blob: 282a692ae45f0e2a51e16fddabd4bbb069b8a997 [file] [log] [blame]
// Copyright 2020 The Wuffs Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ----------------
// process-json-numbers.c processes all the numbers in the JSON-formatted data
// read from stdin. It succeeds (with exit code 0) if the input is valid JSON
// and all of the numbers within were processed without error.
//
// Without further flags, processing is a no-op and the program only verifies
// the JSON structure.
//
// Pass -e (--emit-number-str) to emit each number (as a string) on its own
// line.
//
// Pass -p (--parse-number-f64) to call wuffs_base__parse_number_f64 on each
// number. Timing this program with and without this flag gives a rough measure
// of how much time is spent solely in wuffs_base__parse_number_f64.
//
// Pass -r (--render-number-f64) to call wuffs_base__render_number_f64 (with
// WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) on each number. Timing
// this program with and without this flag gives a rough measure of how much
// time is spent solely in wuffs_base__render_number_f64.
//
// The -r flag is ignored unless -p is also passed.
//
// This program's purpose is to benchmark the wuffs_base__etc_f64 functions.
// It's not about JSON per se, but JSON files are a source of realistic
// floating point numbers.
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
// Wuffs ships as a "single file C library" or "header file library" as per
// https://github.com/nothings/stb/blob/master/docs/stb_howto.txt
//
// To use that single file as a "foo.c"-like implementation, instead of a
// "foo.h"-like header, #define WUFFS_IMPLEMENTATION before #include'ing or
// compiling it.
#define WUFFS_IMPLEMENTATION
// Defining the WUFFS_CONFIG__STATIC_FUNCTIONS macro is optional, but when
// combined with WUFFS_IMPLEMENTATION, it demonstrates making all of Wuffs'
// functions have static storage.
//
// This can help the compiler ignore or discard unused code, which can produce
// faster compiles and smaller binaries. Other motivations are discussed in the
// "ALLOW STATIC IMPLEMENTATION" section of
// https://raw.githubusercontent.com/nothings/stb/master/docs/stb_howto.txt
#define WUFFS_CONFIG__STATIC_FUNCTIONS
// Defining the WUFFS_CONFIG__MODULE* macros are optional, but it lets users of
// release/c/etc.c choose which parts of Wuffs to build. That file contains the
// entire Wuffs standard library, implementing a variety of codecs and file
// formats. Without this macro definition, an optimizing compiler or linker may
// very well discard Wuffs code for unused codecs, but listing the Wuffs
// modules we use makes that process explicit. Preprocessing means that such
// code simply isn't compiled.
#define WUFFS_CONFIG__MODULES
#define WUFFS_CONFIG__MODULE__BASE
#define WUFFS_CONFIG__MODULE__JSON
// If building this program in an environment that doesn't easily accommodate
// relative includes, you can use the script/inline-c-relative-includes.go
// program to generate a stand-alone C file.
#include "../release/c/wuffs-unsupported-snapshot.c"
// Uncomment this to use the github.com/lemire/fast_double_parser library. This
// header-only library is C++, not C.
// #define USE_LEMIRE_FAST_DOUBLE_PARSER
#ifdef USE_LEMIRE_FAST_DOUBLE_PARSER
#include "/the/path/to/fast_double_parser/include/fast_double_parser.h"
#endif
// Wuffs allows either statically or dynamically allocated work buffers. This
// program exercises static allocation.
#define WORK_BUFFER_ARRAY_SIZE \
WUFFS_JSON__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE
#if WORK_BUFFER_ARRAY_SIZE > 0
uint8_t g_work_buffer_array[WORK_BUFFER_ARRAY_SIZE];
#else
// Not all C/C++ compilers support 0-length arrays.
uint8_t g_work_buffer_array[1];
#endif
#ifndef SRC_BUFFER_ARRAY_SIZE
#define SRC_BUFFER_ARRAY_SIZE (64 * 1024 * 1024)
#endif
#ifndef TOKEN_BUFFER_ARRAY_SIZE
#define TOKEN_BUFFER_ARRAY_SIZE (128 * 1024)
#endif
uint8_t g_src_buffer_array[SRC_BUFFER_ARRAY_SIZE];
wuffs_base__token g_tok_buffer_array[TOKEN_BUFFER_ARRAY_SIZE];
wuffs_base__io_buffer g_src;
wuffs_base__token_buffer g_tok;
wuffs_json__decoder g_dec;
#define TRY(error_msg) \
do { \
const char* z = error_msg; \
if (z) { \
return z; \
} \
} while (false)
// ignore_return_value suppresses errors from -Wall -Werror.
static void //
ignore_return_value(int ignored) {}
const char* //
read_src() {
if (g_src.meta.closed) {
return "main: internal error: read requested on a closed source";
}
wuffs_base__io_buffer__compact(&g_src);
if (g_src.meta.wi >= g_src.data.len) {
return "main: g_src buffer is full";
}
size_t n = fread(g_src.data.ptr + g_src.meta.wi, sizeof(uint8_t),
g_src.data.len - g_src.meta.wi, stdin);
g_src.meta.wi += n;
g_src.meta.closed = feof(stdin);
if ((n == 0) && !g_src.meta.closed) {
return "main: read error";
}
return NULL;
}
// ----
struct {
int remaining_argc;
char** remaining_argv;
bool emit_number_str;
bool parse_number_f64;
bool render_number_f64;
} g_flags = {0};
const char* //
parse_flags(int argc, char** argv) {
int c = (argc > 0) ? 1 : 0; // Skip argv[0], the program name.
for (; c < argc; c++) {
char* arg = argv[c];
if (*arg++ != '-') {
break;
}
// A double-dash "--foo" is equivalent to a single-dash "-foo". As special
// cases, a bare "-" is not a flag (some programs may interpret it as
// stdin) and a bare "--" means to stop parsing flags.
if (*arg == '\x00') {
break;
} else if (*arg == '-') {
arg++;
if (*arg == '\x00') {
c++;
break;
}
}
if (!strcmp(arg, "e") || !strcmp(arg, "emit-number-str")) {
g_flags.emit_number_str = true;
continue;
}
if (!strcmp(arg, "p") || !strcmp(arg, "parse-number-f64")) {
g_flags.parse_number_f64 = true;
continue;
}
if (!strcmp(arg, "r") || !strcmp(arg, "render-number-f64")) {
g_flags.render_number_f64 = true;
continue;
}
return "main: unrecognized flag argument";
}
g_flags.remaining_argc = argc - c;
g_flags.remaining_argv = argv + c;
return NULL;
}
const char* //
main1(int argc, char** argv) {
TRY(parse_flags(argc, argv));
if (g_flags.remaining_argc > 0) {
return "main: bad argument: use \"program < input\", not \"program input\"";
}
uint8_t new_line[1];
new_line[0] = '\n';
g_src = wuffs_base__make_io_buffer(
wuffs_base__make_slice_u8(g_src_buffer_array, SRC_BUFFER_ARRAY_SIZE),
wuffs_base__empty_io_buffer_meta());
g_tok = wuffs_base__make_token_buffer(
wuffs_base__make_slice_token(g_tok_buffer_array, TOKEN_BUFFER_ARRAY_SIZE),
wuffs_base__empty_token_buffer_meta());
wuffs_base__status init_status = wuffs_json__decoder__initialize(
&g_dec, sizeof__wuffs_json__decoder(), WUFFS_VERSION, 0);
if (!wuffs_base__status__is_ok(&init_status)) {
return wuffs_base__status__message(&init_status);
}
uint64_t pos = 0;
while (true) {
wuffs_base__status status = wuffs_json__decoder__decode_tokens(
&g_dec, &g_tok, &g_src,
wuffs_base__make_slice_u8(g_work_buffer_array, WORK_BUFFER_ARRAY_SIZE));
while (g_tok.meta.ri < g_tok.meta.wi) {
wuffs_base__token* t = &g_tok.data.ptr[g_tok.meta.ri++];
uint64_t len = wuffs_base__token__length(t);
if (wuffs_base__token__value_base_category(t) ==
WUFFS_BASE__TOKEN__VBC__NUMBER) {
uint64_t buf_pos = pos - g_src.meta.pos;
uint64_t buf_len = g_src.data.len;
if ((buf_len < buf_pos) || ((buf_len - buf_pos) < len)) {
return "main: internal error: inconsistent token position/length";
}
if (g_flags.emit_number_str) {
const int stdout_fd = 1;
ignore_return_value(write(stdout_fd, &g_src.data.ptr[buf_pos], len));
ignore_return_value(write(stdout_fd, &new_line[0], 1));
}
if (g_flags.parse_number_f64) {
wuffs_base__result_f64 r;
#ifdef USE_LEMIRE_FAST_DOUBLE_PARSER
// Wuffs (and its JSON parser) works with slices (pointer-length
// pairs) but fast_double_parser works with NUL-terminated strings.
char buf[1024];
if (len > 1023) {
return "main: number-as-string is too long";
}
memcpy(&buf[0], &g_src.data.ptr[buf_pos], len);
buf[len] = 0;
if (!fast_double_parser::decimal_separator_dot::parse_number(
&buf[0], &r.value)) {
return "main: could not parse number";
}
r.status = wuffs_base__make_status(NULL);
#else
r = wuffs_base__parse_number_f64(
wuffs_base__make_slice_u8(&g_src.data.ptr[buf_pos], len),
WUFFS_BASE__PARSE_NUMBER_XXX__DEFAULT_OPTIONS);
if (!wuffs_base__status__is_ok(&r.status)) {
return wuffs_base__status__message(&r.status);
}
#endif
if (g_flags.render_number_f64) {
uint8_t render_buffer[2048];
size_t n = wuffs_base__render_number_f64(
wuffs_base__make_slice_u8(&render_buffer[0], 2048), r.value, 0,
WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION);
if (n == 0) {
return "main: internal error: couldn't render_number_f64";
}
}
}
}
pos += len;
if (0 > ((int64_t)pos)) {
return "main: input is too long";
}
}
if (status.repr == NULL) {
return NULL;
} else if (status.repr == wuffs_base__suspension__short_read) {
TRY(read_src());
} else if (status.repr == wuffs_base__suspension__short_write) {
wuffs_base__token_buffer__compact(&g_tok);
} else {
return wuffs_base__status__message(&status);
}
}
}
// ----
int //
compute_exit_code(const char* status_msg) {
if (!status_msg) {
return 0;
}
size_t n = strnlen(status_msg, 2047);
if (n >= 2047) {
status_msg = "main: internal error: error message is too long";
n = strnlen(status_msg, 2047);
}
fprintf(stderr, "%s\n", status_msg);
// Return an exit code of 1 for regular (foreseen) errors, e.g. badly
// formatted or unsupported input.
//
// Return an exit code of 2 for internal (exceptional) errors, e.g. defensive
// run-time checks found that an internal invariant did not hold.
//
// Automated testing, including badly formatted inputs, can therefore
// discriminate between expected failure (exit code 1) and unexpected failure
// (other non-zero exit codes). Specifically, exit code 2 for internal
// invariant violation, exit code 139 (which is 128 + SIGSEGV on x86_64
// linux) for a segmentation fault (e.g. null pointer dereference).
return strstr(status_msg, "internal error:") ? 2 : 1;
}
int //
main(int argc, char** argv) {
const char* z = main1(argc, argv);
int exit_code = compute_exit_code(z);
return exit_code;
}