_CONFIG__ENABLE_MSVC_CPU_ARCH__X86_64_V2 (enables SSE4.2 and below) |
| // - WUFFS_CONFIG__ENABLE_MSVC_CPU_ARCH__X86_64_V3 (enables AVX2 and below) |
| // |
| // Defining the first one (WUFFS_CONFIG__DISABLE_MSVC_CPU_ARCH__X86_64_FAMILY) |
| // or defining none of those three (the default state) are equivalent (in that |
| // both disable the SIMD code paths), other than that pragma message. |
| // |
| // When defining these WUFFS_CONFIG__ENABLE_ETC macros with MSVC, be aware that |
| // some users report it leading to ICEs (Internal Compiler Errors), but other |
| // users report no problems at all (and improved performance). It's unclear |
| // exactly what combination of SIMD code and MSVC configuration lead to ICEs. |
| // Do your own testing with your own MSVC version and configuration. |
| // |
| // https://github.com/google/wuffs/issues/148 |
| // https://github.com/google/wuffs/issues/151 |
| // https://developercommunity.visualstudio.com/t/fatal--error-C1001:-Internal-compiler-er/10703305 |
| // |
| // Clang (including clang-cl) and GCC don't need this WUFFS_CONFIG__ETC macro |
| // machinery, or having the Wuffs-the-library user to fiddle with compiler |
| // flags, because they support "__attribute__((target(arg)))". |
| #if defined(__AVX2__) || defined(__clang__) || \ |
| defined(WUFFS_CONFIG__ENABLE_MSVC_CPU_ARCH__X86_64_V3) |
| #define WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64 |
| #define WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64_V2 |
| #define WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64_V3 |
| #elif defined(WUFFS_CONFIG__ENABLE_MSVC_CPU_ARCH__X86_64_V2) |
| #define WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64 |
| #define WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64_V2 |
| #elif !defined(WUFFS_CONFIG__DISABLE_MSVC_CPU_ARCH__X86_64_FAMILY) |
| #pragma message("Wuffs with MSVC+X64 performs best with /arch:AVX2") |
| #endif // defined(__AVX2__) || defined(__clang__) || etc |
| |
| #if defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64) |
| |
| #if defined(WUFFS_CONFIG__DISABLE_MSVC_CPU_ARCH__X86_64_FAMILY) |
| #error "MSVC_CPU_ARCH simultaneously enabled and disabled" |
| #endif |
| |
| #include <intrin.h> |
| // intrin.h isn't enough for X64 SIMD, with clang-cl, if we want to use |
| // "__attribute__((target(arg)))" without e.g. "/arch:AVX". |
| // |
| // Some web pages suggest that <immintrin.h> is all you need, as it pulls in |
| // the earlier SIMD families like SSE4.2, but that doesn't seem to work in |
| // practice, possibly for the same reason that just <intrin.h> doesn't work. |
| #include <immintrin.h> // AVX, AVX2, FMA, POPCNT |
| #include <nmmintrin.h> // SSE4.2 |
| #include <wmmintrin.h> // AES, PCLMUL |
| |
| #endif // defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64) |
| #endif // defined(_M_X64) |
| #endif // (#if-chain ref AVOID_CPU_ARCH_1) |
| #endif // (#if-chain ref AVOID_CPU_ARCH_0) |
| |
| // -------- |
| |
| // Define WUFFS_CONFIG__STATIC_FUNCTIONS (combined with WUFFS_IMPLEMENTATION) |
| // to make all of Wuffs' functions have static storage. |
| // |
| // This can help the compiler ignore or discard unused code, which can produce |
| // faster compiles and smaller binaries. Other motivations are discussed in the |
| // "ALLOW STATIC IMPLEMENTATION" section of |
| // https://raw.githubusercontent.com/nothings/stb/master/docs/stb_howto.txt |
| #if defined(WUFFS_CONFIG__STATIC_FUNCTIONS) |
| #define WUFFS_BASE__MAYBE_STATIC static |
| #else |
| #define WUFFS_BASE__MAYBE_STATIC |
| #endif // defined(WUFFS_CONFIG__STATIC_FUNCTIONS) |
| |
| // ---------------- CPU Architecture |
| |
| static inline bool // |
| wuffs_base__cpu_arch__have_arm_crc32(void) { |
| #if defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__ARM_CRC32) |
| return true; |
| #else |
| return false; |
| #endif // defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__ARM_CRC32) |
| } |
| |
| static inline bool // |
| wuffs_base__cpu_arch__have_arm_neon(void) { |
| #if defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__ARM_NEON) |
| return true; |
| #else |
| return false; |
| #endif // defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__ARM_NEON) |
| } |
| |
| static inline bool // |
| wuffs_base__cpu_arch__have_x86_avx2(void) { |
| #if defined(__PCLMUL__) && defined(__POPCNT__) && defined(__SSE4_2__) && \ |
| defined(__AVX2__) |
| return true; |
| #else |
| #if defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64) |
| // GCC defines these macros but MSVC does not. |
| // - bit_AVX2 = (1 << 5) |
| const unsigned int avx2_ebx7 = 0x00000020; |
| // GCC defines these macros but MSVC does not. |
| // - bit_PCLMUL = (1 << 1) |
| // - bit_POPCNT = (1 << 23) |
| // - bit_SSE4_2 = (1 << 20) |
| const unsigned int avx2_ecx1 = 0x00900002; |
| |
| // clang defines __GNUC__ and clang-cl defines _MSC_VER (but not __GNUC__). |
| #if defined(__GNUC__) |
| unsigned int eax7 = 0; |
| unsigned int ebx7 = 0; |
| unsigned int ecx7 = 0; |
| unsigned int edx7 = 0; |
| if (__get_cpuid_count(7, 0, &eax7, &ebx7, &ecx7, &edx7) && |
| ((ebx7 & avx2_ebx7) == avx2_ebx7)) { |
| unsigned int eax1 = 0; |
| unsigned int ebx1 = 0; |
| unsigned int ecx1 = 0; |
| unsigned int edx1 = 0; |
| if (__get_cpuid(1, &eax1, &ebx1, &ecx1, &edx1) && |
| ((ecx1 & avx2_ecx1) == avx2_ecx1)) { |
| return true; |
| } |
| } |
| #elif defined(_MSC_VER) // defined(__GNUC__) |
| int x7[4]; |
| __cpuidex(x7, 7, 0); |
| if ((((unsigned int)(x7[1])) & avx2_ebx7) == avx2_ebx7) { |
| int x1[4]; |
| __cpuid(x1, 1); |
| if ((((unsigned int)(x1[2])) & avx2_ecx1) == avx2_ecx1) { |
| return true; |
| } |
| } |
| #else |
| #error "WUFFS_PRIVATE_IMPL__CPU_ARCH__ETC combined with an unsupported compiler" |
| #endif // defined(__GNUC__); defined(_MSC_VER) |
| #endif // defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64) |
| return false; |
| #endif // defined(__PCLMUL__) && defined(__POPCNT__) && defined(__SSE4_2__) && |
| // defined(__AVX2__) |
| } |
| |
| static inline bool // |
| wuffs_base__cpu_arch__have_x86_bmi2(void) { |
| #if defined(__BMI2__) |
| return true; |
| #else |
| #if defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64) |
| // GCC defines these macros but MSVC does not. |
| // - bit_BMI2 = (1 << 8) |
| const unsigned int bmi2_ebx7 = 0x00000100; |
| |
| // clang defines __GNUC__ and clang-cl defines _MSC_VER (but not __GNUC__). |
| #if defined(__GNUC__) |
| unsigned int eax7 = 0; |
| unsigned int ebx7 = 0; |
| unsigned int ecx7 = 0; |
| unsigned int edx7 = 0; |
| if (__get_cpuid_count(7, 0, &eax7, &ebx7, &ecx7, &edx7) && |
| ((ebx7 & bmi2_ebx7) == bmi2_ebx7)) { |
| return true; |
| } |
| #elif defined(_MSC_VER) // defined(__GNUC__) |
| int x7[4]; |
| __cpuidex(x7, 7, 0); |
| if ((((unsigned int)(x7[1])) & bmi2_ebx7) == bmi2_ebx7) { |
| return true; |
| } |
| #else |
| #error "WUFFS_PRIVATE_IMPL__CPU_ARCH__ETC combined with an unsupported compiler" |
| #endif // defined(__GNUC__); defined(_MSC_VER) |
| #endif // defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64) |
| return false; |
| #endif // defined(__BMI2__) |
| } |
| |
| static inline bool // |
| wuffs_base__cpu_arch__have_x86_sse42(void) { |
| #if defined(__PCLMUL__) && defined(__POPCNT__) && defined(__SSE4_2__) |
| return true; |
| #else |
| #if defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64) |
| // GCC defines these macros but MSVC does not. |
| // - bit_PCLMUL = (1 << 1) |
| // - bit_POPCNT = (1 << 23) |
| // - bit_SSE4_2 = (1 << 20) |
| const unsigned int sse42_ecx1 = 0x00900002; |
| |
| // clang defines __GNUC__ and clang-cl defines _MSC_VER (but not __GNUC__). |
| #if defined(__GNUC__) |
| unsigned int eax1 = 0; |
| unsigned int ebx1 = 0; |
| unsigned int ecx1 = 0; |
| unsigned int edx1 = 0; |
| if (__get_cpuid(1, &eax1, &ebx1, &ecx1, &edx1) && |
| ((ecx1 & sse42_ecx1) == sse42_ecx1)) { |
| return true; |
| } |
| #elif defined(_MSC_VER) // defined(__GNUC__) |
| int x1[4]; |
| __cpuid(x1, 1); |
| if ((((unsigned int)(x1[2])) & sse42_ecx1) == sse42_ecx1) { |
| return true; |
| } |
| #else |
| #error "WUFFS_PRIVATE_IMPL__CPU_ARCH__ETC combined with an unsupported compiler" |
| #endif // defined(__GNUC__); defined(_MSC_VER) |
| #endif // defined(WUFFS_PRIVATE_IMPL__CPU_ARCH__X86_64) |
| return false; |
| #endif // defined(__PCLMUL__) && defined(__POPCNT__) && defined(__SSE4_2__) |
| } |
| |
| // ---------------- Fundamentals |
| |
| // Wuffs assumes that: |
| // - converting a uint32_t to a size_t will never overflow. |
| // - converting a size_t to a uint64_t will never overflow. |
| #if defined(__WORDSIZE) |
| #if (__WORDSIZE != 32) && (__WORDSIZE != 64) |
| #error "Wuffs requires a word size of either 32 or 64 bits" |
| #endif |
| #endif |
| |
| // The "defined(__clang__)" isn't redundant. While vanilla clang defines |
| // __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not. |
| #if defined(__GNUC__) || defined(__clang__) |
| #define WUFFS_BASE__FORCE_INLINE __attribute__((__always_inline__)) |
| #define WUFFS_BASE__POTENTIALLY_UNUSED __attribute__((unused)) |
| #define WUFFS_BASE__WARN_UNUSED_RESULT __attribute__((warn_unused_result)) |
| #elif defined(_MSC_VER) |
| #define WUFFS_BASE__FORCE_INLINE __forceinline |
| #define WUFFS_BASE__POTENTIALLY_UNUSED |
| #define WUFFS_BASE__WARN_UNUSED_RESULT |
| #else |
| #define WUFFS_BASE__FORCE_INLINE |
| #define WUFFS_BASE__POTENTIALLY_UNUSED |
| #define WUFFS_BASE__WARN_UNUSED_RESULT |
| #endif |
| |
| // Clang's "-fsanitize=integer" checks for "unsigned-integer-overflow" even |
| // though, for *unsigned* integers, it is *not* undefined behavior. The check |
| // is still made because unsigned integer overflow "is often unintentional". |
| // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html |
| // |
| // However, for Wuffs' generated C code, unsigned overflow is intentional. The |
| // programmer has to use "~mod+" instead of a plain "+" operator in Wuffs code. |
| // Further runtime checks for unsigned integer overflow can add performance |
| // overhead (fuzzers can then time out) and can raise false negatives, without |
| // generating much benefits. We disable the "unsigned-integer-overflow" check. |
| #if defined(__has_feature) |
| #if __has_feature(undefined_behavior_sanitizer) |
| #define WUFFS_BASE__GENERATED_C_CODE \ |
| __attribute__((no_sanitize("unsigned-integer-overflow"))) |
| #endif |
| #endif |
| #if !defined(WUFFS_BASE__GENERATED_C_CODE) |
| #define WUFFS_BASE__GENERATED_C_CODE |
| #endif |
| |
| // -------- |
| |
| // Options (bitwise or'ed together) for wuffs_foo__bar__initialize functions. |
| |
| #define WUFFS_INITIALIZE__DEFAULT_OPTIONS ((uint32_t)0x00000000) |
| |
| // WUFFS_INITIALIZE__ALREADY_ZEROED means that the "self" receiver struct value |
| // has already been set to all zeroes. |
| #define WUFFS_INITIALIZE__ALREADY_ZEROED ((uint32_t)0x00000001) |
| |
| // WUFFS_INITIALIZE__LEAVE_INTERNAL_BUFFERS_UNINITIALIZED means that, absent |
| // WUFFS_INITIALIZE__ALREADY_ZEROED, only some of the "self" receiver struct |
| // value will be set to all zeroes. Internal buffers, which tend to be a large |
| // proportion of the struct's size, will be left uninitialized. Internal means |
| // that the buffer is contained by the receiver struct, as opposed to being |
| // passed as a separately allocated "work buffer". |
| // |
| // For more detail, see: |
| // https://github.com/google/wuffs/blob/main/doc/note/initialization.md |
| #define WUFFS_INITIALIZE__LEAVE_INTERNAL_BUFFERS_UNINITIALIZED \ |
| ((uint32_t)0x00000002) |
| |
| // -------- |
| |
| #ifdef __cplusplus |
| // Wuffs structs are just data, not resources (in the RAII sense). They don't |
| // subclass anything. They don't have virtual destructors. They don't contain |
| // pointers to dynamically allocated memory. They don't contain file |
| // descriptors. And so on. Destroying such a struct (e.g. via a |
| // wuffs_foo__bar::unique_ptr) can just call free, especially as |
| // sizeof(wuffs_foo__bar) isn't supposed to be part of the public (stable) API. |
| struct wuffs_unique_ptr_deleter { |
| void operator()(void* p) { free(p); } |
| }; |
| #endif // __cplusplus |
| |
| // -------- |
| |
| #if defined(__GNUC__) |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wcast-qual" |
| #endif |
| |
| static inline uint8_t* // |
| wuffs_base__strip_const_from_u8_ptr(const uint8_t* ptr) { |
| return (uint8_t*)ptr; |
| } |
| |
| static inline uint16_t* // |
| wuffs_base__strip_const_from_u16_ptr(const uint16_t* ptr) { |
| return (uint16_t*)ptr; |
| } |
| |
| static inline uint32_t* // |
| wuffs_base__strip_const_from_u32_ptr(const uint32_t* ptr) { |
| return (uint32_t*)ptr; |
| } |
| |
| static inline uint64_t* // |
| wuffs_base__strip_const_from_u64_ptr(const uint64_t* ptr) { |
| return (uint64_t*)ptr; |
| } |
| |
| #if defined(__GNUC__) |
| #pragma GCC diagnostic pop |
| #endif |
| |
| // -------- |
| |
| // wuffs_base__empty_struct is used when a Wuffs function returns an empty |
| // struct. In C, if a function f returns void, you can't say "x = f()", but in |
| // Wuffs, if a function g returns empty, you can say "y = g()". |
| typedef struct wuffs_base__empty_struct__struct { |
| // private_impl is a placeholder field. It isn't explicitly used, except that |
| // without it, the sizeof a struct with no fields can differ across C/C++ |
| // compilers, and it is undefined behavior in C99. For example, gcc says that |
| // the sizeof an empty struct is 0, and g++ says that it is 1. This leads to |
| // ABI incompatibility if a Wuffs .c file is processed by one compiler and |
| // its .h file with another compiler. |
| // |
| // Instead, we explicitly insert an otherwise unused field, so that the |
| // sizeof this struct is always 1. |
| uint8_t private_impl; |
| } wuffs_base__empty_struct; |
| |
| static inline wuffs_base__empty_struct // |
| wuffs_base__make_empty_struct(void) { |
| wuffs_base__empty_struct ret; |
| ret.private_impl = 0; |
| return ret; |
| } |
| |
| // wuffs_base__utility is a placeholder receiver type. It enables what Java |
| // calls static methods, as opposed to regular methods. |
| typedef struct wuffs_base__utility__struct { |
| // private_impl is a placeholder field. It isn't explicitly used, except that |
| // without it, the sizeof a struct with no fields can differ across C/C++ |
| // compilers, and it is undefined behavior in C99. For example, gcc says that |
| // the sizeof an empty struct is 0, and g++ says that it is 1. This leads to |
| // ABI incompatibility if a Wuffs .c file is processed by one compiler and |
| // its .h file with another compiler. |
| // |
| // Instead, we explicitly insert an otherwise unused field, so that the |
| // sizeof this struct is always 1. |
| uint8_t private_impl; |
| } wuffs_base__utility; |
| |
| typedef struct wuffs_base__vtable__struct { |
| const char* vtable_name; |
| const void* function_pointers; |
| } wuffs_base__vtable; |
| |
| // -------- |
| |
| // See https://github.com/google/wuffs/blob/main/doc/note/statuses.md |
| typedef struct wuffs_base__status__struct { |
| const char* repr; |
| |
| #ifdef __cplusplus |
| inline bool is_complete() const; |
| inline bool is_error() const; |
| inline bool is_note() const; |
| inline bool is_ok() const; |
| inline bool is_suspension() const; |
| inline bool is_truncated_input_error() const; |
| inline const char* message() const; |
| #endif // __cplusplus |
| |
| } wuffs_base__status; |
| |
| // ยก INSERT wuffs_base__status names. |
| |
| static inline wuffs_base__status // |
| wuffs_base__make_status(const char* repr) { |
| wuffs_base__status z; |
| z.repr = repr; |
| return z; |
| } |
| |
| static inline bool // |
| wuffs_base__status__is_complete(const wuffs_base__status* z) { |
| return (z->repr == NULL) || ((*z->repr != '$') && (*z->repr != '#')); |
| } |
| |
| static inline bool // |
| wuffs_base__status__is_error(const wuffs_base__status* z) { |
| return z->repr && (*z->repr == '#'); |
| } |
| |
| static inline bool // |
| wuffs_base__status__is_note(const wuffs_base__status* z) { |
| return z->repr && (*z->repr != '$') && (*z->repr != '#'); |
| } |
| |
| static inline bool // |
| wuffs_base__status__is_ok(const wuffs_base__status* z) { |
| return z->repr == NULL; |
| } |
| |
| static inline bool // |
| wuffs_base__status__is_suspension(const wuffs_base__status* z) { |
| return z->repr && (*z->repr == '$'); |
| } |
| |
| static inline bool // |
| wuffs_base__status__is_truncated_input_error(const wuffs_base__status* z) { |
| const char* p = z->repr; |
| if (!p || (*p != '#')) { |
| return false; |
| } |
| p++; |
| while (1) { |
| if (*p == 0) { |
| return false; |
| } else if (*p++ == ':') { |
| break; |
| } |
| } |
| return strcmp(p, " truncated input") == 0; |
| } |
| |
| // wuffs_base__status__message strips the leading '$', '#' or '@'. |
| static inline const char* // |
| wuffs_base__status__message(const wuffs_base__status* z) { |
| if (z->repr) { |
| if ((*z->repr == '$') || (*z->repr == '#') || (*z->repr == '@')) { |
| return z->repr + 1; |
| } |
| } |
| return z->repr; |
| } |
| |
| #ifdef __cplusplus |
| |
| inline bool // |
| wuffs_base__status::is_complete() const { |
| return wuffs_base__status__is_complete(this); |
| } |
| |
| inline bool // |
| wuffs_base__status::is_error() const { |
| return wuffs_base__status__is_error(this); |
| } |
| |
| inline bool // |
| wuffs_base__status::is_note() const { |
| return wuffs_base__status__is_note(this); |
| } |
| |
| inline bool // |
| wuffs_base__status::is_ok() const { |
| return wuffs_base__status__is_ok(this); |
| } |
| |
| inline bool // |
| wuffs_base__status::is_suspension() const { |
| return wuffs_base__status__is_suspension(this); |
| } |
| |
| inline bool // |
| wuffs_base__status::is_truncated_input_error() const { |
| return wuffs_base__status__is_truncated_input_error(this); |
| } |
| |
| inline const char* // |
| wuffs_base__status::message() const { |
| return wuffs_base__status__message(this); |
| } |
| |
| #endif // __cplusplus |
| |
| // -------- |
| |
| // WUFFS_BASE__RESULT is a result type: either a status (an error) or a value. |
| // |
| // A result with all fields NULL or zero is as valid as a zero-valued T. |
| #define WUFFS_BASE__RESULT(T) \ |
| struct { \ |
| wuffs_base__status status; \ |
| T value; \ |
| } |
| |
| typedef WUFFS_BASE__RESULT(double) wuffs_base__result_f64; |
| typedef WUFFS_BASE__RESULT(int64_t) wuffs_base__result_i64; |
| typedef WUFFS_BASE__RESULT(uint64_t) wuffs_base__result_u64; |
| |
| // -------- |
| |
| // wuffs_base__transform__output is the result of transforming from a src slice |
| // to a dst slice. |
| typedef struct wuffs_base__transform__output__struct { |
| wuffs_base__status status; |
| size_t num_dst; |
| size_t num_src; |
| } wuffs_base__transform__output; |
| |
| // -------- |
| |
| // FourCC constants. Four Character Codes are literally four ASCII characters |
| // (sometimes padded with ' ' spaces) that pack neatly into a signed or |
| // unsigned 32-bit integer. ASCII letters are conventionally upper case. |
| // |
| // They are often used to identify video codecs (e.g. "H265") and pixel formats |
| // (e.g. "YV12"). Wuffs uses them for that but also generally for naming |
| // various things: compression formats (e.g. "BZ2 "), image metadata (e.g. |
| // "EXIF"), file formats (e.g. "HTML"), etc. |
| // |
| // Wuffs' u32 values are big-endian ("JPEG" is 0x4A504547 not 0x4745504A) to |
| // preserve ordering: "JPEG" < "MP3 " and 0x4A504547 < 0x4D503320. |
| |
| // ยก INSERT FourCCs. |
| |
| // -------- |
| |
| // Quirks. |
| |
| // ยก INSERT Quirks. |
| |
| // -------- |
| |
| // Flicks are a unit of time. One flick (frame-tick) is 1 / 705_600_000 of a |
| // second. See https://github.com/OculusVR/Flicks |
| typedef int64_t wuffs_base__flicks; |
| |
| #define WUFFS_BASE__FLICKS_PER_SECOND ((uint64_t)705600000) |
| #define WUFFS_BASE__FLICKS_PER_MILLISECOND ((uint64_t)705600) |
| |
| // ---------------- Numeric Types |
| |
| // The helpers below are functions, instead of macros, because their arguments |
| // can be an expression that we shouldn't evaluate more than once. |
| // |
| // They are static, so that linking multiple wuffs .o files won't complain about |
| // duplicate function definitions. |
| // |
| // They are explicitly marked inline, even if modern compilers don't use the |
| // inline attribute to guide optimizations such as inlining, to avoid the |
| // -Wunused-function warning, and we like to compile with -Wall -Werror. |
| |
| static inline int8_t // |
| wuffs_base__i8__min(int8_t x, int8_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline int8_t // |
| wuffs_base__i8__max(int8_t x, int8_t y) { |
| return x > y ? x : y; |
| } |
| |
| static inline int16_t // |
| wuffs_base__i16__min(int16_t x, int16_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline int16_t // |
| wuffs_base__i16__max(int16_t x, int16_t y) { |
| return x > y ? x : y; |
| } |
| |
| static inline int32_t // |
| wuffs_base__i32__min(int32_t x, int32_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline int32_t // |
| wuffs_base__i32__max(int32_t x, int32_t y) { |
| return x > y ? x : y; |
| } |
| |
| static inline int64_t // |
| wuffs_base__i64__min(int64_t x, int64_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline int64_t // |
| wuffs_base__i64__max(int64_t x, int64_t y) { |
| return x > y ? x : y; |
| } |
| |
| static inline uint8_t // |
| wuffs_base__u8__min(uint8_t x, uint8_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline uint8_t // |
| wuffs_base__u8__max(uint8_t x, uint8_t y) { |
| return x > y ? x : y; |
| } |
| |
| static inline uint16_t // |
| wuffs_base__u16__min(uint16_t x, uint16_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline uint16_t // |
| wuffs_base__u16__max(uint16_t x, uint16_t y) { |
| return x > y ? x : y; |
| } |
| |
| static inline uint32_t // |
| wuffs_base__u32__min(uint32_t x, uint32_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline uint32_t // |
| wuffs_base__u32__max(uint32_t x, uint32_t y) { |
| return x > y ? x : y; |
| } |
| |
| static inline uint64_t // |
| wuffs_base__u64__min(uint64_t x, uint64_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline uint64_t // |
| wuffs_base__u64__max(uint64_t x, uint64_t y) { |
| return x > y ? x : y; |
| } |
| |
| // -------- |
| |
| static inline uint8_t // |
| wuffs_base__u8__rotate_left(uint8_t x, uint32_t n) { |
| n &= 7; |
| return ((uint8_t)(x << n)) | ((uint8_t)(x >> (8 - n))); |
| } |
| |
| static inline uint8_t // |
| wuffs_base__u8__rotate_right(uint8_t x, uint32_t n) { |
| n &= 7; |
| return ((uint8_t)(x >> n)) | ((uint8_t)(x << (8 - n))); |
| } |
| |
| static inline uint16_t // |
| wuffs_base__u16__rotate_left(uint16_t x, uint32_t n) { |
| n &= 15; |
| return ((uint16_t)(x << n)) | ((uint16_t)(x >> (16 - n))); |
| } |
| |
| static inline uint16_t // |
| wuffs_base__u16__rotate_right(uint16_t x, uint32_t n) { |
| n &= 15; |
| return ((uint16_t)(x >> n)) | ((uint16_t)(x << (16 - n))); |
| } |
| |
| static inline uint32_t // |
| wuffs_base__u32__rotate_left(uint32_t x, uint32_t n) { |
| n &= 31; |
| return ((uint32_t)(x << n)) | ((uint32_t)(x >> (32 - n))); |
| } |
| |
| static inline uint32_t // |
| wuffs_base__u32__rotate_right(uint32_t x, uint32_t n) { |
| n &= 31; |
| return ((uint32_t)(x >> n)) | ((uint32_t)(x << (32 - n))); |
| } |
| |
| static inline uint64_t // |
| wuffs_base__u64__rotate_left(uint64_t x, uint32_t n) { |
| n &= 63; |
| return ((uint64_t)(x << n)) | ((uint64_t)(x >> (64 - n))); |
| } |
| |
| static inline uint64_t // |
| wuffs_base__u64__rotate_right(uint64_t x, uint32_t n) { |
| n &= 63; |
| return ((uint64_t)(x >> n)) | ((uint64_t)(x << (64 - n))); |
| } |
| |
| // -------- |
| |
| // Saturating arithmetic (sat_add, sat_sub) branchless bit-twiddling algorithms |
| // are per https://locklessinc.com/articles/sat_arithmetic/ |
| // |
| // It is important that the underlying types are unsigned integers, as signed |
| // integer arithmetic overflow is undefined behavior in C. |
| |
| static inline uint8_t // |
| wuffs_base__u8__sat_add(uint8_t x, uint8_t y) { |
| uint8_t res = (uint8_t)(x + y); |
| res |= (uint8_t)(-(res < x)); |
| return res; |
| } |
| |
| static inline uint8_t // |
| wuffs_base__u8__sat_sub(uint8_t x, uint8_t y) { |
| uint8_t res = (uint8_t)(x - y); |
| res &= (uint8_t)(-(res <= x)); |
| return res; |
| } |
| |
| static inline uint16_t // |
| wuffs_base__u16__sat_add(uint16_t x, uint16_t y) { |
| uint16_t res = (uint16_t)(x + y); |
| res |= (uint16_t)(-(res < x)); |
| return res; |
| } |
| |
| static inline uint16_t // |
| wuffs_base__u16__sat_sub(uint16_t x, uint16_t y) { |
| uint16_t res = (uint16_t)(x - y); |
| res &= (uint16_t)(-(res <= x)); |
| return res; |
| } |
| |
| static inline uint32_t // |
| wuffs_base__u32__sat_add(uint32_t x, uint32_t y) { |
| uint32_t res = (uint32_t)(x + y); |
| res |= (uint32_t)(-(res < x)); |
| return res; |
| } |
| |
| static inline uint32_t // |
| wuffs_base__u32__sat_sub(uint32_t x, uint32_t y) { |
| uint32_t res = (uint32_t)(x - y); |
| res &= (uint32_t)(-(res <= x)); |
| return res; |
| } |
| |
| static inline uint64_t // |
| wuffs_base__u64__sat_add(uint64_t x, uint64_t y) { |
| uint64_t res = (uint64_t)(x + y); |
| res |= (uint64_t)(-(res < x)); |
| return res; |
| } |
| |
| static inline uint64_t // |
| wuffs_base__u64__sat_sub(uint64_t x, uint64_t y) { |
| uint64_t res = (uint64_t)(x - y); |
| res &= (uint64_t)(-(res <= x)); |
| return res; |
| } |
| |
| // -------- |
| |
| typedef struct wuffs_base__multiply_u64__output__struct { |
| uint64_t lo; |
| uint64_t hi; |
| } wuffs_base__multiply_u64__output; |
| |
| // wuffs_base__multiply_u64 returns x*y as a 128-bit value. |
| // |
| // The maximum inclusive output hi_lo is 0xFFFFFFFFFFFFFFFE_0000000000000001. |
| static inline wuffs_base__multiply_u64__output // |
| wuffs_base__multiply_u64(uint64_t x, uint64_t y) { |
| #if defined(__SIZEOF_INT128__) |
| __uint128_t z = ((__uint128_t)x) * ((__uint128_t)y); |
| wuffs_base__multiply_u64__output o; |
| o.lo = ((uint64_t)(z)); |
| o.hi = ((uint64_t)(z >> 64)); |
| return o; |
| #else |
| // TODO: consider using the _mul128 intrinsic if defined(_MSC_VER). |
| uint64_t x0 = x & 0xFFFFFFFF; |
| uint64_t x1 = x >> 32; |
| uint64_t y0 = y & 0xFFFFFFFF; |
| uint64_t y1 = y >> 32; |
| uint64_t w0 = x0 * y0; |
| uint64_t t = (x1 * y0) + (w0 >> 32); |
| uint64_t w1 = t & 0xFFFFFFFF; |
| uint64_t w2 = t >> 32; |
| w1 += x0 * y1; |
| wuffs_base__multiply_u64__output o; |
| o.lo = x * y; |
| o.hi = (x1 * y1) + w2 + (w1 >> 32); |
| return o; |
| #endif |
| } |
| |
| // -------- |
| |
| typedef struct wuffs_base__bitvec256__struct { |
| // elements_u64[0] holds the LSBs (least significant bits) and |
| // elements_u64[3] holds the MSBs (most significant bits). |
| uint64_t elements_u64[4]; |
| } wuffs_base__bitvec256; |
| |
| static inline wuffs_base__bitvec256 // |
| wuffs_base__make_bitvec256(uint64_t e00, |
| uint64_t e01, |
| uint64_t e02, |
| uint64_t e03) { |
| wuffs_base__bitvec256 res; |
| res.elements_u64[0] = e00; |
| res.elements_u64[1] = e01; |
| res.elements_u64[2] = e02; |
| res.elements_u64[3] = e03; |
| return res; |
| } |
| |
| static inline uint64_t // |
| wuffs_base__bitvec256__get_u64(const wuffs_base__bitvec256* b, uint32_t i) { |
| return b->elements_u64[i & 3]; |
| } |
| |
| // -------- |
| |
| // wuffs_base__optional_u63 is like a std::optional<uint64_t>, but for C (not |
| // just C++) and the value can only hold 63 bits (not 64). |
| // |
| // Do not manipulate repr directly; it is a private implementation detail. |
| typedef struct wuffs_base__optional_u63__struct { |
| uint64_t repr; |
| |
| #ifdef __cplusplus |
| inline bool has_value() const; |
| inline uint64_t value() const; |
| inline uint64_t value_or(uint64_t default_value) const; |
| #endif // __cplusplus |
| |
| } wuffs_base__optional_u63; |
| |
| // wuffs_base__make_optional_u63 ignores value when has_value is false. |
| // |
| // Preconditions: |
| // - value < (1 << 63). |
| static inline wuffs_base__optional_u63 // |
| wuffs_base__make_optional_u63(bool has_value, uint64_t value) { |
| wuffs_base__optional_u63 res; |
| res.repr = has_value ? ((value << 1u) | 1u) : 0u; |
| return res; |
| } |
| |
| static inline bool // |
| wuffs_base__optional_u63__has_value(const wuffs_base__optional_u63* o) { |
| return o->repr; |
| } |
| |
| // wuffs_base__optional_u63__value returns zero when o does not have a value. |
| static inline uint64_t // |
| wuffs_base__optional_u63__value(const wuffs_base__optional_u63* o) { |
| return o->repr >> 1u; |
| } |
| |
| static inline uint64_t // |
| wuffs_base__optional_u63__value_or(const wuffs_base__optional_u63* o, |
| uint64_t default_value) { |
| return o->repr ? (o->repr >> 1u) : default_value; |
| } |
| |
| #ifdef __cplusplus |
| |
| inline bool // |
| wuffs_base__optional_u63::has_value() const { |
| return wuffs_base__optional_u63__has_value(this); |
| } |
| |
| inline uint64_t // |
| wuffs_base__optional_u63::value() const { |
| return wuffs_base__optional_u63__value(this); |
| } |
| |
| inline uint64_t // |
| wuffs_base__optional_u63::value_or(uint64_t default_value) const { |
| return wuffs_base__optional_u63__value_or(this, default_value); |
| } |
| |
| #endif // __cplusplus |
| |
| // -------- |
| |
| // The "defined(__clang__)" isn't redundant. While vanilla clang defines |
| // __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not. |
| #if (defined(__GNUC__) || defined(__clang__)) && (__SIZEOF_LONG__ == 8) |
| |
| static inline uint32_t // |
| wuffs_base__count_leading_zeroes_u64(uint64_t u) { |
| return u ? ((uint32_t)(__builtin_clzl(u))) : 64u; |
| } |
| |
| #else |
| // TODO: consider using the _BitScanReverse intrinsic if defined(_MSC_VER). |
| |
| static inline uint32_t // |
| wuffs_base__count_leading_zeroes_u64(uint64_t u) { |
| if (u == 0) { |
| return 64; |
| } |
| |
| uint32_t n = 0; |
| if ((u >> 32) == 0) { |
| n |= 32; |
| u <<= 32; |
| } |
| if ((u >> 48) == 0) { |
| n |= 16; |
| u <<= 16; |
| } |
| if ((u >> 56) == 0) { |
| n |= 8; |
| u <<= 8; |
| } |
| if ((u >> 60) == 0) { |
| n |= 4; |
| u <<= 4; |
| } |
| if ((u >> 62) == 0) { |
| n |= 2; |
| u <<= 2; |
| } |
| if ((u >> 63) == 0) { |
| n |= 1; |
| u <<= 1; |
| } |
| return n; |
| } |
| |
| #endif // (defined(__GNUC__) || defined(__clang__)) && (__SIZEOF_LONG__ == 8) |
| |
| // -------- |
| |
| // Normally, the wuffs_base__peek_etc and wuffs_base__poke_etc implementations |
| // are both (1) correct regardless of CPU endianness and (2) very fast (e.g. an |
| // inlined wuffs_base__peek_u32le__no_bounds_check call, in an optimized clang |
| // or gcc build, is a single MOV instruction on x86_64). |
| // |
| // However, the endian-agnostic implementations are slow on Microsoft's C |
| // compiler (MSC). Alternative memcpy-based implementations restore speed, but |
| // they are only correct on little-endian CPU architectures. Defining |
| // WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE opts in to these implementations. |
| // |
| // https://godbolt.org/z/q4MfjzTPh |
| #if defined(_MSC_VER) && !defined(__clang__) && \ |
| (defined(_M_ARM64) || defined(_M_X64)) |
| #define WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE |
| #endif |
| |
| #define wuffs_base__peek_u8be__no_bounds_check \ |
| wuffs_base__peek_u8__no_bounds_check |
| #define wuffs_base__peek_u8le__no_bounds_check \ |
| wuffs_base__peek_u8__no_bounds_check |
| |
| static inline uint8_t // |
| wuffs_base__peek_u8__no_bounds_check(const uint8_t* p) { |
| return p[0]; |
| } |
| |
| static inline uint16_t // |
| wuffs_base__peek_u16be__no_bounds_check(const uint8_t* p) { |
| #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) |
| uint16_t x; |
| memcpy(&x, p, 2); |
| return _byteswap_ushort(x); |
| #else |
| return (uint16_t)(((uint16_t)(p[0]) << 8) | ((uint16_t)(p[1]) << 0)); |
| #endif |
| } |
| |
| static inline uint16_t // |
| wuffs_base__peek_u16le__no_bounds_check(const uint8_t* p) { |
| #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) |
| uint16_t x; |
| memcpy(&x, p, 2); |
| return x; |
| #else |
| return (uint16_t)(((uint16_t)(p[0]) << 0) | ((uint16_t)(p[1]) << 8)); |
| #endif |
| } |
| |
| static inline uint32_t // |
| wuffs_base__peek_u24be__no_bounds_check(const uint8_t* p) { |
| return ((uint32_t)(p[0]) << 16) | ((uint32_t)(p[1]) << 8) | |
| ((uint32_t)(p[2]) << 0); |
| } |
| |
| static inline uint32_t // |
| wuffs_base__peek_u24le__no_bounds_check(const uint8_t* p) { |
| return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) | |
| ((uint32_t)(p[2]) << 16); |
| } |
| |
| static inline uint32_t // |
| wuffs_base__peek_u32be__no_bounds_check(const uint8_t* p) { |
| #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) |
| uint32_t x; |
| memcpy(&x, p, 4); |
| return _byteswap_ulong(x); |
| #else |
| return ((uint32_t)(p[0]) << 24) | ((uint32_t)(p[1]) << 16) | |
| ((uint32_t)(p[2]) << 8) | ((uint32_t)(p[3]) << 0); |
| #endif |
| } |
| |
| static inline uint32_t // |
| wuffs_base__peek_u32le__no_bounds_check(const uint8_t* p) { |
| #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) |
| uint32_t x; |
| memcpy(&x, p, 4); |
| return x; |
| #else |
| return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) | |
| ((uint32_t)(p[2]) << 16) | ((uint32_t)(p[3]) << 24); |
| #endif |
| } |
| |
| static inline uint64_t // |
| wuffs_base__peek_u40be__no_bounds_check(const uint8_t* p) { |
| return ((uint64_t)(p[0]) << 32) | ((uint64_t)(p[1]) << 24) | |
| ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 8) | |
| ((uint64_t)(p[4]) << 0); |
| } |
| |
| static inline uint64_t // |
| wuffs_base__peek_u40le__no_bounds_check(const uint8_t* p) { |
| return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | |
| ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | |
| ((uint64_t)(p[4]) << 32); |
| } |
| |
| static inline uint64_t // |
| wuffs_base__peek_u48be__no_bounds_check(const uint8_t* p) { |
| return ((uint64_t)(p[0]) << 40) | ((uint64_t)(p[1]) << 32) | |
| ((uint64_t)(p[2]) << 24) | ((uint64_t)(p[3]) << 16) | |
| ((uint64_t)(p[4]) << 8) | ((uint64_t)(p[5]) << 0); |
| } |
| |
| static inline uint64_t // |
| wuffs_base__peek_u48le__no_bounds_check(const uint8_t* p) { |
| return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | |
| ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | |
| ((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40); |
| } |
| |
| static inline uint64_t // |
| wuffs_base__peek_u56be__no_bounds_check(const uint8_t* p) { |
| return ((uint64_t)(p[0]) << 48) | ((uint64_t)(p[1]) << 40) | |
| ((uint64_t)(p[2]) << 32) | ((uint64_t)(p[3]) << 24) | |
| ((uint64_t)(p[4]) << 16) | ((uint64_t)(p[5]) << 8) | |
| ((uint64_t)(p[6]) << 0); |
| } |
| |
| static inline uint64_t // |
| wuffs_base__peek_u56le__no_bounds_check(const uint8_t* p) { |
| return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | |
| ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | |
| ((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40) | |
| ((uint64_t)(p[6]) << 48); |
| } |
| |
| static inline uint64_t // |
| wuffs_base__peek_u64be__no_bounds_check(const uint8_t* p) { |
| #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) |
| uint64_t x; |
| memcpy(&x, p, 8); |
| return _byteswap_uint64(x); |
| #else |
| return ((uint64_t)(p[0]) << 56) | ((uint64_t)(p[1]) << 48) | |
| ((uint64_t)(p[2]) << 40) | ((uint64_t)(p[3]) << 32) | |
| ((uint64_t)(p[4]) << 24) | ((uint64_t)(p[5]) << 16) | |
| ((uint64_t)(p[6]) << 8) | ((uint64_t)(p[7]) << 0); |
| #endif |
| } |
| |
| static inline uint64_t // |
| wuffs_base__peek_u64le__no_bounds_check(const uint8_t* p) { |
| #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) |
| uint64_t x; |
| memcpy(&x, p, 8); |
| return x; |
| #else |
| return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | |
| ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | |
| ((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40) | |
| ((uint64_t)(p[6]) << 48) | ((uint64_t)(p[7]) << 56); |
| #endif |
| } |
| |
| // -------- |
| |
| #define wuffs_base__poke_u8be__no_bounds_check \ |
| wuffs_base__poke_u8__no_bounds_check |
| #define wuffs_base__poke_u8le__no_bounds_check \ |
| wuffs_base__poke_u8__no_bounds_check |
| |
| static inline void // |
| wuffs_base__poke_u8__no_bounds_check(uint8_t* p, uint8_t x) { |
| p[0] = x; |
| } |
| |
| static inline void // |
| wuffs_base__poke_u16be__no_bounds_check(uint8_t* p, uint16_t x) { |
| p[0] = (uint8_t)(x >> 8); |
| p[1] = (uint8_t)(x >> 0); |
| } |
| |
| static inline void // |
| wuffs_base__poke_u16le__no_bounds_check(uint8_t* p, uint16_t x) { |
| #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) || \ |
| (defined(__GNUC__) && !defined(__clang__) && defined(__x86_64__)) |
| // This seems to perform better on gcc 10 (but not clang 9). Clang also |
| // defines "__GNUC__". |
| memcpy(p, &x, 2); |
| #else |
| p[0] = (uint8_t)(x >> 0); |
| p[1] = (uint8_t)(x >> 8); |
| #endif |
| } |
| |
| static inline void // |
| wuffs_base__poke_u24be__no_bounds_check(uint8_t* p, uint32_t x) { |
| p[0] = (uint8_t)(x >> 16); |
| p[1] = (uint8_t)(x >> 8); |
| p[2] = (uint8_t)(x >> 0); |
| } |
| |
| static inline void // |
| wuffs_base__poke_u24le__no_bounds_check(uint8_t* p, uint32_t x) { |
| p[0] = (uint8_t)(x >> 0); |
| p[1] = (uint8_t)(x >> 8); |
| p[2] = (uint8_t)(x >> 16); |
| } |
| |
| static inline void // |
| wuffs_base__poke_u32be__no_bounds_check(uint8_t* p, uint32_t x) { |
| p[0] = (uint8_t)(x >> 24); |
| p[1] = (uint8_t)(x >> 16); |
| p[2] = (uint8_t)(x >> 8); |
| p[3] = (uint8_t)(x >> 0); |
| } |
| |
| static inline void // |
| wuffs_base__poke_u32le__no_bounds_check(uint8_t* p, uint32_t x) { |
| #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) || \ |
| (defined(__GNUC__) && !defined(__clang__) && defined(__x86_64__)) |
| // This seems to perform better on gcc 10 (but not clang 9). Clang also |
| // defines "__GNUC__". |
| memcpy(p, &x, 4); |
| #else |
| p[0] = (uint8_t)(x >> 0); |
| p[1] = (uint8_t)(x >> 8); |
| p[2] = (uint8_t)(x >> 16); |
| p[3] = (uint8_t)(x >> 24); |
| #endif |
| } |
| |
| static inline void // |
| wuffs_base__poke_u40be__no_bounds_check(uint8_t* p, uint64_t x) { |
| p[0] = (uint8_t)(x >> 32); |
| p[1] = (uint8_t)(x >> 24); |
| p[2] = (uint8_t)(x >> 16); |
| p[3] = (uint8_t)(x >> 8); |
| p[4] = (uint8_t)(x >> 0); |
| } |
| |
| static inline void // |
| wuffs_base__poke_u40le__no_bounds_check(uint8_t* p, uint64_t x) { |
| p[0] = (uint8_t)(x >> 0); |
| p[1] = (uint8_t)(x >> 8); |
| p[2] = (uint8_t)(x >> 16); |
| p[3] = (uint8_t)(x >> 24); |
| p[4] = (uint8_t)(x >> 32); |
| } |
| |
| static inline void // |
| wuffs_base__poke_u48be__no_bounds_check(uint8_t* p, uint64_t x) { |
| p[0] = (uint8_t)(x >> 40); |
| p[1] = (uint8_t)(x >> 32); |
| p[2] = (uint8_t)(x >> 24); |
| p[3] = (uint8_t)(x >> 16); |
| p[4] = (uint8_t)(x >> 8); |
| p[5] = (uint8_t)(x >> 0); |
| } |
| |
| static inline void // |
| wuffs_base__poke_u48le__no_bounds_check(uint8_t* p, uint64_t x) { |
| p[0] = (uint8_t)(x >> 0); |
| p[1] = (uint8_t)(x >> 8); |
| p[2] = (uint8_t)(x >> 16); |
| p[3] = (uint8_t)(x >> 24); |
| p[4] = (uint8_t)(x >> 32); |
| p[5] = (uint8_t)(x >> 40); |
| } |
| |
| static inline void // |
| wuffs_base__poke_u56be__no_bounds_check(uint8_t* p, uint64_t x) { |
| p[0] = (uint8_t)(x >> 48); |
| p[1] = (uint8_t)(x >> 40); |
| p[2] = (uint8_t)(x >> 32); |
| p[3] = (uint8_t)(x >> 24); |
| p[4] = (uint8_t)(x >> 16); |
| p[5] = (uint8_t)(x >> 8); |
| p[6] = (uint8_t)(x >> 0); |
| } |
| |
| static inline void // |
| wuffs_base__poke_u56le__no_bounds_check(uint8_t* p, uint64_t x) { |
| p[0] = (uint8_t)(x >> 0); |
| p[1] = (uint8_t)(x >> 8); |
| p[2] = (uint8_t)(x >> 16); |
| p[3] = (uint8_t)(x >> 24); |
| p[4] = (uint8_t)(x >> 32); |
| p[5] = (uint8_t)(x >> 40); |
| p[6] = (uint8_t)(x >> 48); |
| } |
| |
| static inline void // |
| wuffs_base__poke_u64be__no_bounds_check(uint8_t* p, uint64_t x) { |
| p[0] = (uint8_t)(x >> 56); |
| p[1] = (uint8_t)(x >> 48); |
| p[2] = (uint8_t)(x >> 40); |
| p[3] = (uint8_t)(x >> 32); |
| p[4] = (uint8_t)(x >> 24); |
| p[5] = (uint8_t)(x >> 16); |
| p[6] = (uint8_t)(x >> 8); |
| p[7] = (uint8_t)(x >> 0); |
| } |
| |
| static inline void // |
| wuffs_base__poke_u64le__no_bounds_check(uint8_t* p, uint64_t x) { |
| #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) || \ |
| (defined(__GNUC__) && !defined(__clang__) && defined(__x86_64__)) |
| // This seems to perform better on gcc 10 (but not clang 9). Clang also |
| // defines "__GNUC__". |
| memcpy(p, &x, 8); |
| #else |
| p[0] = (uint8_t)(x >> 0); |
| p[1] = (uint8_t)(x >> 8); |
| p[2] = (uint8_t)(x >> 16); |
| p[3] = (uint8_t)(x >> 24); |
| p[4] = (uint8_t)(x >> 32); |
| p[5] = (uint8_t)(x >> 40); |
| p[6] = (uint8_t)(x >> 48); |
| p[7] = (uint8_t)(x >> 56); |
| #endif |
| } |
| |
| // ---------------- Slices and Tables |
| |
| // WUFFS_BASE__SLICE is a 1-dimensional buffer. |
| // |
| // len measures a number of elements, not necessarily a size in bytes. |
| // |
| // A value with all fields NULL or zero is a valid, empty slice. |
| #define WUFFS_BASE__SLICE(T) \ |
| struct { \ |
| T* ptr; \ |
| size_t len; \ |
| } |
| |
| // WUFFS_BASE__TABLE is a 2-dimensional buffer. |
| // |
| // width, height and stride measure a number of elements, not necessarily a |
| // size in bytes. |
| // |
| // A value with all fields NULL or zero is a valid, empty table. |
| #define WUFFS_BASE__TABLE(T) \ |
| struct { \ |
| T* ptr; \ |
| size_t width; \ |
| size_t height; \ |
| size_t stride; \ |
| } |
| |
| typedef WUFFS_BASE__SLICE(uint8_t) wuffs_base__slice_u8; |
| typedef WUFFS_BASE__SLICE(uint16_t) wuffs_base__slice_u16; |
| typedef WUFFS_BASE__SLICE(uint32_t) wuffs_base__slice_u32; |
| typedef WUFFS_BASE__SLICE(uint64_t) wuffs_base__slice_u64; |
| |
| typedef WUFFS_BASE__TABLE(uint8_t) wuffs_base__table_u8; |
| typedef WUFFS_BASE__TABLE(uint16_t) wuffs_base__table_u16; |
| typedef WUFFS_BASE__TABLE(uint32_t) wuffs_base__table_u32; |
| typedef WUFFS_BASE__TABLE(uint64_t) wuffs_base__table_u64; |
| |
| static inline wuffs_base__slice_u8 // |
| wuffs_base__make_slice_u8(uint8_t* ptr, size_t len) { |
| wuffs_base__slice_u8 ret; |
| ret.ptr = ptr; |
| ret.len = len; |
| return ret; |
| } |
| |
| static inline wuffs_base__slice_u16 // |
| wuffs_base__make_slice_u16(uint16_t* ptr, size_t len) { |
| wuffs_base__slice_u16 ret; |
| ret.ptr = ptr; |
| ret.len = len; |
| return ret; |
| } |
| |
| static inline wuffs_base__slice_u32 // |
| wuffs_base__make_slice_u32(uint32_t* ptr, size_t len) { |
| wuffs_base__slice_u32 ret; |
| ret.ptr = ptr; |
| ret.len = len; |
| return ret; |
| } |
| |
| static inline wuffs_base__slice_u64 // |
| wuffs_base__make_slice_u64(uint64_t* ptr, size_t len) { |
| wuffs_base__slice_u64 ret; |
| ret.ptr = ptr; |
| ret.len = len; |
| return ret; |
| } |
| |
| static inline wuffs_base__slice_u8 // |
| wuffs_base__make_slice_u8_ij(uint8_t* ptr, size_t i, size_t j) { |
| wuffs_base__slice_u8 ret; |
| ret.ptr = ptr ? (ptr + i) : NULL; |
| ret.len = (j >= i) ? (j - i) : 0; |
| return ret; |
| } |
| |
| static inline wuffs_base__slice_u16 // |
| wuffs_base__make_slice_u16_ij(uint16_t* ptr, size_t i, size_t j) { |
| wuffs_base__slice_u16 ret; |
| ret.ptr = ptr ? (ptr + i) : NULL; |
| ret.len = (j >= i) ? (j - i) : 0; |
| return ret; |
| } |
| |
| static inline wuffs_base__slice_u32 // |
| wuffs_base__make_slice_u32_ij(uint32_t* ptr, size_t i, size_t j) { |
| wuffs_base__slice_u32 ret; |
| ret.ptr = ptr ? (ptr + i) : NULL; |
| ret.len = (j >= i) ? (j - i) : 0; |
| return ret; |
| } |
| |
| static inline wuffs_base__slice_u64 // |
| wuffs_base__make_slice_u64_ij(uint64_t* ptr, size_t i, size_t j) { |
| wuffs_base__slice_u64 ret; |
| ret.ptr = ptr ? (ptr + i) : NULL; |
| ret.len = (j >= i) ? (j - i) : 0; |
| return ret; |
| } |
| |
| static inline wuffs_base__slice_u8 // |
| wuffs_base__empty_slice_u8(void) { |
| wuffs_base__slice_u8 ret; |
| ret.ptr = NULL; |
| ret.len = 0; |
| return ret; |
| } |
| |
| static inline wuffs_base__slice_u16 // |
| wuffs_base__empty_slice_u16(void) { |
| wuffs_base__slice_u16 ret; |
| ret.ptr = NULL; |
| ret.len = 0; |
| return ret; |
| } |
| |
| static inline wuffs_base__slice_u32 // |
| wuffs_base__empty_slice_u32(void) { |
| wuffs_base__slice_u32 ret; |
| ret.ptr = NULL; |
| ret.len = 0; |
| return ret; |
| } |
| |
| static inline wuffs_base__slice_u64 // |
| wuffs_base__empty_slice_u64(void) { |
| wuffs_base__slice_u64 ret; |
| ret.ptr = NULL; |
| ret.len = 0; |
| return ret; |
| } |
| |
| static inline wuffs_base__table_u8 // |
| wuffs_base__make_table_u8(uint8_t* ptr, |
| size_t width, |
| size_t height, |
| size_t stride) { |
| wuffs_base__table_u8 ret; |
| ret.ptr = ptr; |
| ret.width = width; |
| ret.height = height; |
| ret.stride = stride; |
| return ret; |
| } |
| |
| static inline wuffs_base__table_u16 // |
| wuffs_base__make_table_u16(uint16_t* ptr, |
| size_t width, |
| size_t height, |
| size_t stride) { |
| wuffs_base__table_u16 ret; |
| ret.ptr = ptr; |
| ret.width = width; |
| ret.height = height; |
| ret.stride = stride; |
| return ret; |
| } |
| |
| static inline wuffs_base__table_u32 // |
| wuffs_base__make_table_u32(uint32_t* ptr, |
| size_t width, |
| size_t height, |
| size_t stride) { |
| wuffs_base__table_u32 ret; |
| ret.ptr = ptr; |
| ret.width = width; |
| ret.height = height; |
| ret.stride = stride; |
| return ret; |
| } |
| |
| static inline wuffs_base__table_u64 // |
| wuffs_base__make_table_u64(uint64_t* ptr, |
| size_t width, |
| size_t height, |
| size_t stride) { |
| wuffs_base__table_u64 ret; |
| ret.ptr = ptr; |
| ret.width = width; |
| ret.height = height; |
| ret.stride = stride; |
| return ret; |
| } |
| |
| static inline wuffs_base__table_u8 // |
| wuffs_base__empty_table_u8(void) { |
| wuffs_base__table_u8 ret; |
| ret.ptr = NULL; |
| ret.width = 0; |
| ret.height = 0; |
| ret.stride = 0; |
| return ret; |
| } |
| |
| static inline wuffs_base__table_u16 // |
| wuffs_base__empty_table_u16(void) { |
| wuffs_base__table_u16 ret; |
| ret.ptr = NULL; |
| ret.width = 0; |
| ret.height = 0; |
| ret.stride = 0; |
| return ret; |
| } |
| |
| static inline wuffs_base__table_u32 // |
| wuffs_base__empty_table_u32(void) { |
| wuffs_base__table_u32 ret; |
| ret.ptr = NULL; |
| ret.width = 0; |
| ret.height = 0; |
| ret.stride = 0; |
| return ret; |
| } |
| |
| static inline wuffs_base__table_u64 // |
| wuffs_base__empty_table_u64(void) { |
| wuffs_base__table_u64 ret; |
| ret.ptr = NULL; |
| ret.width = 0; |
| ret.height = 0; |
| ret.stride = 0; |
| return ret; |
| } |
| |
| static inline bool // |
| wuffs_base__slice_u8__overlaps(wuffs_base__slice_u8 s, wuffs_base__slice_u8 t) { |
| return ((s.ptr <= t.ptr) && (t.ptr < (s.ptr + s.len))) || |
| ((t.ptr <= s.ptr) && (s.ptr < (t.ptr + t.len))); |
| } |
| |
| // wuffs_base__slice_u8__subslice_i returns s[i:]. |
| // |
| // It returns an empty slice if i is out of bounds. |
| static inline wuffs_base__slice_u8 // |
| wuffs_base__slice_u8__subslice_i(wuffs_base__slice_u8 s, uint64_t i) { |
| if ((i <= SIZE_MAX) && (i <= s.len)) { |
| return wuffs_base__make_slice_u8(s.ptr + i, ((size_t)(s.len - i))); |
| } |
| return wuffs_base__empty_slice_u8(); |
| } |
| |
| // wuffs_base__slice_u8__subslice_j returns s[:j]. |
| // |
| // It returns an empty slice if j is out of bounds. |
| static inline wuffs_base__slice_u8 // |
| wuffs_base__slice_u8__subslice_j(wuffs_base__slice_u8 s, uint64_t j) { |
| if ((j <= SIZE_MAX) && (j <= s.len)) { |
| return wuffs_base__make_slice_u8(s.ptr, ((size_t)j)); |
| } |
| return wuffs_base__empty_slice_u8(); |
| } |
| |
| // wuffs_base__slice_u8__subslice_ij returns s[i:j]. |
| // |
| // It returns an empty slice if i or j is out of bounds. |
| static inline wuffs_base__slice_u8 // |
| wuffs_base__slice_u8__subslice_ij(wuffs_base__slice_u8 s, |
| uint64_t i, |
| uint64_t j) { |
| if ((i <= j) && (j <= SIZE_MAX) && (j <= s.len)) { |
| return wuffs_base__make_slice_u8(s.ptr + i, ((size_t)(j - i))); |
| } |
| return wuffs_base__empty_slice_u8(); |
| } |
| |
| // wuffs_base__table_u8__subtable_ij returns t[ix:jx, iy:jy]. |
| // |
| // It returns an empty table if i or j is out of bounds. |
| static inline wuffs_base__table_u8 // |
| wuffs_base__table_u8__subtable_ij(wuffs_base__table_u8 t, |
| uint64_t ix, |
| uint64_t iy, |
| uint64_t jx, |
| uint64_t jy) { |
| if ((ix <= jx) && (jx <= SIZE_MAX) && (jx <= t.width) && // |
| (iy <= jy) && (jy <= SIZE_MAX) && (jy <= t.height)) { |
| return wuffs_base__make_table_u8(t.ptr + ix + (iy * t.stride), // |
| ((size_t)(jx - ix)), // |
| ((size_t)(jy - iy)), // |
| t.stride); // |
| } |
| return wuffs_base__make_table_u8(NULL, 0, 0, 0); |
| } |
| |
| // wuffs_base__table__flattened_length returns the number of elements covered |
| // by the 1-dimensional span that backs a 2-dimensional table. This counts the |
| // elements inside the table and, when width != stride, the elements outside |
| // the table but between its rows. |
| // |
| // For example, consider a width 10, height 4, stride 10 table. Mark its first |
| // and last (inclusive) elements with 'a' and 'z'. This function returns 40. |
| // |
| // a123456789 |
| // 0123456789 |
| // 0123456789 |
| // 012345678z |
| // |
| // Now consider the sub-table of that from (2, 1) inclusive to (8, 4) exclusive. |
| // |
| // a123456789 |
| // 01iiiiiioo |
| // ooiiiiiioo |
| // ooiiiiii8z |
| // |
| // This function (called with width 6, height 3, stride 10) returns 26: 18 'i' |
| // inside elements plus 8 'o' outside elements. Note that 26 is less than a |
| // naive (height * stride = 30) computation. Indeed, advancing 29 elements from |
| // the first 'i' would venture past 'z', out of bounds of the original table. |
| // |
| // It does not check for overflow, but if the arguments come from a table that |
| // exists in memory and each element occupies a positive number of bytes then |
| // the result should be bounded by the amount of allocatable memory (which |
| // shouldn't overflow SIZE_MAX). |
| static inline size_t // |
| wuffs_base__table__flattened_length(size_t width, |
| size_t height, |
| size_t stride) { |
| if (height == 0) { |
| return 0; |
| } |
| return ((height - 1) * stride) + width; |
| } |
| |
| // ---------------- Magic Numbers |
| |
| // wuffs_base__magic_number_guess_fourcc guesses the file format of some data, |
| // given its starting bytes (the prefix_data argument) and whether or not there |
| // may be further bytes (the prefix_closed argument; true means that |
| // prefix_data is the entire data). |
| // |
| // It returns a positive FourCC value on success. |
| // |
| // It returns zero if nothing matches its hard-coded list of 'magic numbers'. |
| // |
| // It returns a negative value if prefix_closed is false and a longer prefix is |
| // required for a conclusive result. For example, a single 'B' byte (without |
| // further data) is not enough to discriminate the BMP and BPG image file |
| // formats. Similarly, a single '\xFF' byte might be the start of JPEG data or |
| // it might be the start of some other binary data. |
| // |
| // It does not do a full validity check. Like any guess made from a short |
| // prefix of the data, it may return false positives. Data that starts with 99 |
| // bytes of valid JPEG followed by corruption or truncation is an invalid JPEG |
| // image overall, but this function will still return WUFFS_BASE__FOURCC__JPEG. |
| // |
| // Another source of false positives is that some 'magic numbers' are valid |
| // ASCII data. A file starting with "GIF87a and GIF89a are the two versions of |
| // GIF" will match GIF's 'magic number' even if it's plain text, not an image. |
| // |
| // For modular builds that divide the base module into sub-modules, using this |
| // function requires the WUFFS_CONFIG__MODULE__BASE__MAGIC sub-module, not just |
| // WUFFS_CONFIG__MODULE__BASE__CORE. |
| WUFFS_BASE__MAYBE_STATIC int32_t // |
| wuffs_base__magic_number_guess_fourcc(wuffs_base__slice_u8 prefix_data, |
| bool prefix_closed); |