Factor f64conv-submodule.c into code and data
diff --git a/internal/cgen/base/f64conv-submodule-code.c b/internal/cgen/base/f64conv-submodule-code.c
new file mode 100644
index 0000000..2a352ee
--- /dev/null
+++ b/internal/cgen/base/f64conv-submodule-code.c
@@ -0,0 +1,1719 @@
+// After editing this file, run "go generate" in the parent directory.
+
+// Copyright 2020 The Wuffs Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//    https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// ---------------- IEEE 754 Floating Point
+
+#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE 2047
+#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION 800
+
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL is the largest N
+// such that ((10 << N) < (1 << 64)).
+#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL 60
+
+// wuffs_base__private_implementation__high_prec_dec (abbreviated as HPD) is a
+// fixed precision floating point decimal number, augmented with ±infinity
+// values, but it cannot represent NaN (Not a Number).
+//
+// "High precision" means that the mantissa holds 800 decimal digits. 800 is
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION.
+//
+// An HPD isn't for general purpose arithmetic, only for conversions to and
+// from IEEE 754 double-precision floating point, where the largest and
+// smallest positive, finite values are approximately 1.8e+308 and 4.9e-324.
+// HPD exponents above +2047 mean infinity, below -2047 mean zero. The ±2047
+// bounds are further away from zero than ±(324 + 800), where 800 and 2047 is
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION and
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
+//
+// digits[.. num_digits] are the number's digits in big-endian order. The
+// uint8_t values are in the range [0 ..= 9], not ['0' ..= '9'], where e.g. '7'
+// is the ASCII value 0x37.
+//
+// decimal_point is the index (within digits) of the decimal point. It may be
+// negative or be larger than num_digits, in which case the explicit digits are
+// padded with implicit zeroes.
+//
+// For example, if num_digits is 3 and digits is "\x07\x08\x09":
+//   - A decimal_point of -2 means ".00789"
+//   - A decimal_point of -1 means ".0789"
+//   - A decimal_point of +0 means ".789"
+//   - A decimal_point of +1 means "7.89"
+//   - A decimal_point of +2 means "78.9"
+//   - A decimal_point of +3 means "789."
+//   - A decimal_point of +4 means "7890."
+//   - A decimal_point of +5 means "78900."
+//
+// As above, a decimal_point higher than +2047 means that the overall value is
+// infinity, lower than -2047 means zero.
+//
+// negative is a sign bit. An HPD can distinguish positive and negative zero.
+//
+// truncated is whether there are more than
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION digits, and at
+// least one of those extra digits are non-zero. The existence of long-tail
+// digits can affect rounding.
+//
+// The "all fields are zero" value is valid, and represents the number +0.
+typedef struct {
+  uint32_t num_digits;
+  int32_t decimal_point;
+  bool negative;
+  bool truncated;
+  uint8_t digits[WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION];
+} wuffs_base__private_implementation__high_prec_dec;
+
+// wuffs_base__private_implementation__high_prec_dec__trim trims trailing
+// zeroes from the h->digits[.. h->num_digits] slice. They have no benefit,
+// since we explicitly track h->decimal_point.
+//
+// Preconditions:
+//  - h is non-NULL.
+static inline void  //
+wuffs_base__private_implementation__high_prec_dec__trim(
+    wuffs_base__private_implementation__high_prec_dec* h) {
+  while ((h->num_digits > 0) && (h->digits[h->num_digits - 1] == 0)) {
+    h->num_digits--;
+  }
+}
+
+// wuffs_base__private_implementation__high_prec_dec__assign sets h to
+// represent the number x.
+//
+// Preconditions:
+//  - h is non-NULL.
+static void  //
+wuffs_base__private_implementation__high_prec_dec__assign(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint64_t x,
+    bool negative) {
+  uint32_t n = 0;
+
+  // Set h->digits.
+  if (x > 0) {
+    // Calculate the digits, working right-to-left. After we determine n (how
+    // many digits there are), copy from buf to h->digits.
+    //
+    // UINT64_MAX, 18446744073709551615, is 20 digits long. It can be faster to
+    // copy a constant number of bytes than a variable number (20 instead of
+    // n). Make buf large enough (and start writing to it from the middle) so
+    // that can we always copy 20 bytes: the slice buf[(20-n) .. (40-n)].
+    uint8_t buf[40] = {0};
+    uint8_t* ptr = &buf[20];
+    do {
+      uint64_t remaining = x / 10;
+      x -= remaining * 10;
+      ptr--;
+      *ptr = (uint8_t)x;
+      n++;
+      x = remaining;
+    } while (x > 0);
+    memcpy(h->digits, ptr, 20);
+  }
+
+  // Set h's other fields.
+  h->num_digits = n;
+  h->decimal_point = (int32_t)n;
+  h->negative = negative;
+  h->truncated = false;
+  wuffs_base__private_implementation__high_prec_dec__trim(h);
+}
+
+static wuffs_base__status  //
+wuffs_base__private_implementation__high_prec_dec__parse(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    wuffs_base__slice_u8 s) {
+  if (!h) {
+    return wuffs_base__make_status(wuffs_base__error__bad_receiver);
+  }
+  h->num_digits = 0;
+  h->decimal_point = 0;
+  h->negative = false;
+  h->truncated = false;
+
+  uint8_t* p = s.ptr;
+  uint8_t* q = s.ptr + s.len;
+
+  for (;; p++) {
+    if (p >= q) {
+      return wuffs_base__make_status(wuffs_base__error__bad_argument);
+    } else if (*p != '_') {
+      break;
+    }
+  }
+
+  // Parse sign.
+  do {
+    if (*p == '+') {
+      p++;
+    } else if (*p == '-') {
+      h->negative = true;
+      p++;
+    } else {
+      break;
+    }
+    for (;; p++) {
+      if (p >= q) {
+        return wuffs_base__make_status(wuffs_base__error__bad_argument);
+      } else if (*p != '_') {
+        break;
+      }
+    }
+  } while (0);
+
+  // Parse digits, up to (and including) a '.', 'E' or 'e'. Examples for each
+  // limb in this if-else chain:
+  //  - "0.789"
+  //  - "1002.789"
+  //  - ".789"
+  //  - Other (invalid input).
+  uint32_t nd = 0;
+  int32_t dp = 0;
+  bool no_digits_before_separator = false;
+  if ('0' == *p) {
+    p++;
+    for (;; p++) {
+      if (p >= q) {
+        goto after_all;
+      } else if ((*p == '.') || (*p == ',')) {
+        p++;
+        goto after_sep;
+      } else if ((*p == 'E') || (*p == 'e')) {
+        p++;
+        goto after_exp;
+      } else if (*p != '_') {
+        return wuffs_base__make_status(wuffs_base__error__bad_argument);
+      }
+    }
+
+  } else if (('0' < *p) && (*p <= '9')) {
+    h->digits[nd++] = (uint8_t)(*p - '0');
+    dp = (int32_t)nd;
+    p++;
+    for (;; p++) {
+      if (p >= q) {
+        goto after_all;
+      } else if (('0' <= *p) && (*p <= '9')) {
+        if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+          h->digits[nd++] = (uint8_t)(*p - '0');
+          dp = (int32_t)nd;
+        } else if ('0' != *p) {
+          // Long-tail non-zeroes set the truncated bit.
+          h->truncated = true;
+        }
+      } else if ((*p == '.') || (*p == ',')) {
+        p++;
+        goto after_sep;
+      } else if ((*p == 'E') || (*p == 'e')) {
+        p++;
+        goto after_exp;
+      } else if (*p != '_') {
+        return wuffs_base__make_status(wuffs_base__error__bad_argument);
+      }
+    }
+
+  } else if ((*p == '.') || (*p == ',')) {
+    p++;
+    no_digits_before_separator = true;
+
+  } else {
+    return wuffs_base__make_status(wuffs_base__error__bad_argument);
+  }
+
+after_sep:
+  for (;; p++) {
+    if (p >= q) {
+      goto after_all;
+    } else if ('0' == *p) {
+      if (nd == 0) {
+        // Track leading zeroes implicitly.
+        dp--;
+      } else if (nd <
+                 WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+        h->digits[nd++] = (uint8_t)(*p - '0');
+      }
+    } else if (('0' < *p) && (*p <= '9')) {
+      if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+        h->digits[nd++] = (uint8_t)(*p - '0');
+      } else {
+        // Long-tail non-zeroes set the truncated bit.
+        h->truncated = true;
+      }
+    } else if ((*p == 'E') || (*p == 'e')) {
+      p++;
+      goto after_exp;
+    } else if (*p != '_') {
+      return wuffs_base__make_status(wuffs_base__error__bad_argument);
+    }
+  }
+
+after_exp:
+  do {
+    for (;; p++) {
+      if (p >= q) {
+        return wuffs_base__make_status(wuffs_base__error__bad_argument);
+      } else if (*p != '_') {
+        break;
+      }
+    }
+
+    int32_t exp_sign = +1;
+    if (*p == '+') {
+      p++;
+    } else if (*p == '-') {
+      exp_sign = -1;
+      p++;
+    }
+
+    int32_t exp = 0;
+    const int32_t exp_large =
+        WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE +
+        WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION;
+    bool saw_exp_digits = false;
+    for (; p < q; p++) {
+      if (*p == '_') {
+        // No-op.
+      } else if (('0' <= *p) && (*p <= '9')) {
+        saw_exp_digits = true;
+        if (exp < exp_large) {
+          exp = (10 * exp) + ((int32_t)(*p - '0'));
+        }
+      } else {
+        break;
+      }
+    }
+    if (!saw_exp_digits) {
+      return wuffs_base__make_status(wuffs_base__error__bad_argument);
+    }
+    dp += exp_sign * exp;
+  } while (0);
+
+after_all:
+  if (p != q) {
+    return wuffs_base__make_status(wuffs_base__error__bad_argument);
+  }
+  h->num_digits = nd;
+  if (nd == 0) {
+    if (no_digits_before_separator) {
+      return wuffs_base__make_status(wuffs_base__error__bad_argument);
+    }
+    h->decimal_point = 0;
+  } else if (dp <
+             -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
+    h->decimal_point =
+        -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE - 1;
+  } else if (dp >
+             +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
+    h->decimal_point =
+        +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE + 1;
+  } else {
+    h->decimal_point = dp;
+  }
+  wuffs_base__private_implementation__high_prec_dec__trim(h);
+  return wuffs_base__make_status(NULL);
+}
+
+// --------
+
+// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits
+// returns the number of additional decimal digits when left-shifting by shift.
+//
+// See below for preconditions.
+static uint32_t  //
+wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint32_t shift) {
+  // Masking with 0x3F should be unnecessary (assuming the preconditions) but
+  // it's cheap and ensures that we don't overflow the
+  // wuffs_base__private_implementation__hpd_left_shift array.
+  shift &= 63;
+
+  uint32_t x_a = wuffs_base__private_implementation__hpd_left_shift[shift];
+  uint32_t x_b = wuffs_base__private_implementation__hpd_left_shift[shift + 1];
+  uint32_t num_new_digits = x_a >> 11;
+  uint32_t pow5_a = 0x7FF & x_a;
+  uint32_t pow5_b = 0x7FF & x_b;
+
+  const uint8_t* pow5 =
+      &wuffs_base__private_implementation__powers_of_5[pow5_a];
+  uint32_t i = 0;
+  uint32_t n = pow5_b - pow5_a;
+  for (; i < n; i++) {
+    if (i >= h->num_digits) {
+      return num_new_digits - 1;
+    } else if (h->digits[i] == pow5[i]) {
+      continue;
+    } else if (h->digits[i] < pow5[i]) {
+      return num_new_digits - 1;
+    } else {
+      return num_new_digits;
+    }
+  }
+  return num_new_digits;
+}
+
+// --------
+
+// wuffs_base__private_implementation__high_prec_dec__rounded_integer returns
+// the integral (non-fractional) part of h, provided that it is 18 or fewer
+// decimal digits. For 19 or more digits, it returns UINT64_MAX. Note that:
+//   - (1 << 53) is    9007199254740992, which has 16 decimal digits.
+//   - (1 << 56) is   72057594037927936, which has 17 decimal digits.
+//   - (1 << 59) is  576460752303423488, which has 18 decimal digits.
+//   - (1 << 63) is 9223372036854775808, which has 19 decimal digits.
+// and that IEEE 754 double precision has 52 mantissa bits.
+//
+// That integral part is rounded-to-even: rounding 7.5 or 8.5 both give 8.
+//
+// h's negative bit is ignored: rounding -8.6 returns 9.
+//
+// See below for preconditions.
+static uint64_t  //
+wuffs_base__private_implementation__high_prec_dec__rounded_integer(
+    wuffs_base__private_implementation__high_prec_dec* h) {
+  if ((h->num_digits == 0) || (h->decimal_point < 0)) {
+    return 0;
+  } else if (h->decimal_point > 18) {
+    return UINT64_MAX;
+  }
+
+  uint32_t dp = (uint32_t)(h->decimal_point);
+  uint64_t n = 0;
+  uint32_t i = 0;
+  for (; i < dp; i++) {
+    n = (10 * n) + ((i < h->num_digits) ? h->digits[i] : 0);
+  }
+
+  bool round_up = false;
+  if (dp < h->num_digits) {
+    round_up = h->digits[dp] >= 5;
+    if ((h->digits[dp] == 5) && (dp + 1 == h->num_digits)) {
+      // We are exactly halfway. If we're truncated, round up, otherwise round
+      // to even.
+      round_up = h->truncated ||  //
+                 ((dp > 0) && (1 & h->digits[dp - 1]));
+    }
+  }
+  if (round_up) {
+    n++;
+  }
+
+  return n;
+}
+
+// wuffs_base__private_implementation__high_prec_dec__small_xshift shifts h's
+// number (where 'x' is 'l' or 'r' for left or right) by a small shift value.
+//
+// Preconditions:
+//  - h is non-NULL.
+//  - h->decimal_point is "not extreme".
+//  - shift is non-zero.
+//  - shift is "a small shift".
+//
+// "Not extreme" means within
+// ±WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
+//
+// "A small shift" means not more than
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.
+//
+// wuffs_base__private_implementation__high_prec_dec__rounded_integer and
+// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits
+// have the same preconditions.
+//
+// wuffs_base__private_implementation__high_prec_dec__lshift keeps the first
+// two preconditions but not the last two. Its shift argument is signed and
+// does not need to be "small": zero is a no-op, positive means left shift and
+// negative means right shift.
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__small_lshift(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint32_t shift) {
+  if (h->num_digits == 0) {
+    return;
+  }
+  uint32_t num_new_digits =
+      wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(
+          h, shift);
+  uint32_t rx = h->num_digits - 1;                   // Read  index.
+  uint32_t wx = h->num_digits - 1 + num_new_digits;  // Write index.
+  uint64_t n = 0;
+
+  // Repeat: pick up a digit, put down a digit, right to left.
+  while (((int32_t)rx) >= 0) {
+    n += ((uint64_t)(h->digits[rx])) << shift;
+    uint64_t quo = n / 10;
+    uint64_t rem = n - (10 * quo);
+    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+      h->digits[wx] = (uint8_t)rem;
+    } else if (rem > 0) {
+      h->truncated = true;
+    }
+    n = quo;
+    wx--;
+    rx--;
+  }
+
+  // Put down leading digits, right to left.
+  while (n > 0) {
+    uint64_t quo = n / 10;
+    uint64_t rem = n - (10 * quo);
+    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+      h->digits[wx] = (uint8_t)rem;
+    } else if (rem > 0) {
+      h->truncated = true;
+    }
+    n = quo;
+    wx--;
+  }
+
+  // Finish.
+  h->num_digits += num_new_digits;
+  if (h->num_digits >
+      WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+    h->num_digits = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION;
+  }
+  h->decimal_point += (int32_t)num_new_digits;
+  wuffs_base__private_implementation__high_prec_dec__trim(h);
+}
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__small_rshift(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint32_t shift) {
+  uint32_t rx = 0;  // Read  index.
+  uint32_t wx = 0;  // Write index.
+  uint64_t n = 0;
+
+  // Pick up enough leading digits to cover the first shift.
+  while ((n >> shift) == 0) {
+    if (rx < h->num_digits) {
+      // Read a digit.
+      n = (10 * n) + h->digits[rx++];
+    } else if (n == 0) {
+      // h's number used to be zero and remains zero.
+      return;
+    } else {
+      // Read sufficient implicit trailing zeroes.
+      while ((n >> shift) == 0) {
+        n = 10 * n;
+        rx++;
+      }
+      break;
+    }
+  }
+  h->decimal_point -= ((int32_t)(rx - 1));
+  if (h->decimal_point <
+      -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
+    // After the shift, h's number is effectively zero.
+    h->num_digits = 0;
+    h->decimal_point = 0;
+    h->negative = false;
+    h->truncated = false;
+    return;
+  }
+
+  // Repeat: pick up a digit, put down a digit, left to right.
+  uint64_t mask = (((uint64_t)(1)) << shift) - 1;
+  while (rx < h->num_digits) {
+    uint8_t new_digit = ((uint8_t)(n >> shift));
+    n = (10 * (n & mask)) + h->digits[rx++];
+    h->digits[wx++] = new_digit;
+  }
+
+  // Put down trailing digits, left to right.
+  while (n > 0) {
+    uint8_t new_digit = ((uint8_t)(n >> shift));
+    n = 10 * (n & mask);
+    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+      h->digits[wx++] = new_digit;
+    } else if (new_digit > 0) {
+      h->truncated = true;
+    }
+  }
+
+  // Finish.
+  h->num_digits = wx;
+  wuffs_base__private_implementation__high_prec_dec__trim(h);
+}
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__lshift(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    int32_t shift) {
+  if (shift > 0) {
+    while (shift > +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
+      wuffs_base__private_implementation__high_prec_dec__small_lshift(
+          h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL);
+      shift -= WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
+    }
+    wuffs_base__private_implementation__high_prec_dec__small_lshift(
+        h, ((uint32_t)(+shift)));
+  } else if (shift < 0) {
+    while (shift < -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
+      wuffs_base__private_implementation__high_prec_dec__small_rshift(
+          h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL);
+      shift += WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
+    }
+    wuffs_base__private_implementation__high_prec_dec__small_rshift(
+        h, ((uint32_t)(-shift)));
+  }
+}
+
+// --------
+
+// wuffs_base__private_implementation__high_prec_dec__round_etc rounds h's
+// number. For those functions that take an n argument, rounding produces at
+// most n digits (which is not necessarily at most n decimal places). Negative
+// n values are ignored, as well as any n greater than or equal to h's number
+// of digits. The etc__round_just_enough function implicitly chooses an n to
+// implement WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION.
+//
+// Preconditions:
+//  - h is non-NULL.
+//  - h->decimal_point is "not extreme".
+//
+// "Not extreme" means within
+// ±WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__round_down(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    int32_t n) {
+  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
+    return;
+  }
+  h->num_digits = (uint32_t)(n);
+  wuffs_base__private_implementation__high_prec_dec__trim(h);
+}
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__round_up(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    int32_t n) {
+  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
+    return;
+  }
+
+  for (n--; n >= 0; n--) {
+    if (h->digits[n] < 9) {
+      h->digits[n]++;
+      h->num_digits = (uint32_t)(n + 1);
+      return;
+    }
+  }
+
+  // The number is all 9s. Change to a single 1 and adjust the decimal point.
+  h->digits[0] = 1;
+  h->num_digits = 1;
+  h->decimal_point++;
+}
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__round_nearest(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    int32_t n) {
+  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
+    return;
+  }
+  bool up = h->digits[n] >= 5;
+  if ((h->digits[n] == 5) && ((n + 1) == ((int32_t)(h->num_digits)))) {
+    up = h->truncated ||  //
+         ((n > 0) && ((h->digits[n - 1] & 1) != 0));
+  }
+
+  if (up) {
+    wuffs_base__private_implementation__high_prec_dec__round_up(h, n);
+  } else {
+    wuffs_base__private_implementation__high_prec_dec__round_down(h, n);
+  }
+}
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__round_just_enough(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    int32_t exp2,
+    uint64_t mantissa) {
+  // The magic numbers 52 and 53 in this function are because IEEE 754 double
+  // precision has 52 mantissa bits.
+  //
+  // Let f be the floating point number represented by exp2 and mantissa (and
+  // also the number in h): the number (mantissa * (2 ** (exp2 - 52))).
+  //
+  // If f is zero or a small integer, we can return early.
+  if ((mantissa == 0) ||
+      ((exp2 < 53) && (h->decimal_point >= ((int32_t)(h->num_digits))))) {
+    return;
+  }
+
+  // The smallest normal f has an exp2 of -1022 and a mantissa of (1 << 52).
+  // Subnormal numbers have the same exp2 but a smaller mantissa.
+  static const int32_t min_incl_normal_exp2 = -1022;
+  static const uint64_t min_incl_normal_mantissa = 0x0010000000000000ul;
+
+  // Compute lower and upper bounds such that any number between them (possibly
+  // inclusive) will round to f. First, the lower bound. Our number f is:
+  //   ((mantissa + 0)         * (2 ** (  exp2 - 52)))
+  //
+  // The next lowest floating point number is:
+  //   ((mantissa - 1)         * (2 ** (  exp2 - 52)))
+  // unless (mantissa - 1) drops the (1 << 52) bit and exp2 is not the
+  // min_incl_normal_exp2. Either way, call it:
+  //   ((l_mantissa)           * (2 ** (l_exp2 - 52)))
+  //
+  // The lower bound is halfway between them (noting that 52 became 53):
+  //   (((2 * l_mantissa) + 1) * (2 ** (l_exp2 - 53)))
+  int32_t l_exp2 = exp2;
+  uint64_t l_mantissa = mantissa - 1;
+  if ((exp2 > min_incl_normal_exp2) && (mantissa <= min_incl_normal_mantissa)) {
+    l_exp2 = exp2 - 1;
+    l_mantissa = (2 * mantissa) - 1;
+  }
+  wuffs_base__private_implementation__high_prec_dec lower;
+  wuffs_base__private_implementation__high_prec_dec__assign(
+      &lower, (2 * l_mantissa) + 1, false);
+  wuffs_base__private_implementation__high_prec_dec__lshift(&lower,
+                                                            l_exp2 - 53);
+
+  // Next, the upper bound. Our number f is:
+  //   ((mantissa + 0)       * (2 ** (exp2 - 52)))
+  //
+  // The next highest floating point number is:
+  //   ((mantissa + 1)       * (2 ** (exp2 - 52)))
+  //
+  // The upper bound is halfway between them (noting that 52 became 53):
+  //   (((2 * mantissa) + 1) * (2 ** (exp2 - 53)))
+  wuffs_base__private_implementation__high_prec_dec upper;
+  wuffs_base__private_implementation__high_prec_dec__assign(
+      &upper, (2 * mantissa) + 1, false);
+  wuffs_base__private_implementation__high_prec_dec__lshift(&upper, exp2 - 53);
+
+  // The lower and upper bounds are possible outputs only if the original
+  // mantissa is even, so that IEEE round-to-even would round to the original
+  // mantissa and not its neighbors.
+  bool inclusive = (mantissa & 1) == 0;
+
+  // As we walk the digits, we want to know whether rounding up would fall
+  // within the upper bound. This is tracked by upper_delta:
+  //  - When -1, the digits of h and upper are the same so far.
+  //  - When +0, we saw a difference of 1 between h and upper on a previous
+  //    digit and subsequently only 9s for h and 0s for upper. Thus, rounding
+  //    up may fall outside of the bound if !inclusive.
+  //  - When +1, the difference is greater than 1 and we know that rounding up
+  //    falls within the bound.
+  //
+  // This is a state machine with three states. The numerical value for each
+  // state (-1, +0 or +1) isn't important, other than their order.
+  int upper_delta = -1;
+
+  // We can now figure out the shortest number of digits required. Walk the
+  // digits until h has distinguished itself from lower or upper.
+  //
+  // The zi and zd variables are indexes and digits, for z in l (lower), h (the
+  // number) and u (upper).
+  //
+  // The lower, h and upper numbers may have their decimal points at different
+  // places. In this case, upper is the longest, so we iterate ui starting from
+  // 0 and iterate li and hi starting from either 0 or -1.
+  int32_t ui = 0;
+  for (;; ui++) {
+    // Calculate hd, the middle number's digit.
+    int32_t hi = ui - upper.decimal_point + h->decimal_point;
+    if (hi >= ((int32_t)(h->num_digits))) {
+      break;
+    }
+    uint8_t hd = (((uint32_t)hi) < h->num_digits) ? h->digits[hi] : 0;
+
+    // Calculate ld, the lower bound's digit.
+    int32_t li = ui - upper.decimal_point + lower.decimal_point;
+    uint8_t ld = (((uint32_t)li) < lower.num_digits) ? lower.digits[li] : 0;
+
+    // We can round down (truncate) if lower has a different digit than h or if
+    // lower is inclusive and is exactly the result of rounding down (i.e. we
+    // have reached the final digit of lower).
+    bool can_round_down =
+        (ld != hd) ||  //
+        (inclusive && ((li + 1) == ((int32_t)(lower.num_digits))));
+
+    // Calculate ud, the upper bound's digit, and update upper_delta.
+    uint8_t ud = (((uint32_t)ui) < upper.num_digits) ? upper.digits[ui] : 0;
+    if (upper_delta < 0) {
+      if ((hd + 1) < ud) {
+        // For example:
+        // h     = 12345???
+        // upper = 12347???
+        upper_delta = +1;
+      } else if (hd != ud) {
+        // For example:
+        // h     = 12345???
+        // upper = 12346???
+        upper_delta = +0;
+      }
+    } else if (upper_delta == 0) {
+      if ((hd != 9) || (ud != 0)) {
+        // For example:
+        // h     = 1234598?
+        // upper = 1234600?
+        upper_delta = +1;
+      }
+    }
+
+    // We can round up if upper has a different digit than h and either upper
+    // is inclusive or upper is bigger than the result of rounding up.
+    bool can_round_up =
+        (upper_delta > 0) ||    //
+        ((upper_delta == 0) &&  //
+         (inclusive || ((ui + 1) < ((int32_t)(upper.num_digits)))));
+
+    // If we can round either way, round to nearest. If we can round only one
+    // way, do it. If we can't round, continue the loop.
+    if (can_round_down) {
+      if (can_round_up) {
+        wuffs_base__private_implementation__high_prec_dec__round_nearest(
+            h, hi + 1);
+        return;
+      } else {
+        wuffs_base__private_implementation__high_prec_dec__round_down(h,
+                                                                      hi + 1);
+        return;
+      }
+    } else {
+      if (can_round_up) {
+        wuffs_base__private_implementation__high_prec_dec__round_up(h, hi + 1);
+        return;
+      }
+    }
+  }
+}
+
+// --------
+
+// wuffs_base__private_implementation__parse_number_f64_eisel produces the IEEE
+// 754 double-precision value for an exact mantissa and base-10 exponent.
+//
+// On success, it returns a non-negative int64_t such that the low 63 bits hold
+// the 11-bit exponent and 52-bit mantissa.
+//
+// On failure, it returns a negative value.
+//
+// The algorithm is based on an original idea by Michael Eisel. See
+// https://lemire.me/blog/2020/03/10/fast-float-parsing-in-practice/
+//
+// Preconditions:
+//  - man is non-zero.
+//  - exp10 is in the range -326 ..= 310, the same range of the
+//    wuffs_base__private_implementation__powers_of_10 array.
+static int64_t  //
+wuffs_base__private_implementation__parse_number_f64_eisel(uint64_t man,
+                                                           int32_t exp10) {
+  // Look up the (possibly truncated) base-2 representation of (10 ** exp10).
+  // The look-up table was constructed so that it is already normalized: the
+  // table entry's mantissa's MSB (most significant bit) is on.
+  const uint32_t* po10 =
+      &wuffs_base__private_implementation__powers_of_10[5 * (exp10 + 326)];
+
+  // Normalize the man argument. The (man != 0) precondition means that a
+  // non-zero bit exists.
+  uint32_t clz = wuffs_base__count_leading_zeroes_u64(man);
+  man <<= clz;
+
+  // Calculate the return value's base-2 exponent. We might tweak it by ±1
+  // later, but its initial value comes from the look-up table and clz.
+  uint64_t ret_exp2 = ((uint64_t)po10[4]) - ((uint64_t)clz);
+
+  // Multiply the two mantissas. Normalization means that both mantissas are at
+  // least (1<<63), so the 128-bit product must be at least (1<<126). The high
+  // 64 bits of the product, x.hi, must therefore be at least (1<<62).
+  //
+  // As a consequence, x.hi has either 0 or 1 leading zeroes. Shifting x.hi
+  // right by either 9 or 10 bits (depending on x.hi's MSB) will therefore
+  // leave the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on.
+  wuffs_base__multiply_u64__output x = wuffs_base__multiply_u64(
+      man, ((uint64_t)po10[2]) | (((uint64_t)po10[3]) << 32));
+
+  // Before we shift right by at least 9 bits, recall that the look-up table
+  // entry was possibly truncated. We have so far only calculated a lower bound
+  // for the product (man * e), where e is (10 ** exp10). The upper bound would
+  // add a further (man * 1) to the 128-bit product, which overflows the lower
+  // 64-bit limb if ((x.lo + man) < man).
+  //
+  // If overflow occurs, that adds 1 to x.hi. Since we're about to shift right
+  // by at least 9 bits, that carried 1 can be ignored unless the higher 64-bit
+  // limb's low 9 bits are all on.
+  if (((x.hi & 0x1FF) == 0x1FF) && ((x.lo + man) < man)) {
+    // Refine our calculation of (man * e). Before, our approximation of e used
+    // a "low resolution" 64-bit mantissa. Now use a "high resolution" 128-bit
+    // mantissa. We've already calculated x = (man * bits_0_to_63_incl_of_e).
+    // Now calculate y = (man * bits_64_to_127_incl_of_e).
+    wuffs_base__multiply_u64__output y = wuffs_base__multiply_u64(
+        man, ((uint64_t)po10[0]) | (((uint64_t)po10[1]) << 32));
+
+    // Merge the 128-bit x and 128-bit y, which overlap by 64 bits, to
+    // calculate the 192-bit product of the 64-bit man by the 128-bit e.
+    // As we exit this if-block, we only care about the high 128 bits
+    // (merged_hi and merged_lo) of that 192-bit product.
+    uint64_t merged_hi = x.hi;
+    uint64_t merged_lo = x.lo + y.hi;
+    if (merged_lo < x.lo) {
+      merged_hi++;  // Carry the overflow bit.
+    }
+
+    // The "high resolution" approximation of e is still a lower bound. Once
+    // again, see if the upper bound is large enough to produce a different
+    // result. This time, if it does, give up instead of reaching for an even
+    // more precise approximation to e.
+    //
+    // This three-part check is similar to the two-part check that guarded the
+    // if block that we're now in, but it has an extra term for the middle 64
+    // bits (checking that adding 1 to merged_lo would overflow).
+    if (((merged_hi & 0x1FF) == 0x1FF) && ((merged_lo + 1) == 0) &&
+        (y.lo + man < man)) {
+      return -1;
+    }
+
+    // Replace the 128-bit x with merged.
+    x.hi = merged_hi;
+    x.lo = merged_lo;
+  }
+
+  // As mentioned above, shifting x.hi right by either 9 or 10 bits will leave
+  // the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on. If the
+  // MSB (before shifting) was on, adjust ret_exp2 for the larger shift.
+  //
+  // Having bit 53 on (and higher bits off) means that ret_mantissa is a 54-bit
+  // number.
+  uint64_t msb = x.hi >> 63;
+  uint64_t ret_mantissa = x.hi >> (msb + 9);
+  ret_exp2 -= 1 ^ msb;
+
+  // IEEE 754 rounds to-nearest with ties rounded to-even. Rounding to-even can
+  // be tricky. If we're half-way between two exactly representable numbers
+  // (x's low 73 bits are zero and the next 2 bits that matter are "01"), give
+  // up instead of trying to pick the winner.
+  //
+  // Technically, we could tighten the condition by changing "73" to "73 or 74,
+  // depending on msb", but a flat "73" is simpler.
+  if ((x.lo == 0) && ((x.hi & 0x1FF) == 0) && ((ret_mantissa & 3) == 1)) {
+    return -1;
+  }
+
+  // If we're not halfway then it's rounding to-nearest. Starting with a 54-bit
+  // number, carry the lowest bit (bit 0) up if it's on. Regardless of whether
+  // it was on or off, shifting right by one then produces a 53-bit number. If
+  // carrying up overflowed, shift again.
+  ret_mantissa += ret_mantissa & 1;
+  ret_mantissa >>= 1;
+  if ((ret_mantissa >> 53) > 0) {
+    ret_mantissa >>= 1;
+    ret_exp2++;
+  }
+
+  // Starting with a 53-bit number, IEEE 754 double-precision normal numbers
+  // have an implicit mantissa bit. Mask that away and keep the low 52 bits.
+  ret_mantissa &= 0x000FFFFFFFFFFFFF;
+
+  // IEEE 754 double-precision floating point has 11 exponent bits. All off (0)
+  // means subnormal numbers. All on (2047) means infinity or NaN.
+  if ((ret_exp2 <= 0) || (2047 <= ret_exp2)) {
+    return -1;
+  }
+
+  // Pack the bits and return.
+  return ((int64_t)(ret_mantissa | (ret_exp2 << 52)));
+}
+
+// --------
+
+static wuffs_base__result_f64  //
+wuffs_base__parse_number_f64_special(wuffs_base__slice_u8 s,
+                                     const char* fallback_status_repr) {
+  do {
+    uint8_t* p = s.ptr;
+    uint8_t* q = s.ptr + s.len;
+
+    for (; (p < q) && (*p == '_'); p++) {
+    }
+    if (p >= q) {
+      goto fallback;
+    }
+
+    // Parse sign.
+    bool negative = false;
+    do {
+      if (*p == '+') {
+        p++;
+      } else if (*p == '-') {
+        negative = true;
+        p++;
+      } else {
+        break;
+      }
+      for (; (p < q) && (*p == '_'); p++) {
+      }
+    } while (0);
+    if (p >= q) {
+      goto fallback;
+    }
+
+    bool nan = false;
+    switch (p[0]) {
+      case 'I':
+      case 'i':
+        if (((q - p) < 3) ||                     //
+            ((p[1] != 'N') && (p[1] != 'n')) ||  //
+            ((p[2] != 'F') && (p[2] != 'f'))) {
+          goto fallback;
+        }
+        p += 3;
+
+        if ((p >= q) || (*p == '_')) {
+          break;
+        } else if (((q - p) < 5) ||                     //
+                   ((p[0] != 'I') && (p[0] != 'i')) ||  //
+                   ((p[1] != 'N') && (p[1] != 'n')) ||  //
+                   ((p[2] != 'I') && (p[2] != 'i')) ||  //
+                   ((p[3] != 'T') && (p[3] != 't')) ||  //
+                   ((p[4] != 'Y') && (p[4] != 'y'))) {
+          goto fallback;
+        }
+        p += 5;
+
+        if ((p >= q) || (*p == '_')) {
+          break;
+        }
+        goto fallback;
+
+      case 'N':
+      case 'n':
+        if (((q - p) < 3) ||                     //
+            ((p[1] != 'A') && (p[1] != 'a')) ||  //
+            ((p[2] != 'N') && (p[2] != 'n'))) {
+          goto fallback;
+        }
+        p += 3;
+
+        if ((p >= q) || (*p == '_')) {
+          nan = true;
+          break;
+        }
+        goto fallback;
+
+      default:
+        goto fallback;
+    }
+
+    // Finish.
+    for (; (p < q) && (*p == '_'); p++) {
+    }
+    if (p != q) {
+      goto fallback;
+    }
+    wuffs_base__result_f64 ret;
+    ret.status.repr = NULL;
+    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(
+        (nan ? 0x7FFFFFFFFFFFFFFF : 0x7FF0000000000000) |
+        (negative ? 0x8000000000000000 : 0));
+    return ret;
+  } while (0);
+
+fallback:
+  do {
+    wuffs_base__result_f64 ret;
+    ret.status.repr = fallback_status_repr;
+    ret.value = 0;
+    return ret;
+  } while (0);
+}
+
+WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //
+wuffs_base__private_implementation__parse_number_f64__fallback(
+    wuffs_base__private_implementation__high_prec_dec* h) {
+  do {
+    // powers converts decimal powers of 10 to binary powers of 2. For example,
+    // (10000 >> 13) is 1. It stops before the elements exceed 60, also known
+    // as WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.
+    static const uint32_t num_powers = 19;
+    static const uint8_t powers[19] = {
+        0,  3,  6,  9,  13, 16, 19, 23, 26, 29,  //
+        33, 36, 39, 43, 46, 49, 53, 56, 59,      //
+    };
+
+    // Handle zero and obvious extremes. The largest and smallest positive
+    // finite f64 values are approximately 1.8e+308 and 4.9e-324.
+    if ((h->num_digits == 0) || (h->decimal_point < -326)) {
+      goto zero;
+    } else if (h->decimal_point > 310) {
+      goto infinity;
+    }
+
+    // Try the fast Eisel algorithm again. Calculating the (man, exp10) pair
+    // from the high_prec_dec h is more correct but slower than the approach
+    // taken in wuffs_base__parse_number_f64. The latter is optimized for the
+    // common cases (e.g. assuming no underscores or a leading '+' sign) rather
+    // than the full set of cases allowed by the Wuffs API.
+    if (h->num_digits <= 19) {
+      uint64_t man = 0;
+      uint32_t i;
+      for (i = 0; i < h->num_digits; i++) {
+        man = (10 * man) + h->digits[i];
+      }
+      int32_t exp10 = h->decimal_point - ((int32_t)(h->num_digits));
+      if ((man != 0) && (-326 <= exp10) && (exp10 <= 310)) {
+        int64_t r = wuffs_base__private_implementation__parse_number_f64_eisel(
+            man, exp10);
+        if (r >= 0) {
+          wuffs_base__result_f64 ret;
+          ret.status.repr = NULL;
+          ret.value = wuffs_base__ieee_754_bit_representation__to_f64(
+              ((uint64_t)r) | (((uint64_t)(h->negative)) << 63));
+          return ret;
+        }
+      }
+    }
+
+    // Scale by powers of 2 until we're in the range [½ .. 1], which gives us
+    // our exponent (in base-2). First we shift right, possibly a little too
+    // far, ending with a value certainly below 1 and possibly below ½...
+    const int32_t f64_bias = -1023;
+    int32_t exp2 = 0;
+    while (h->decimal_point > 0) {
+      uint32_t n = (uint32_t)(+h->decimal_point);
+      uint32_t shift =
+          (n < num_powers)
+              ? powers[n]
+              : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
+
+      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, shift);
+      if (h->decimal_point <
+          -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
+        goto zero;
+      }
+      exp2 += (int32_t)shift;
+    }
+    // ...then we shift left, putting us in [½ .. 1].
+    while (h->decimal_point <= 0) {
+      uint32_t shift;
+      if (h->decimal_point == 0) {
+        if (h->digits[0] >= 5) {
+          break;
+        }
+        shift = (h->digits[0] <= 2) ? 2 : 1;
+      } else {
+        uint32_t n = (uint32_t)(-h->decimal_point);
+        shift = (n < num_powers)
+                    ? powers[n]
+                    : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
+      }
+
+      wuffs_base__private_implementation__high_prec_dec__small_lshift(h, shift);
+      if (h->decimal_point >
+          +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
+        goto infinity;
+      }
+      exp2 -= (int32_t)shift;
+    }
+
+    // We're in the range [½ .. 1] but f64 uses [1 .. 2].
+    exp2--;
+
+    // The minimum normal exponent is (f64_bias + 1).
+    while ((f64_bias + 1) > exp2) {
+      uint32_t n = (uint32_t)((f64_bias + 1) - exp2);
+      if (n > WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
+        n = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
+      }
+      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, n);
+      exp2 += (int32_t)n;
+    }
+
+    // Check for overflow.
+    if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.
+      goto infinity;
+    }
+
+    // Extract 53 bits for the mantissa (in base-2).
+    wuffs_base__private_implementation__high_prec_dec__small_lshift(h, 53);
+    uint64_t man2 =
+        wuffs_base__private_implementation__high_prec_dec__rounded_integer(h);
+
+    // Rounding might have added one bit. If so, shift and re-check overflow.
+    if ((man2 >> 53) != 0) {
+      man2 >>= 1;
+      exp2++;
+      if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.
+        goto infinity;
+      }
+    }
+
+    // Handle subnormal numbers.
+    if ((man2 >> 52) == 0) {
+      exp2 = f64_bias;
+    }
+
+    // Pack the bits and return.
+    uint64_t exp2_bits =
+        (uint64_t)((exp2 - f64_bias) & 0x07FF);              // (1 << 11) - 1.
+    uint64_t bits = (man2 & 0x000FFFFFFFFFFFFF) |            // (1 << 52) - 1.
+                    (exp2_bits << 52) |                      //
+                    (h->negative ? 0x8000000000000000 : 0);  // (1 << 63).
+
+    wuffs_base__result_f64 ret;
+    ret.status.repr = NULL;
+    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);
+    return ret;
+  } while (0);
+
+zero:
+  do {
+    uint64_t bits = h->negative ? 0x8000000000000000 : 0;
+
+    wuffs_base__result_f64 ret;
+    ret.status.repr = NULL;
+    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);
+    return ret;
+  } while (0);
+
+infinity:
+  do {
+    uint64_t bits = h->negative ? 0xFFF0000000000000 : 0x7FF0000000000000;
+
+    wuffs_base__result_f64 ret;
+    ret.status.repr = NULL;
+    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);
+    return ret;
+  } while (0);
+}
+
+static inline bool  //
+wuffs_base__private_implementation__is_decimal_digit(uint8_t c) {
+  return ('0' <= c) && (c <= '9');
+}
+
+WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //
+wuffs_base__parse_number_f64(wuffs_base__slice_u8 s, uint32_t options) {
+  // In practice, almost all "dd.ddddE±xxx" numbers can be represented
+  // losslessly by a uint64_t mantissa "dddddd" and an int32_t base-10
+  // exponent, adjusting "xxx" for the position (if present) of the decimal
+  // separator '.' or ','.
+  //
+  // This (u64 man, i32 exp10) data structure is superficially similar to the
+  // "Do It Yourself Floating Point" type from Loitsch (†), but the exponent
+  // here is base-10, not base-2.
+  //
+  // If s's number fits in a (man, exp10), parse that pair with the Eisel
+  // algorithm. If not, or if Eisel fails, parsing s with the fallback
+  // algorithm is slower but comprehensive.
+  //
+  // † "Printing Floating-Point Numbers Quickly and Accurately with Integers"
+  // (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf).
+  // Florian Loitsch is also the primary contributor to
+  // https://github.com/google/double-conversion
+  do {
+    // Calculating that (man, exp10) pair needs to stay within s's bounds.
+    // Provided that s isn't extremely long, work on a NUL-terminated copy of
+    // s's contents. The NUL byte isn't a valid part of "±dd.ddddE±xxx".
+    //
+    // As the pointer p walks the contents, it's faster to repeatedly check "is
+    // *p a valid digit" than "is p within bounds and *p a valid digit".
+    if (s.len >= 256) {
+      goto fallback;
+    }
+    uint8_t z[256];
+    memcpy(&z[0], s.ptr, s.len);
+    z[s.len] = 0;
+    const uint8_t* p = &z[0];
+
+    // Look for a leading minus sign. Technically, we could also look for an
+    // optional plus sign, but the "script/process-json-numbers.c with -p"
+    // benchmark is noticably slower if we do. It's optional and, in practice,
+    // usually absent. Let the fallback catch it.
+    bool negative = (*p == '-');
+    if (negative) {
+      p++;
+    }
+
+    // After walking "dd.dddd", comparing p later with p now will produce the
+    // number of "d"s and "."s.
+    const uint8_t* const start_of_digits_ptr = p;
+
+    // Walk the "d"s before a '.', 'E', NUL byte, etc. If it starts with '0',
+    // it must be a single '0'. If it starts with a non-zero decimal digit, it
+    // can be a sequence of decimal digits.
+    //
+    // Update the man variable during the walk. It's OK if man overflows now.
+    // We'll detect that later.
+    uint64_t man;
+    if (*p == '0') {
+      man = 0;
+      p++;
+      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
+        goto fallback;
+      }
+    } else if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
+      man = ((uint8_t)(*p - '0'));
+      p++;
+      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {
+        man = (10 * man) + ((uint8_t)(*p - '0'));
+      }
+    } else {
+      goto fallback;
+    }
+
+    // Walk the "d"s after the optional decimal separator ('.' or ','),
+    // updating the man and exp10 variables.
+    int32_t exp10 = 0;
+    if ((*p == '.') || (*p == ',')) {
+      p++;
+      const uint8_t* first_after_separator_ptr = p;
+      if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {
+        goto fallback;
+      }
+      man = (10 * man) + ((uint8_t)(*p - '0'));
+      p++;
+      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {
+        man = (10 * man) + ((uint8_t)(*p - '0'));
+      }
+      exp10 = ((int32_t)(first_after_separator_ptr - p));
+    }
+
+    // Count the number of digits:
+    //  - for an input of "314159",  digit_count is 6.
+    //  - for an input of "3.14159", digit_count is 7.
+    //
+    // This is off-by-one if there is a decimal separator. That's OK for now.
+    // We'll correct for that later. The "script/process-json-numbers.c with
+    // -p" benchmark is noticably slower if we try to correct for that now.
+    uint32_t digit_count = (uint32_t)(p - start_of_digits_ptr);
+
+    // Update exp10 for the optional exponent, starting with 'E' or 'e'.
+    if ((*p | 0x20) == 'e') {
+      p++;
+      int32_t exp_sign = +1;
+      if (*p == '-') {
+        p++;
+        exp_sign = -1;
+      } else if (*p == '+') {
+        p++;
+      }
+      if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {
+        goto fallback;
+      }
+      int32_t exp_num = ((uint8_t)(*p - '0'));
+      p++;
+      // The rest of the exp_num walking has a peculiar control flow but, once
+      // again, the "script/process-json-numbers.c with -p" benchmark is
+      // sensitive to alternative formulations.
+      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
+        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));
+        p++;
+      }
+      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
+        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));
+        p++;
+      }
+      while (wuffs_base__private_implementation__is_decimal_digit(*p)) {
+        if (exp_num > 0x1000000) {
+          goto fallback;
+        }
+        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));
+        p++;
+      }
+      exp10 += exp_sign * exp_num;
+    }
+
+    // The Wuffs API is that the original slice has no trailing data. It also
+    // allows underscores, which we don't catch here but the fallback should.
+    if (p != &z[s.len]) {
+      goto fallback;
+    }
+
+    // Check that the uint64_t typed man variable has not overflowed, based on
+    // digit_count.
+    //
+    // For reference:
+    //   - (1 << 63) is  9223372036854775808, which has 19 decimal digits.
+    //   - (1 << 64) is 18446744073709551616, which has 20 decimal digits.
+    //   - 19 nines,  9999999999999999999, is  0x8AC7230489E7FFFF, which has 64
+    //     bits and 16 hexadecimal digits.
+    //   - 20 nines, 99999999999999999999, is 0x56BC75E2D630FFFFF, which has 67
+    //     bits and 17 hexadecimal digits.
+    if (digit_count > 19) {
+      // Even if we have more than 19 pseudo-digits, it's not yet definitely an
+      // overflow. Recall that digit_count might be off-by-one (too large) if
+      // there's a decimal separator. It will also over-report the number of
+      // meaningful digits if the input looks something like "0.000dddExxx".
+      //
+      // We adjust by the number of leading '0's and '.'s and re-compare to 19.
+      // Once again, technically, we could skip ','s too, but that perturbs the
+      // "script/process-json-numbers.c with -p" benchmark.
+      const uint8_t* q = start_of_digits_ptr;
+      for (; (*q == '0') || (*q == '.'); q++) {
+      }
+      digit_count -= (uint32_t)(q - start_of_digits_ptr);
+      if (digit_count > 19) {
+        goto fallback;
+      }
+    }
+
+    // The wuffs_base__private_implementation__parse_number_f64_eisel
+    // preconditions include that exp10 is in the range -326 ..= 310.
+    if ((exp10 < -326) || (310 < exp10)) {
+      goto fallback;
+    }
+
+    // If man and exp10 are small enough, all three of (man), (10 ** exp10) and
+    // (man ** (10 ** exp10)) are exactly representable by a double. We don't
+    // need to run the Eisel algorithm.
+    if ((-22 <= exp10) && (exp10 <= 22) && ((man >> 53) == 0)) {
+      double d = (double)man;
+      if (exp10 >= 0) {
+        d *= wuffs_base__private_implementation__f64_powers_of_10[+exp10];
+      } else {
+        d /= wuffs_base__private_implementation__f64_powers_of_10[-exp10];
+      }
+      wuffs_base__result_f64 ret;
+      ret.status.repr = NULL;
+      ret.value = negative ? -d : +d;
+      return ret;
+    }
+
+    // The wuffs_base__private_implementation__parse_number_f64_eisel
+    // preconditions include that man is non-zero. Parsing "0" should be caught
+    // by the "If man and exp10 are small enough" above, but "0e99" might not.
+    if (man == 0) {
+      goto fallback;
+    }
+
+    // Our man and exp10 are in range. Run the Eisel algorithm.
+    int64_t r =
+        wuffs_base__private_implementation__parse_number_f64_eisel(man, exp10);
+    if (r < 0) {
+      goto fallback;
+    }
+    wuffs_base__result_f64 ret;
+    ret.status.repr = NULL;
+    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(
+        ((uint64_t)r) | (((uint64_t)negative) << 63));
+    return ret;
+  } while (0);
+
+fallback:
+  do {
+    wuffs_base__private_implementation__high_prec_dec h;
+    wuffs_base__status status =
+        wuffs_base__private_implementation__high_prec_dec__parse(&h, s);
+    if (status.repr) {
+      return wuffs_base__parse_number_f64_special(s, status.repr);
+    }
+    return wuffs_base__private_implementation__parse_number_f64__fallback(&h);
+  } while (0);
+}
+
+// --------
+
+static inline size_t  //
+wuffs_base__private_implementation__render_inf(wuffs_base__slice_u8 dst,
+                                               bool neg,
+                                               uint32_t options) {
+  if (neg) {
+    if (dst.len < 4) {
+      return 0;
+    }
+    wuffs_base__store_u32le__no_bounds_check(dst.ptr, 0x666E492D);  // '-Inf'le.
+    return 4;
+  }
+
+  if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {
+    if (dst.len < 4) {
+      return 0;
+    }
+    wuffs_base__store_u32le__no_bounds_check(dst.ptr, 0x666E492B);  // '+Inf'le.
+    return 4;
+  }
+
+  if (dst.len < 3) {
+    return 0;
+  }
+  wuffs_base__store_u24le__no_bounds_check(dst.ptr, 0x666E49);  // 'Inf'le.
+  return 3;
+}
+
+static inline size_t  //
+wuffs_base__private_implementation__render_nan(wuffs_base__slice_u8 dst) {
+  if (dst.len < 3) {
+    return 0;
+  }
+  wuffs_base__store_u24le__no_bounds_check(dst.ptr, 0x4E614E);  // 'NaN'le.
+  return 3;
+}
+
+static size_t  //
+wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(
+    wuffs_base__slice_u8 dst,
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint32_t precision,
+    uint32_t options) {
+  size_t n = (h->negative ||
+              (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN))
+                 ? 1
+                 : 0;
+  if (h->decimal_point <= 0) {
+    n += 1;
+  } else {
+    n += (size_t)(h->decimal_point);
+  }
+  if (precision > 0) {
+    n += precision + 1;  // +1 for the '.'.
+  }
+
+  // Don't modify dst if the formatted number won't fit.
+  if (n > dst.len) {
+    return 0;
+  }
+
+  // Align-left or align-right.
+  uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)
+                     ? &dst.ptr[dst.len - n]
+                     : &dst.ptr[0];
+
+  // Leading "±".
+  if (h->negative) {
+    *ptr++ = '-';
+  } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {
+    *ptr++ = '+';
+  }
+
+  // Integral digits.
+  if (h->decimal_point <= 0) {
+    *ptr++ = '0';
+  } else {
+    uint32_t m =
+        wuffs_base__u32__min(h->num_digits, (uint32_t)(h->decimal_point));
+    uint32_t i = 0;
+    for (; i < m; i++) {
+      *ptr++ = (uint8_t)('0' | h->digits[i]);
+    }
+    for (; i < (uint32_t)(h->decimal_point); i++) {
+      *ptr++ = '0';
+    }
+  }
+
+  // Separator and then fractional digits.
+  if (precision > 0) {
+    *ptr++ =
+        (options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)
+            ? ','
+            : '.';
+    uint32_t i = 0;
+    for (; i < precision; i++) {
+      uint32_t j = ((uint32_t)(h->decimal_point)) + i;
+      *ptr++ = (uint8_t)('0' | ((j < h->num_digits) ? h->digits[j] : 0));
+    }
+  }
+
+  return n;
+}
+
+static size_t  //
+wuffs_base__private_implementation__high_prec_dec__render_exponent_present(
+    wuffs_base__slice_u8 dst,
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint32_t precision,
+    uint32_t options) {
+  int32_t exp = 0;
+  if (h->num_digits > 0) {
+    exp = h->decimal_point - 1;
+  }
+  bool negative_exp = exp < 0;
+  if (negative_exp) {
+    exp = -exp;
+  }
+
+  size_t n = (h->negative ||
+              (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN))
+                 ? 4
+                 : 3;  // Mininum 3 bytes: first digit and then "e±".
+  if (precision > 0) {
+    n += precision + 1;  // +1 for the '.'.
+  }
+  n += (exp < 100) ? 2 : 3;
+
+  // Don't modify dst if the formatted number won't fit.
+  if (n > dst.len) {
+    return 0;
+  }
+
+  // Align-left or align-right.
+  uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)
+                     ? &dst.ptr[dst.len - n]
+                     : &dst.ptr[0];
+
+  // Leading "±".
+  if (h->negative) {
+    *ptr++ = '-';
+  } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {
+    *ptr++ = '+';
+  }
+
+  // Integral digit.
+  if (h->num_digits > 0) {
+    *ptr++ = (uint8_t)('0' | h->digits[0]);
+  } else {
+    *ptr++ = '0';
+  }
+
+  // Separator and then fractional digits.
+  if (precision > 0) {
+    *ptr++ =
+        (options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)
+            ? ','
+            : '.';
+    uint32_t i = 1;
+    uint32_t j = wuffs_base__u32__min(h->num_digits, precision + 1);
+    for (; i < j; i++) {
+      *ptr++ = (uint8_t)('0' | h->digits[i]);
+    }
+    for (; i <= precision; i++) {
+      *ptr++ = '0';
+    }
+  }
+
+  // Exponent: "e±" and then 2 or 3 digits.
+  *ptr++ = 'e';
+  *ptr++ = negative_exp ? '-' : '+';
+  if (exp < 10) {
+    *ptr++ = '0';
+    *ptr++ = (uint8_t)('0' | exp);
+  } else if (exp < 100) {
+    *ptr++ = (uint8_t)('0' | (exp / 10));
+    *ptr++ = (uint8_t)('0' | (exp % 10));
+  } else {
+    int32_t e = exp / 100;
+    exp -= e * 100;
+    *ptr++ = (uint8_t)('0' | e);
+    *ptr++ = (uint8_t)('0' | (exp / 10));
+    *ptr++ = (uint8_t)('0' | (exp % 10));
+  }
+
+  return n;
+}
+
+WUFFS_BASE__MAYBE_STATIC size_t  //
+wuffs_base__render_number_f64(wuffs_base__slice_u8 dst,
+                              double x,
+                              uint32_t precision,
+                              uint32_t options) {
+  // Decompose x (64 bits) into negativity (1 bit), base-2 exponent (11 bits
+  // with a -1023 bias) and mantissa (52 bits).
+  uint64_t bits = wuffs_base__ieee_754_bit_representation__from_f64(x);
+  bool neg = (bits >> 63) != 0;
+  int32_t exp2 = ((int32_t)(bits >> 52)) & 0x7FF;
+  uint64_t man = bits & 0x000FFFFFFFFFFFFFul;
+
+  // Apply the exponent bias and set the implicit top bit of the mantissa,
+  // unless x is subnormal. Also take care of Inf and NaN.
+  if (exp2 == 0x7FF) {
+    if (man != 0) {
+      return wuffs_base__private_implementation__render_nan(dst);
+    }
+    return wuffs_base__private_implementation__render_inf(dst, neg, options);
+  } else if (exp2 == 0) {
+    exp2 = -1022;
+  } else {
+    exp2 -= 1023;
+    man |= 0x0010000000000000ul;
+  }
+
+  // Ensure that precision isn't too large.
+  if (precision > 4095) {
+    precision = 4095;
+  }
+
+  // Convert from the (neg, exp2, man) tuple to an HPD.
+  wuffs_base__private_implementation__high_prec_dec h;
+  wuffs_base__private_implementation__high_prec_dec__assign(&h, man, neg);
+  if (h.num_digits > 0) {
+    wuffs_base__private_implementation__high_prec_dec__lshift(
+        &h, exp2 - 52);  // 52 mantissa bits.
+  }
+
+  // Handle the "%e" and "%f" formats.
+  switch (options & (WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT |
+                     WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT)) {
+    case WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT:  // The "%"f" format.
+      if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {
+        wuffs_base__private_implementation__high_prec_dec__round_just_enough(
+            &h, exp2, man);
+        int32_t p = ((int32_t)(h.num_digits)) - h.decimal_point;
+        precision = ((uint32_t)(wuffs_base__i32__max(0, p)));
+      } else {
+        wuffs_base__private_implementation__high_prec_dec__round_nearest(
+            &h, ((int32_t)precision) + h.decimal_point);
+      }
+      return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(
+          dst, &h, precision, options);
+
+    case WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT:  // The "%e" format.
+      if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {
+        wuffs_base__private_implementation__high_prec_dec__round_just_enough(
+            &h, exp2, man);
+        precision = (h.num_digits > 0) ? (h.num_digits - 1) : 0;
+      } else {
+        wuffs_base__private_implementation__high_prec_dec__round_nearest(
+            &h, ((int32_t)precision) + 1);
+      }
+      return wuffs_base__private_implementation__high_prec_dec__render_exponent_present(
+          dst, &h, precision, options);
+  }
+
+  // We have the "%g" format and so precision means the number of significant
+  // digits, not the number of digits after the decimal separator. Perform
+  // rounding and determine whether to use "%e" or "%f".
+  int32_t e_threshold = 0;
+  if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {
+    wuffs_base__private_implementation__high_prec_dec__round_just_enough(
+        &h, exp2, man);
+    precision = h.num_digits;
+    e_threshold = 6;
+  } else {
+    if (precision == 0) {
+      precision = 1;
+    }
+    wuffs_base__private_implementation__high_prec_dec__round_nearest(
+        &h, ((int32_t)precision));
+    e_threshold = ((int32_t)precision);
+    int32_t nd = ((int32_t)(h.num_digits));
+    if ((e_threshold > nd) && (nd >= h.decimal_point)) {
+      e_threshold = nd;
+    }
+  }
+
+  // Use the "%e" format if the exponent is large.
+  int32_t e = h.decimal_point - 1;
+  if ((e < -4) || (e_threshold <= e)) {
+    uint32_t p = wuffs_base__u32__min(precision, h.num_digits);
+    return wuffs_base__private_implementation__high_prec_dec__render_exponent_present(
+        dst, &h, (p > 0) ? (p - 1) : 0, options);
+  }
+
+  // Use the "%f" format otherwise.
+  int32_t p = ((int32_t)precision);
+  if (p > h.decimal_point) {
+    p = ((int32_t)(h.num_digits));
+  }
+  precision = ((uint32_t)(wuffs_base__i32__max(0, p - h.decimal_point)));
+  return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(
+      dst, &h, precision, options);
+}
diff --git a/internal/cgen/base/f64conv-submodule-data.c b/internal/cgen/base/f64conv-submodule-data.c
new file mode 100644
index 0000000..865fc99
--- /dev/null
+++ b/internal/cgen/base/f64conv-submodule-data.c
@@ -0,0 +1,802 @@
+// After editing this file, run "go generate" in the parent directory.
+
+// Copyright 2020 The Wuffs Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//    https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// ---------------- IEEE 754 Floating Point
+
+// The etc__hpd_left_shift and etc__powers_of_5 tables were printed by
+// script/print-hpd-left-shift.go. That script has an optional -comments flag,
+// whose output is not copied here, which prints further detail.
+//
+// These tables are used in
+// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits.
+
+// wuffs_base__private_implementation__hpd_left_shift[i] encodes the number of
+// new digits created after multiplying a positive integer by (1 << i): the
+// additional length in the decimal representation. For example, shifting "234"
+// by 3 (equivalent to multiplying by 8) will produce "1872". Going from a
+// 3-length string to a 4-length string means that 1 new digit was added (and
+// existing digits may have changed).
+//
+// Shifting by i can add either N or N-1 new digits, depending on whether the
+// original positive integer compares >= or < to the i'th power of 5 (as 10
+// equals 2 * 5). Comparison is lexicographic, not numerical.
+//
+// For example, shifting by 4 (i.e. multiplying by 16) can add 1 or 2 new
+// digits, depending on a lexicographic comparison to (5 ** 4), i.e. "625":
+//  - ("1"      << 4) is "16",       which adds 1 new digit.
+//  - ("5678"   << 4) is "90848",    which adds 1 new digit.
+//  - ("624"    << 4) is "9984",     which adds 1 new digit.
+//  - ("62498"  << 4) is "999968",   which adds 1 new digit.
+//  - ("625"    << 4) is "10000",    which adds 2 new digits.
+//  - ("625001" << 4) is "10000016", which adds 2 new digits.
+//  - ("7008"   << 4) is "112128",   which adds 2 new digits.
+//  - ("99"     << 4) is "1584",     which adds 2 new digits.
+//
+// Thus, when i is 4, N is 2 and (5 ** i) is "625". This etc__hpd_left_shift
+// array encodes this as:
+//  - etc__hpd_left_shift[4] is 0x1006 = (2 << 11) | 0x0006.
+//  - etc__hpd_left_shift[5] is 0x1009 = (? << 11) | 0x0009.
+// where the ? isn't relevant for i == 4.
+//
+// The high 5 bits of etc__hpd_left_shift[i] is N, the higher of the two
+// possible number of new digits. The low 11 bits are an offset into the
+// etc__powers_of_5 array (of length 0x051C, so offsets fit in 11 bits). When i
+// is 4, its offset and the next one is 6 and 9, and etc__powers_of_5[6 .. 9]
+// is the string "\x06\x02\x05", so the relevant power of 5 is "625".
+//
+// Thanks to Ken Thompson for the original idea.
+static const uint16_t wuffs_base__private_implementation__hpd_left_shift[65] = {
+    0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817,
+    0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067,
+    0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF,
+    0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0,
+    0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA,
+    0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC,
+    0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C,
+    0x051C, 0x051C,
+};
+
+// wuffs_base__private_implementation__powers_of_5 contains the powers of 5,
+// concatenated together: "5", "25", "125", "625", "3125", etc.
+static const uint8_t wuffs_base__private_implementation__powers_of_5[0x051C] = {
+    5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, 9,
+    0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, 1, 2,
+    5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, 0, 3, 5,
+    1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, 7, 8, 9, 0,
+    6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, 9, 7, 2, 6, 5,
+    6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1,
+    6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4,
+    1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7,
+    8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0,
+    2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, 4, 9, 0, 1, 1, 6, 1, 1, 9, 3,
+    8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1,
+    2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6,
+    2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5,
+    7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0,
+    7, 7, 3, 9, 2, 5, 7, 8, 1, 2, 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6,
+    9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8,
+    1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7,
+    2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6,
+    1, 3, 2, 8, 1, 2, 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8,
+    0, 6, 6, 4, 0, 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9,
+    0, 3, 3, 2, 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2,
+    9, 5, 1, 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8,
+    5, 6, 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7,
+    2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5,
+    0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, 3,
+    7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, 6, 2,
+    5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, 3, 7, 9,
+    8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, 0, 1, 4, 8,
+    6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, 9, 4, 3, 0, 4,
+    0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0,
+    8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5,
+    6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1,
+    2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5,
+    0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, 9, 0, 6, 2, 5, 1, 7, 7, 6, 3,
+    5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4,
+    5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3,
+    8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8,
+    5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2,
+    5, 2, 2, 2, 0, 4, 4, 6, 0, 4, 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6,
+    3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2,
+    5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2,
+    5, 5, 5, 5, 1, 1, 1, 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5,
+    8, 3, 4, 0, 4, 5, 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5,
+    6, 2, 8, 9, 1, 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8,
+    1, 2, 5, 1, 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9,
+    5, 3, 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3,
+    9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6,
+    2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1,
+    8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, 1,
+    7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, 4, 4,
+    8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, 7, 3, 7,
+    9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, 9, 5, 3, 3,
+    6, 9, 1, 4, 0, 6, 2, 5,
+};
+
+// --------
+
+// wuffs_base__private_implementation__powers_of_10 contains truncated
+// approximations to the powers of 10, ranging from 1e-326 to 1e+310 inclusive,
+// as 637 uint32_t quintuples (128-bit mantissa, 32-bit base-2 exponent biased
+// by 0x04BE (which is 1214)). The array size is 637 * 5 = 3185.
+//
+// The 1214 bias in this look-up table equals 1023 + 191. 1023 is the bias for
+// IEEE 754 double-precision floating point. 191 is ((3 * 64) - 1) and
+// wuffs_base__private_implementation__parse_number_f64_eisel works with
+// multiples-of-64-bit mantissas.
+//
+// For example, the third approximation, for 1e-324, consists of the uint32_t
+// quintuple (0x828675B9, 0x52064CAC, 0x5DCE35EA, 0xCF42894A, 0x000A). The
+// first four form a little-endian uint128_t value. The last one is an int32_t
+// value: -1140. Together, they represent the approximation to 1e-324:
+//   0xCF42894A_5DCE35EA_52064CAC_828675B9 * (2 ** (0x000A - 0x04BE))
+//
+// Similarly, 1e+4 is approximated by the uint64_t quintuple
+// (0x00000000, 0x00000000, 0x00000000, 0x9C400000, 0x044C) which means:
+//   0x9C400000_00000000_00000000_00000000 * (2 ** (0x044C - 0x04BE))
+//
+// Similarly, 1e+68 is approximated by the uint64_t quintuple
+// (0x63EE4BDD, 0x4CA7AAA8, 0xD4C4FB27, 0xED63A231, 0x0520) which means:
+//   0xED63A231_D4C4FB27.4CA7AAA8_63EE4BDD * (2 ** (0x0520 - 0x04BE))
+//
+// This table was generated by by script/print-mpb-powers-of-10.go
+static const uint32_t wuffs_base__private_implementation__powers_of_10[3185] = {
+    0xF7604B57, 0x014BB630, 0xFE98746D, 0x84A57695, 0x0004,  // 1e-326
+    0x35385E2D, 0x419EA3BD, 0x7E3E9188, 0xA5CED43B, 0x0007,  // 1e-325
+    0x828675B9, 0x52064CAC, 0x5DCE35EA, 0xCF42894A, 0x000A,  // 1e-324
+    0xD1940993, 0x7343EFEB, 0x7AA0E1B2, 0x818995CE, 0x000E,  // 1e-323
+    0xC5F90BF8, 0x1014EBE6, 0x19491A1F, 0xA1EBFB42, 0x0011,  // 1e-322
+    0x77774EF6, 0xD41A26E0, 0x9F9B60A6, 0xCA66FA12, 0x0014,  // 1e-321
+    0x955522B4, 0x8920B098, 0x478238D0, 0xFD00B897, 0x0017,  // 1e-320
+    0x5D5535B0, 0x55B46E5F, 0x8CB16382, 0x9E20735E, 0x001B,  // 1e-319
+    0x34AA831D, 0xEB2189F7, 0x2FDDBC62, 0xC5A89036, 0x001E,  // 1e-318
+    0x01D523E4, 0xA5E9EC75, 0xBBD52B7B, 0xF712B443, 0x0021,  // 1e-317
+    0x2125366E, 0x47B233C9, 0x55653B2D, 0x9A6BB0AA, 0x0025,  // 1e-316
+    0x696E840A, 0x999EC0BB, 0xEABE89F8, 0xC1069CD4, 0x0028,  // 1e-315
+    0x43CA250D, 0xC00670EA, 0x256E2C76, 0xF148440A, 0x002B,  // 1e-314
+    0x6A5E5728, 0x38040692, 0x5764DBCA, 0x96CD2A86, 0x002F,  // 1e-313
+    0x04F5ECF2, 0xC6050837, 0xED3E12BC, 0xBC807527, 0x0032,  // 1e-312
+    0xC633682E, 0xF7864A44, 0xE88D976B, 0xEBA09271, 0x0035,  // 1e-311
+    0xFBE0211D, 0x7AB3EE6A, 0x31587EA3, 0x93445B87, 0x0039,  // 1e-310
+    0xBAD82964, 0x5960EA05, 0xFDAE9E4C, 0xB8157268, 0x003C,  // 1e-309
+    0x298E33BD, 0x6FB92487, 0x3D1A45DF, 0xE61ACF03, 0x003F,  // 1e-308
+    0x79F8E056, 0xA5D3B6D4, 0x06306BAB, 0x8FD0C162, 0x0043,  // 1e-307
+    0x9877186C, 0x8F48A489, 0x87BC8696, 0xB3C4F1BA, 0x0046,  // 1e-306
+    0xFE94DE87, 0x331ACDAB, 0x29ABA83C, 0xE0B62E29, 0x0049,  // 1e-305
+    0x7F1D0B14, 0x9FF0C08B, 0xBA0B4925, 0x8C71DCD9, 0x004D,  // 1e-304
+    0x5EE44DD9, 0x07ECF0AE, 0x288E1B6F, 0xAF8E5410, 0x0050,  // 1e-303
+    0xF69D6150, 0xC9E82CD9, 0x32B1A24A, 0xDB71E914, 0x0053,  // 1e-302
+    0x3A225CD2, 0xBE311C08, 0x9FAF056E, 0x892731AC, 0x0057,  // 1e-301
+    0x48AAF406, 0x6DBD630A, 0xC79AC6CA, 0xAB70FE17, 0x005A,  // 1e-300
+    0xDAD5B108, 0x092CBBCC, 0xB981787D, 0xD64D3D9D, 0x005D,  // 1e-299
+    0x08C58EA5, 0x25BBF560, 0x93F0EB4E, 0x85F04682, 0x0061,  // 1e-298
+    0x0AF6F24E, 0xAF2AF2B8, 0x38ED2621, 0xA76C5823, 0x0064,  // 1e-297
+    0x0DB4AEE1, 0x1AF5AF66, 0x07286FAA, 0xD1476E2C, 0x0067,  // 1e-296
+    0xC890ED4D, 0x50D98D9F, 0x847945CA, 0x82CCA4DB, 0x006B,  // 1e-295
+    0xBAB528A0, 0xE50FF107, 0x6597973C, 0xA37FCE12, 0x006E,  // 1e-294
+    0xA96272C8, 0x1E53ED49, 0xFEFD7D0C, 0xCC5FC196, 0x0071,  // 1e-293
+    0x13BB0F7A, 0x25E8E89C, 0xBEBCDC4F, 0xFF77B1FC, 0x0074,  // 1e-292
+    0x8C54E9AC, 0x77B19161, 0xF73609B1, 0x9FAACF3D, 0x0078,  // 1e-291
+    0xEF6A2417, 0xD59DF5B9, 0x75038C1D, 0xC795830D, 0x007B,  // 1e-290
+    0x6B44AD1D, 0x4B057328, 0xD2446F25, 0xF97AE3D0, 0x007E,  // 1e-289
+    0x430AEC32, 0x4EE367F9, 0x836AC577, 0x9BECCE62, 0x0082,  // 1e-288
+    0x93CDA73F, 0x229C41F7, 0x244576D5, 0xC2E801FB, 0x0085,  // 1e-287
+    0x78C1110F, 0x6B435275, 0xED56D48A, 0xF3A20279, 0x0088,  // 1e-286
+    0x6B78AAA9, 0x830A1389, 0x345644D6, 0x9845418C, 0x008C,  // 1e-285
+    0xC656D553, 0x23CC986B, 0x416BD60C, 0xBE5691EF, 0x008F,  // 1e-284
+    0xB7EC8AA8, 0x2CBFBE86, 0x11C6CB8F, 0xEDEC366B, 0x0092,  // 1e-283
+    0x32F3D6A9, 0x7BF7D714, 0xEB1C3F39, 0x94B3A202, 0x0096,  // 1e-282
+    0x3FB0CC53, 0xDAF5CCD9, 0xA5E34F07, 0xB9E08A83, 0x0099,  // 1e-281
+    0x8F9CFF68, 0xD1B3400F, 0x8F5C22C9, 0xE858AD24, 0x009C,  // 1e-280
+    0xB9C21FA1, 0x23100809, 0xD99995BE, 0x91376C36, 0x00A0,  // 1e-279
+    0x2832A78A, 0xABD40A0C, 0x8FFFFB2D, 0xB5854744, 0x00A3,  // 1e-278
+    0x323F516C, 0x16C90C8F, 0xB3FFF9F9, 0xE2E69915, 0x00A6,  // 1e-277
+    0x7F6792E3, 0xAE3DA7D9, 0x907FFC3B, 0x8DD01FAD, 0x00AA,  // 1e-276
+    0xDF41779C, 0x99CD11CF, 0xF49FFB4A, 0xB1442798, 0x00AD,  // 1e-275
+    0xD711D583, 0x40405643, 0x31C7FA1D, 0xDD95317F, 0x00B0,  // 1e-274
+    0x666B2572, 0x482835EA, 0x7F1CFC52, 0x8A7D3EEF, 0x00B4,  // 1e-273
+    0x0005EECF, 0xDA324365, 0x5EE43B66, 0xAD1C8EAB, 0x00B7,  // 1e-272
+    0x40076A82, 0x90BED43E, 0x369D4A40, 0xD863B256, 0x00BA,  // 1e-271
+    0xE804A291, 0x5A7744A6, 0xE2224E68, 0x873E4F75, 0x00BE,  // 1e-270
+    0xA205CB36, 0x711515D0, 0x5AAAE202, 0xA90DE353, 0x00C1,  // 1e-269
+    0xCA873E03, 0x0D5A5B44, 0x31559A83, 0xD3515C28, 0x00C4,  // 1e-268
+    0xFE9486C2, 0xE858790A, 0x1ED58091, 0x8412D999, 0x00C8,  // 1e-267
+    0xBE39A872, 0x626E974D, 0x668AE0B6, 0xA5178FFF, 0x00CB,  // 1e-266
+    0x2DC8128F, 0xFB0A3D21, 0x402D98E3, 0xCE5D73FF, 0x00CE,  // 1e-265
+    0xBC9D0B99, 0x7CE66634, 0x881C7F8E, 0x80FA687F, 0x00D2,  // 1e-264
+    0xEBC44E80, 0x1C1FFFC1, 0x6A239F72, 0xA139029F, 0x00D5,  // 1e-263
+    0x66B56220, 0xA327FFB2, 0x44AC874E, 0xC9874347, 0x00D8,  // 1e-262
+    0x0062BAA8, 0x4BF1FF9F, 0x15D7A922, 0xFBE91419, 0x00DB,  // 1e-261
+    0x603DB4A9, 0x6F773FC3, 0xADA6C9B5, 0x9D71AC8F, 0x00DF,  // 1e-260
+    0x384D21D3, 0xCB550FB4, 0x99107C22, 0xC4CE17B3, 0x00E2,  // 1e-259
+    0x46606A48, 0x7E2A53A1, 0x7F549B2B, 0xF6019DA0, 0x00E5,  // 1e-258
+    0xCBFC426D, 0x2EDA7444, 0x4F94E0FB, 0x99C10284, 0x00E9,  // 1e-257
+    0xFEFB5308, 0xFA911155, 0x637A1939, 0xC0314325, 0x00EC,  // 1e-256
+    0x7EBA27CA, 0x793555AB, 0xBC589F88, 0xF03D93EE, 0x00EF,  // 1e-255
+    0x2F3458DE, 0x4BC1558B, 0x35B763B5, 0x96267C75, 0x00F3,  // 1e-254
+    0xFB016F16, 0x9EB1AAED, 0x83253CA2, 0xBBB01B92, 0x00F6,  // 1e-253
+    0x79C1CADC, 0x465E15A9, 0x23EE8BCB, 0xEA9C2277, 0x00F9,  // 1e-252
+    0xEC191EC9, 0x0BFACD89, 0x7675175F, 0x92A1958A, 0x00FD,  // 1e-251
+    0x671F667B, 0xCEF980EC, 0x14125D36, 0xB749FAED, 0x0100,  // 1e-250
+    0x80E7401A, 0x82B7E127, 0x5916F484, 0xE51C79A8, 0x0103,  // 1e-249
+    0xB0908810, 0xD1B2ECB8, 0x37AE58D2, 0x8F31CC09, 0x0107,  // 1e-248
+    0xDCB4AA15, 0x861FA7E6, 0x8599EF07, 0xB2FE3F0B, 0x010A,  // 1e-247
+    0x93E1D49A, 0x67A791E0, 0x67006AC9, 0xDFBDCECE, 0x010D,  // 1e-246
+    0x5C6D24E0, 0xE0C8BB2C, 0x006042BD, 0x8BD6A141, 0x0111,  // 1e-245
+    0x73886E18, 0x58FAE9F7, 0x4078536D, 0xAECC4991, 0x0114,  // 1e-244
+    0x506A899E, 0xAF39A475, 0x90966848, 0xDA7F5BF5, 0x0117,  // 1e-243
+    0x52429603, 0x6D8406C9, 0x7A5E012D, 0x888F9979, 0x011B,  // 1e-242
+    0xA6D33B83, 0xC8E5087B, 0xD8F58178, 0xAAB37FD7, 0x011E,  // 1e-241
+    0x90880A64, 0xFB1E4A9A, 0xCF32E1D6, 0xD5605FCD, 0x0121,  // 1e-240
+    0x9A55067F, 0x5CF2EEA0, 0xA17FCD26, 0x855C3BE0, 0x0125,  // 1e-239
+    0xC0EA481E, 0xF42FAA48, 0xC9DFC06F, 0xA6B34AD8, 0x0128,  // 1e-238
+    0xF124DA26, 0xF13B94DA, 0xFC57B08B, 0xD0601D8E, 0x012B,  // 1e-237
+    0xD6B70858, 0x76C53D08, 0x5DB6CE57, 0x823C1279, 0x012F,  // 1e-236
+    0x0C64CA6E, 0x54768C4B, 0xB52481ED, 0xA2CB1717, 0x0132,  // 1e-235
+    0xCF7DFD09, 0xA9942F5D, 0xA26DA268, 0xCB7DDCDD, 0x0135,  // 1e-234
+    0x435D7C4C, 0xD3F93B35, 0x0B090B02, 0xFE5D5415, 0x0138,  // 1e-233
+    0x4A1A6DAF, 0xC47BC501, 0x26E5A6E1, 0x9EFA548D, 0x013C,  // 1e-232
+    0x9CA1091B, 0x359AB641, 0x709F109A, 0xC6B8E9B0, 0x013F,  // 1e-231
+    0x03C94B62, 0xC30163D2, 0x8CC6D4C0, 0xF867241C, 0x0142,  // 1e-230
+    0x425DCF1D, 0x79E0DE63, 0xD7FC44F8, 0x9B407691, 0x0146,  // 1e-229
+    0x12F542E4, 0x985915FC, 0x4DFB5636, 0xC2109436, 0x0149,  // 1e-228
+    0x17B2939D, 0x3E6F5B7B, 0xE17A2BC4, 0xF294B943, 0x014C,  // 1e-227
+    0xEECF9C42, 0xA705992C, 0x6CEC5B5A, 0x979CF3CA, 0x0150,  // 1e-226
+    0x2A838353, 0x50C6FF78, 0x08277231, 0xBD8430BD, 0x0153,  // 1e-225
+    0x35246428, 0xA4F8BF56, 0x4A314EBD, 0xECE53CEC, 0x0156,  // 1e-224
+    0xE136BE99, 0x871B7795, 0xAE5ED136, 0x940F4613, 0x015A,  // 1e-223
+    0x59846E3F, 0x28E2557B, 0x99F68584, 0xB9131798, 0x015D,  // 1e-222
+    0x2FE589CF, 0x331AEADA, 0xC07426E5, 0xE757DD7E, 0x0160,  // 1e-221
+    0x5DEF7621, 0x3FF0D2C8, 0x3848984F, 0x9096EA6F, 0x0164,  // 1e-220
+    0x756B53A9, 0x0FED077A, 0x065ABE63, 0xB4BCA50B, 0x0167,  // 1e-219
+    0x12C62894, 0xD3E84959, 0xC7F16DFB, 0xE1EBCE4D, 0x016A,  // 1e-218
+    0xABBBD95C, 0x64712DD7, 0x9CF6E4BD, 0x8D3360F0, 0x016E,  // 1e-217
+    0x96AACFB3, 0xBD8D794D, 0xC4349DEC, 0xB080392C, 0x0171,  // 1e-216
+    0xFC5583A0, 0xECF0D7A0, 0xF541C567, 0xDCA04777, 0x0174,  // 1e-215
+    0x9DB57244, 0xF41686C4, 0xF9491B60, 0x89E42CAA, 0x0178,  // 1e-214
+    0xC522CED5, 0x311C2875, 0xB79B6239, 0xAC5D37D5, 0x017B,  // 1e-213
+    0x366B828B, 0x7D633293, 0x25823AC7, 0xD77485CB, 0x017E,  // 1e-212
+    0x02033197, 0xAE5DFF9C, 0xF77164BC, 0x86A8D39E, 0x0182,  // 1e-211
+    0x0283FDFC, 0xD9F57F83, 0xB54DBDEB, 0xA8530886, 0x0185,  // 1e-210
+    0xC324FD7B, 0xD072DF63, 0x62A12D66, 0xD267CAA8, 0x0188,  // 1e-209
+    0x59F71E6D, 0x4247CB9E, 0x3DA4BC60, 0x8380DEA9, 0x018C,  // 1e-208
+    0xF074E608, 0x52D9BE85, 0x8D0DEB78, 0xA4611653, 0x018F,  // 1e-207
+    0x6C921F8B, 0x67902E27, 0x70516656, 0xCD795BE8, 0x0192,  // 1e-206
+    0xA3DB53B6, 0x00BA1CD8, 0x4632DFF6, 0x806BD971, 0x0196,  // 1e-205
+    0xCCD228A4, 0x80E8A40E, 0x97BF97F3, 0xA086CFCD, 0x0199,  // 1e-204
+    0x8006B2CD, 0x6122CD12, 0xFDAF7DF0, 0xC8A883C0, 0x019C,  // 1e-203
+    0x20085F81, 0x796B8057, 0x3D1B5D6C, 0xFAD2A4B1, 0x019F,  // 1e-202
+    0x74053BB0, 0xCBE33036, 0xC6311A63, 0x9CC3A6EE, 0x01A3,  // 1e-201
+    0x11068A9C, 0xBEDBFC44, 0x77BD60FC, 0xC3F490AA, 0x01A6,  // 1e-200
+    0x15482D44, 0xEE92FB55, 0x15ACB93B, 0xF4F1B4D5, 0x01A9,  // 1e-199
+    0x2D4D1C4A, 0x751BDD15, 0x2D8BF3C5, 0x99171105, 0x01AD,  // 1e-198
+    0x78A0635D, 0xD262D45A, 0x78EEF0B6, 0xBF5CD546, 0x01B0,  // 1e-197
+    0x16C87C34, 0x86FB8971, 0x172AACE4, 0xEF340A98, 0x01B3,  // 1e-196
+    0xAE3D4DA0, 0xD45D35E6, 0x0E7AAC0E, 0x9580869F, 0x01B7,  // 1e-195
+    0x59CCA109, 0x89748360, 0xD2195712, 0xBAE0A846, 0x01BA,  // 1e-194
+    0x703FC94B, 0x2BD1A438, 0x869FACD7, 0xE998D258, 0x01BD,  // 1e-193
+    0x4627DDCF, 0x7B6306A3, 0x5423CC06, 0x91FF8377, 0x01C1,  // 1e-192
+    0x17B1D542, 0x1A3BC84C, 0x292CBF08, 0xB67F6455, 0x01C4,  // 1e-191
+    0x1D9E4A93, 0x20CABA5F, 0x7377EECA, 0xE41F3D6A, 0x01C7,  // 1e-190
+    0x7282EE9C, 0x547EB47B, 0x882AF53E, 0x8E938662, 0x01CB,  // 1e-189
+    0x4F23AA43, 0xE99E619A, 0x2A35B28D, 0xB23867FB, 0x01CE,  // 1e-188
+    0xE2EC94D4, 0x6405FA00, 0xF4C31F31, 0xDEC681F9, 0x01D1,  // 1e-187
+    0x8DD3DD04, 0xDE83BC40, 0x38F9F37E, 0x8B3C113C, 0x01D5,  // 1e-186
+    0xB148D445, 0x9624AB50, 0x4738705E, 0xAE0B158B, 0x01D8,  // 1e-185
+    0xDD9B0957, 0x3BADD624, 0x19068C76, 0xD98DDAEE, 0x01DB,  // 1e-184
+    0x0A80E5D6, 0xE54CA5D7, 0xCFA417C9, 0x87F8A8D4, 0x01DF,  // 1e-183
+    0xCD211F4C, 0x5E9FCF4C, 0x038D1DBC, 0xA9F6D30A, 0x01E2,  // 1e-182
+    0x0069671F, 0x7647C320, 0x8470652B, 0xD47487CC, 0x01E5,  // 1e-181
+    0x0041E073, 0x29ECD9F4, 0xD2C63F3B, 0x84C8D4DF, 0x01E9,  // 1e-180
+    0x00525890, 0xF4681071, 0xC777CF09, 0xA5FB0A17, 0x01EC,  // 1e-179
+    0x4066EEB4, 0x7182148D, 0xB955C2CC, 0xCF79CC9D, 0x01EF,  // 1e-178
+    0x48405530, 0xC6F14CD8, 0x93D599BF, 0x81AC1FE2, 0x01F3,  // 1e-177
+    0x5A506A7C, 0xB8ADA00E, 0x38CB002F, 0xA21727DB, 0x01F6,  // 1e-176
+    0xF0E4851C, 0xA6D90811, 0x06FDC03B, 0xCA9CF1D2, 0x01F9,  // 1e-175
+    0x6D1DA663, 0x908F4A16, 0x88BD304A, 0xFD442E46, 0x01FC,  // 1e-174
+    0x043287FE, 0x9A598E4E, 0x15763E2E, 0x9E4A9CEC, 0x0200,  // 1e-173
+    0x853F29FD, 0x40EFF1E1, 0x1AD3CDBA, 0xC5DD4427, 0x0203,  // 1e-172
+    0xE68EF47C, 0xD12BEE59, 0xE188C128, 0xF7549530, 0x0206,  // 1e-171
+    0x301958CE, 0x82BB74F8, 0x8CF578B9, 0x9A94DD3E, 0x020A,  // 1e-170
+    0x3C1FAF01, 0xE36A5236, 0x3032D6E7, 0xC13A148E, 0x020D,  // 1e-169
+    0xCB279AC1, 0xDC44E6C3, 0xBC3F8CA1, 0xF18899B1, 0x0210,  // 1e-168
+    0x5EF8C0B9, 0x29AB103A, 0x15A7B7E5, 0x96F5600F, 0x0214,  // 1e-167
+    0xF6B6F0E7, 0x7415D448, 0xDB11A5DE, 0xBCB2B812, 0x0217,  // 1e-166
+    0x3464AD21, 0x111B495B, 0x91D60F56, 0xEBDF6617, 0x021A,  // 1e-165
+    0x00BEEC34, 0xCAB10DD9, 0xBB25C995, 0x936B9FCE, 0x021E,  // 1e-164
+    0x40EEA742, 0x3D5D514F, 0x69EF3BFB, 0xB84687C2, 0x0221,  // 1e-163
+    0x112A5112, 0x0CB4A5A3, 0x046B0AFA, 0xE65829B3, 0x0224,  // 1e-162
+    0xEABA72AB, 0x47F0E785, 0xE2C2E6DC, 0x8FF71A0F, 0x0228,  // 1e-161
+    0x65690F56, 0x59ED2167, 0xDB73A093, 0xB3F4E093, 0x022B,  // 1e-160
+    0x3EC3532C, 0x306869C1, 0xD25088B8, 0xE0F218B8, 0x022E,  // 1e-159
+    0xC73A13FB, 0x1E414218, 0x83725573, 0x8C974F73, 0x0232,  // 1e-158
+    0xF90898FA, 0xE5D1929E, 0x644EEACF, 0xAFBD2350, 0x0235,  // 1e-157
+    0xB74ABF39, 0xDF45F746, 0x7D62A583, 0xDBAC6C24, 0x0238,  // 1e-156
+    0x328EB783, 0x6B8BBA8C, 0xCE5DA772, 0x894BC396, 0x023C,  // 1e-155
+    0x3F326564, 0x066EA92F, 0x81F5114F, 0xAB9EB47C, 0x023F,  // 1e-154
+    0x0EFEFEBD, 0xC80A537B, 0xA27255A2, 0xD686619B, 0x0242,  // 1e-153
+    0xE95F5F36, 0xBD06742C, 0x45877585, 0x8613FD01, 0x0246,  // 1e-152
+    0x23B73704, 0x2C481138, 0x96E952E7, 0xA798FC41, 0x0249,  // 1e-151
+    0x2CA504C5, 0xF75A1586, 0xFCA3A7A0, 0xD17F3B51, 0x024C,  // 1e-150
+    0xDBE722FB, 0x9A984D73, 0x3DE648C4, 0x82EF8513, 0x0250,  // 1e-149
+    0xD2E0EBBA, 0xC13E60D0, 0x0D5FDAF5, 0xA3AB6658, 0x0253,  // 1e-148
+    0x079926A8, 0x318DF905, 0x10B7D1B3, 0xCC963FEE, 0x0256,  // 1e-147
+    0x497F7052, 0xFDF17746, 0x94E5C61F, 0xFFBBCFE9, 0x0259,  // 1e-146
+    0xEDEFA633, 0xFEB6EA8B, 0xFD0F9BD3, 0x9FD561F1, 0x025D,  // 1e-145
+    0xE96B8FC0, 0xFE64A52E, 0x7C5382C8, 0xC7CABA6E, 0x0260,  // 1e-144
+    0xA3C673B0, 0x3DFDCE7A, 0x1B68637B, 0xF9BD690A, 0x0263,  // 1e-143
+    0xA65C084E, 0x06BEA10C, 0x51213E2D, 0x9C1661A6, 0x0267,  // 1e-142
+    0xCFF30A62, 0x486E494F, 0xE5698DB8, 0xC31BFA0F, 0x026A,  // 1e-141
+    0xC3EFCCFA, 0x5A89DBA3, 0xDEC3F126, 0xF3E2F893, 0x026D,  // 1e-140
+    0x5A75E01C, 0xF8962946, 0x6B3A76B7, 0x986DDB5C, 0x0271,  // 1e-139
+    0xF1135823, 0xF6BBB397, 0x86091465, 0xBE895233, 0x0274,  // 1e-138
+    0xED582E2C, 0x746AA07D, 0x678B597F, 0xEE2BA6C0, 0x0277,  // 1e-137
+    0xB4571CDC, 0xA8C2A44E, 0x40B717EF, 0x94DB4838, 0x027B,  // 1e-136
+    0x616CE413, 0x92F34D62, 0x50E4DDEB, 0xBA121A46, 0x027E,  // 1e-135
+    0xF9C81D17, 0x77B020BA, 0xE51E1566, 0xE896A0D7, 0x0281,  // 1e-134
+    0xDC1D122E, 0x0ACE1474, 0xEF32CD60, 0x915E2486, 0x0285,  // 1e-133
+    0x132456BA, 0x0D819992, 0xAAFF80B8, 0xB5B5ADA8, 0x0288,  // 1e-132
+    0x97ED6C69, 0x10E1FFF6, 0xD5BF60E6, 0xE3231912, 0x028B,  // 1e-131
+    0x1EF463C1, 0xCA8D3FFA, 0xC5979C8F, 0x8DF5EFAB, 0x028F,  // 1e-130
+    0xA6B17CB2, 0xBD308FF8, 0xB6FD83B3, 0xB1736B96, 0x0292,  // 1e-129
+    0xD05DDBDE, 0xAC7CB3F6, 0x64BCE4A0, 0xDDD0467C, 0x0295,  // 1e-128
+    0x423AA96B, 0x6BCDF07A, 0xBEF60EE4, 0x8AA22C0D, 0x0299,  // 1e-127
+    0xD2C953C6, 0x86C16C98, 0x2EB3929D, 0xAD4AB711, 0x029C,  // 1e-126
+    0x077BA8B7, 0xE871C7BF, 0x7A607744, 0xD89D64D5, 0x029F,  // 1e-125
+    0x64AD4972, 0x11471CD7, 0x6C7C4A8B, 0x87625F05, 0x02A3,  // 1e-124
+    0x3DD89BCF, 0xD598E40D, 0xC79B5D2D, 0xA93AF6C6, 0x02A6,  // 1e-123
+    0x8D4EC2C3, 0x4AFF1D10, 0x79823479, 0xD389B478, 0x02A9,  // 1e-122
+    0x585139BA, 0xCEDF722A, 0x4BF160CB, 0x843610CB, 0x02AD,  // 1e-121
+    0xEE658828, 0xC2974EB4, 0x1EEDB8FE, 0xA54394FE, 0x02B0,  // 1e-120
+    0x29FEEA32, 0x733D2262, 0xA6A9273E, 0xCE947A3D, 0x02B3,  // 1e-119
+    0x5A3F525F, 0x0806357D, 0x8829B887, 0x811CCC66, 0x02B7,  // 1e-118
+    0xB0CF26F7, 0xCA07C2DC, 0x2A3426A8, 0xA163FF80, 0x02BA,  // 1e-117
+    0xDD02F0B5, 0xFC89B393, 0x34C13052, 0xC9BCFF60, 0x02BD,  // 1e-116
+    0xD443ACE2, 0xBBAC2078, 0x41F17C67, 0xFC2C3F38, 0x02C0,  // 1e-115
+    0x84AA4C0D, 0xD54B944B, 0x2936EDC0, 0x9D9BA783, 0x02C4,  // 1e-114
+    0x65D4DF11, 0x0A9E795E, 0xF384A931, 0xC5029163, 0x02C7,  // 1e-113
+    0xFF4A16D5, 0x4D4617B5, 0xF065D37D, 0xF64335BC, 0x02CA,  // 1e-112
+    0xBF8E4E45, 0x504BCED1, 0x163FA42E, 0x99EA0196, 0x02CE,  // 1e-111
+    0x2F71E1D6, 0xE45EC286, 0x9BCF8D39, 0xC06481FB, 0x02D1,  // 1e-110
+    0xBB4E5A4C, 0x5D767327, 0x82C37088, 0xF07DA27A, 0x02D4,  // 1e-109
+    0xD510F86F, 0x3A6A07F8, 0x91BA2655, 0x964E858C, 0x02D8,  // 1e-108
+    0x0A55368B, 0x890489F7, 0xB628AFEA, 0xBBE226EF, 0x02DB,  // 1e-107
+    0xCCEA842E, 0x2B45AC74, 0xA3B2DBE5, 0xEADAB0AB, 0x02DE,  // 1e-106
+    0x0012929D, 0x3B0B8BC9, 0x464FC96F, 0x92C8AE6B, 0x02E2,  // 1e-105
+    0x40173744, 0x09CE6EBB, 0x17E3BBCB, 0xB77ADA06, 0x02E5,  // 1e-104
+    0x101D0515, 0xCC420A6A, 0x9DDCAABD, 0xE5599087, 0x02E8,  // 1e-103
+    0x4A12232D, 0x9FA94682, 0xC2A9EAB6, 0x8F57FA54, 0x02EC,  // 1e-102
+    0xDC96ABF9, 0x47939822, 0xF3546564, 0xB32DF8E9, 0x02EF,  // 1e-101
+    0x93BC56F7, 0x59787E2B, 0x70297EBD, 0xDFF97724, 0x02F2,  // 1e-100
+    0x3C55B65A, 0x57EB4EDB, 0xC619EF36, 0x8BFBEA76, 0x02F6,  // 1e-99
+    0x0B6B23F1, 0xEDE62292, 0x77A06B03, 0xAEFAE514, 0x02F9,  // 1e-98
+    0x8E45ECED, 0xE95FAB36, 0x958885C4, 0xDAB99E59, 0x02FC,  // 1e-97
+    0x18EBB414, 0x11DBCB02, 0xFD75539B, 0x88B402F7, 0x0300,  // 1e-96
+    0x9F26A119, 0xD652BDC2, 0xFCD2A881, 0xAAE103B5, 0x0303,  // 1e-95
+    0x46F0495F, 0x4BE76D33, 0x7C0752A2, 0xD59944A3, 0x0306,  // 1e-94
+    0x0C562DDB, 0x6F70A440, 0x2D8493A5, 0x857FCAE6, 0x030A,  // 1e-93
+    0x0F6BB952, 0xCB4CCD50, 0xB8E5B88E, 0xA6DFBD9F, 0x030D,  // 1e-92
+    0x1346A7A7, 0x7E2000A4, 0xA71F26B2, 0xD097AD07, 0x0310,  // 1e-91
+    0x8C0C28C8, 0x8ED40066, 0xC873782F, 0x825ECC24, 0x0314,  // 1e-90
+    0x2F0F32FA, 0x72890080, 0xFA90563B, 0xA2F67F2D, 0x0317,  // 1e-89
+    0x3AD2FFB9, 0x4F2B40A0, 0x79346BCA, 0xCBB41EF9, 0x031A,  // 1e-88
+    0x4987BFA8, 0xE2F610C8, 0xD78186BC, 0xFEA126B7, 0x031D,  // 1e-87
+    0x2DF4D7C9, 0x0DD9CA7D, 0xE6B0F436, 0x9F24B832, 0x0321,  // 1e-86
+    0x79720DBB, 0x91503D1C, 0xA05D3143, 0xC6EDE63F, 0x0324,  // 1e-85
+    0x97CE912A, 0x75A44C63, 0x88747D94, 0xF8A95FCF, 0x0327,  // 1e-84
+    0x3EE11ABA, 0xC986AFBE, 0xB548CE7C, 0x9B69DBE1, 0x032B,  // 1e-83
+    0xCE996168, 0xFBE85BAD, 0x229B021B, 0xC24452DA, 0x032E,  // 1e-82
+    0x423FB9C3, 0xFAE27299, 0xAB41C2A2, 0xF2D56790, 0x0331,  // 1e-81
+    0xC967D41A, 0xDCCD879F, 0x6B0919A5, 0x97C560BA, 0x0335,  // 1e-80
+    0xBBC1C920, 0x5400E987, 0x05CB600F, 0xBDB6B8E9, 0x0338,  // 1e-79
+    0xAAB23B68, 0x290123E9, 0x473E3813, 0xED246723, 0x033B,  // 1e-78
+    0x0AAF6521, 0xF9A0B672, 0x0C86E30B, 0x9436C076, 0x033F,  // 1e-77
+    0x8D5B3E69, 0xF808E40E, 0x8FA89BCE, 0xB9447093, 0x0342,  // 1e-76
+    0x30B20E04, 0xB60B1D12, 0x7392C2C2, 0xE7958CB8, 0x0345,  // 1e-75
+    0x5E6F48C2, 0xB1C6F22B, 0x483BB9B9, 0x90BD77F3, 0x0349,  // 1e-74
+    0x360B1AF3, 0x1E38AEB6, 0x1A4AA828, 0xB4ECD5F0, 0x034C,  // 1e-73
+    0xC38DE1B0, 0x25C6DA63, 0x20DD5232, 0xE2280B6C, 0x034F,  // 1e-72
+    0x5A38AD0E, 0x579C487E, 0x948A535F, 0x8D590723, 0x0353,  // 1e-71
+    0xF0C6D851, 0x2D835A9D, 0x79ACE837, 0xB0AF48EC, 0x0356,  // 1e-70
+    0x6CF88E65, 0xF8E43145, 0x98182244, 0xDCDB1B27, 0x0359,  // 1e-69
+    0x641B58FF, 0x1B8E9ECB, 0xBF0F156B, 0x8A08F0F8, 0x035D,  // 1e-68
+    0x3D222F3F, 0xE272467E, 0xEED2DAC5, 0xAC8B2D36, 0x0360,  // 1e-67
+    0xCC6ABB0F, 0x5B0ED81D, 0xAA879177, 0xD7ADF884, 0x0363,  // 1e-66
+    0x9FC2B4E9, 0x98E94712, 0xEA94BAEA, 0x86CCBB52, 0x0367,  // 1e-65
+    0x47B36224, 0x3F2398D7, 0xA539E9A5, 0xA87FEA27, 0x036A,  // 1e-64
+    0x19A03AAD, 0x8EEC7F0D, 0x8E88640E, 0xD29FE4B1, 0x036D,  // 1e-63
+    0x300424AC, 0x1953CF68, 0xF9153E89, 0x83A3EEEE, 0x0371,  // 1e-62
+    0x3C052DD7, 0x5FA8C342, 0xB75A8E2B, 0xA48CEAAA, 0x0374,  // 1e-61
+    0xCB06794D, 0x3792F412, 0x653131B6, 0xCDB02555, 0x0377,  // 1e-60
+    0xBEE40BD0, 0xE2BBD88B, 0x5F3EBF11, 0x808E1755, 0x037B,  // 1e-59
+    0xAE9D0EC4, 0x5B6ACEAE, 0xB70E6ED6, 0xA0B19D2A, 0x037E,  // 1e-58
+    0x5A445275, 0xF245825A, 0x64D20A8B, 0xC8DE0475, 0x0381,  // 1e-57
+    0xF0D56712, 0xEED6E2F0, 0xBE068D2E, 0xFB158592, 0x0384,  // 1e-56
+    0x9685606B, 0x55464DD6, 0xB6C4183D, 0x9CED737B, 0x0388,  // 1e-55
+    0x3C26B886, 0xAA97E14C, 0xA4751E4C, 0xC428D05A, 0x038B,  // 1e-54
+    0x4B3066A8, 0xD53DD99F, 0x4D9265DF, 0xF5330471, 0x038E,  // 1e-53
+    0x8EFE4029, 0xE546A803, 0xD07B7FAB, 0x993FE2C6, 0x0392,  // 1e-52
+    0x72BDD033, 0xDE985204, 0x849A5F96, 0xBF8FDB78, 0x0395,  // 1e-51
+    0x8F6D4440, 0x963E6685, 0xA5C0F77C, 0xEF73D256, 0x0398,  // 1e-50
+    0x79A44AA8, 0xDDE70013, 0x27989AAD, 0x95A86376, 0x039C,  // 1e-49
+    0x580D5D52, 0x5560C018, 0xB17EC159, 0xBB127C53, 0x039F,  // 1e-48
+    0x6E10B4A6, 0xAAB8F01E, 0x9DDE71AF, 0xE9D71B68, 0x03A2,  // 1e-47
+    0x04CA70E8, 0xCAB39613, 0x62AB070D, 0x92267121, 0x03A6,  // 1e-46
+    0xC5FD0D22, 0x3D607B97, 0xBB55C8D1, 0xB6B00D69, 0x03A9,  // 1e-45
+    0xB77C506A, 0x8CB89A7D, 0x2A2B3B05, 0xE45C10C4, 0x03AC,  // 1e-44
+    0x92ADB242, 0x77F3608E, 0x9A5B04E3, 0x8EB98A7A, 0x03B0,  // 1e-43
+    0x37591ED3, 0x55F038B2, 0x40F1C61C, 0xB267ED19, 0x03B3,  // 1e-42
+    0xC52F6688, 0x6B6C46DE, 0x912E37A3, 0xDF01E85F, 0x03B6,  // 1e-41
+    0x3B3DA015, 0x2323AC4B, 0xBABCE2C6, 0x8B61313B, 0x03BA,  // 1e-40
+    0x0A0D081A, 0xABEC975E, 0xA96C1B77, 0xAE397D8A, 0x03BD,  // 1e-39
+    0x8C904A21, 0x96E7BD35, 0x53C72255, 0xD9C7DCED, 0x03C0,  // 1e-38
+    0x77DA2E54, 0x7E50D641, 0x545C7575, 0x881CEA14, 0x03C4,  // 1e-37
+    0xD5D0B9E9, 0xDDE50BD1, 0x697392D2, 0xAA242499, 0x03C7,  // 1e-36
+    0x4B44E864, 0x955E4EC6, 0xC3D07787, 0xD4AD2DBF, 0x03CA,  // 1e-35
+    0xEF0B113E, 0xBD5AF13B, 0xDA624AB4, 0x84EC3C97, 0x03CE,  // 1e-34
+    0xEACDD58E, 0xECB1AD8A, 0xD0FADD61, 0xA6274BBD, 0x03D1,  // 1e-33
+    0xA5814AF2, 0x67DE18ED, 0x453994BA, 0xCFB11EAD, 0x03D4,  // 1e-32
+    0x8770CED7, 0x80EACF94, 0x4B43FCF4, 0x81CEB32C, 0x03D8,  // 1e-31
+    0xA94D028D, 0xA1258379, 0x5E14FC31, 0xA2425FF7, 0x03DB,  // 1e-30
+    0x13A04330, 0x096EE458, 0x359A3B3E, 0xCAD2F7F5, 0x03DE,  // 1e-29
+    0x188853FC, 0x8BCA9D6E, 0x8300CA0D, 0xFD87B5F2, 0x03E1,  // 1e-28
+    0xCF55347D, 0x775EA264, 0x91E07E48, 0x9E74D1B7, 0x03E5,  // 1e-27
+    0x032A819D, 0x95364AFE, 0x76589DDA, 0xC6120625, 0x03E8,  // 1e-26
+    0x83F52204, 0x3A83DDBD, 0xD3EEC551, 0xF79687AE, 0x03EB,  // 1e-25
+    0x72793542, 0xC4926A96, 0x44753B52, 0x9ABE14CD, 0x03EF,  // 1e-24
+    0x0F178293, 0x75B7053C, 0x95928A27, 0xC16D9A00, 0x03F2,  // 1e-23
+    0x12DD6338, 0x5324C68B, 0xBAF72CB1, 0xF1C90080, 0x03F5,  // 1e-22
+    0xEBCA5E03, 0xD3F6FC16, 0x74DA7BEE, 0x971DA050, 0x03F9,  // 1e-21
+    0xA6BCF584, 0x88F4BB1C, 0x92111AEA, 0xBCE50864, 0x03FC,  // 1e-20
+    0xD06C32E5, 0x2B31E9E3, 0xB69561A5, 0xEC1E4A7D, 0x03FF,  // 1e-19
+    0x62439FCF, 0x3AFF322E, 0x921D5D07, 0x9392EE8E, 0x0403,  // 1e-18
+    0xFAD487C2, 0x09BEFEB9, 0x36A4B449, 0xB877AA32, 0x0406,  // 1e-17
+    0x7989A9B3, 0x4C2EBE68, 0xC44DE15B, 0xE69594BE, 0x0409,  // 1e-16
+    0x4BF60A10, 0x0F9D3701, 0x3AB0ACD9, 0x901D7CF7, 0x040D,  // 1e-15
+    0x9EF38C94, 0x538484C1, 0x095CD80F, 0xB424DC35, 0x0410,  // 1e-14
+    0x06B06FB9, 0x2865A5F2, 0x4BB40E13, 0xE12E1342, 0x0413,  // 1e-13
+    0x442E45D3, 0xF93F87B7, 0x6F5088CB, 0x8CBCCC09, 0x0417,  // 1e-12
+    0x1539D748, 0xF78F69A5, 0xCB24AAFE, 0xAFEBFF0B, 0x041A,  // 1e-11
+    0x5A884D1B, 0xB573440E, 0xBDEDD5BE, 0xDBE6FECE, 0x041D,  // 1e-10
+    0xF8953030, 0x31680A88, 0x36B4A597, 0x89705F41, 0x0421,  // 1e-9
+    0x36BA7C3D, 0xFDC20D2B, 0x8461CEFC, 0xABCC7711, 0x0424,  // 1e-8
+    0x04691B4C, 0x3D329076, 0xE57A42BC, 0xD6BF94D5, 0x0427,  // 1e-7
+    0xC2C1B10F, 0xA63F9A49, 0xAF6C69B5, 0x8637BD05, 0x042B,  // 1e-6
+    0x33721D53, 0x0FCF80DC, 0x1B478423, 0xA7C5AC47, 0x042E,  // 1e-5
+    0x404EA4A8, 0xD3C36113, 0xE219652B, 0xD1B71758, 0x0431,  // 1e-4
+    0x083126E9, 0x645A1CAC, 0x8D4FDF3B, 0x83126E97, 0x0435,  // 1e-3
+    0x0A3D70A3, 0x3D70A3D7, 0x70A3D70A, 0xA3D70A3D, 0x0438,  // 1e-2
+    0xCCCCCCCC, 0xCCCCCCCC, 0xCCCCCCCC, 0xCCCCCCCC, 0x043B,  // 1e-1
+    0x00000000, 0x00000000, 0x00000000, 0x80000000, 0x043F,  // 1e0
+    0x00000000, 0x00000000, 0x00000000, 0xA0000000, 0x0442,  // 1e1
+    0x00000000, 0x00000000, 0x00000000, 0xC8000000, 0x0445,  // 1e2
+    0x00000000, 0x00000000, 0x00000000, 0xFA000000, 0x0448,  // 1e3
+    0x00000000, 0x00000000, 0x00000000, 0x9C400000, 0x044C,  // 1e4
+    0x00000000, 0x00000000, 0x00000000, 0xC3500000, 0x044F,  // 1e5
+    0x00000000, 0x00000000, 0x00000000, 0xF4240000, 0x0452,  // 1e6
+    0x00000000, 0x00000000, 0x00000000, 0x98968000, 0x0456,  // 1e7
+    0x00000000, 0x00000000, 0x00000000, 0xBEBC2000, 0x0459,  // 1e8
+    0x00000000, 0x00000000, 0x00000000, 0xEE6B2800, 0x045C,  // 1e9
+    0x00000000, 0x00000000, 0x00000000, 0x9502F900, 0x0460,  // 1e10
+    0x00000000, 0x00000000, 0x00000000, 0xBA43B740, 0x0463,  // 1e11
+    0x00000000, 0x00000000, 0x00000000, 0xE8D4A510, 0x0466,  // 1e12
+    0x00000000, 0x00000000, 0x00000000, 0x9184E72A, 0x046A,  // 1e13
+    0x00000000, 0x00000000, 0x80000000, 0xB5E620F4, 0x046D,  // 1e14
+    0x00000000, 0x00000000, 0xA0000000, 0xE35FA931, 0x0470,  // 1e15
+    0x00000000, 0x00000000, 0x04000000, 0x8E1BC9BF, 0x0474,  // 1e16
+    0x00000000, 0x00000000, 0xC5000000, 0xB1A2BC2E, 0x0477,  // 1e17
+    0x00000000, 0x00000000, 0x76400000, 0xDE0B6B3A, 0x047A,  // 1e18
+    0x00000000, 0x00000000, 0x89E80000, 0x8AC72304, 0x047E,  // 1e19
+    0x00000000, 0x00000000, 0xAC620000, 0xAD78EBC5, 0x0481,  // 1e20
+    0x00000000, 0x00000000, 0x177A8000, 0xD8D726B7, 0x0484,  // 1e21
+    0x00000000, 0x00000000, 0x6EAC9000, 0x87867832, 0x0488,  // 1e22
+    0x00000000, 0x00000000, 0x0A57B400, 0xA968163F, 0x048B,  // 1e23
+    0x00000000, 0x00000000, 0xCCEDA100, 0xD3C21BCE, 0x048E,  // 1e24
+    0x00000000, 0x00000000, 0x401484A0, 0x84595161, 0x0492,  // 1e25
+    0x00000000, 0x00000000, 0x9019A5C8, 0xA56FA5B9, 0x0495,  // 1e26
+    0x00000000, 0x00000000, 0xF4200F3A, 0xCECB8F27, 0x0498,  // 1e27
+    0x00000000, 0x40000000, 0xF8940984, 0x813F3978, 0x049C,  // 1e28
+    0x00000000, 0x50000000, 0x36B90BE5, 0xA18F07D7, 0x049F,  // 1e29
+    0x00000000, 0xA4000000, 0x04674EDE, 0xC9F2C9CD, 0x04A2,  // 1e30
+    0x00000000, 0x4D000000, 0x45812296, 0xFC6F7C40, 0x04A5,  // 1e31
+    0x00000000, 0xF0200000, 0x2B70B59D, 0x9DC5ADA8, 0x04A9,  // 1e32
+    0x00000000, 0x6C280000, 0x364CE305, 0xC5371912, 0x04AC,  // 1e33
+    0x00000000, 0xC7320000, 0xC3E01BC6, 0xF684DF56, 0x04AF,  // 1e34
+    0x00000000, 0x3C7F4000, 0x3A6C115C, 0x9A130B96, 0x04B3,  // 1e35
+    0x00000000, 0x4B9F1000, 0xC90715B3, 0xC097CE7B, 0x04B6,  // 1e36
+    0x00000000, 0x1E86D400, 0xBB48DB20, 0xF0BDC21A, 0x04B9,  // 1e37
+    0x00000000, 0x13144480, 0xB50D88F4, 0x96769950, 0x04BD,  // 1e38
+    0x00000000, 0x17D955A0, 0xE250EB31, 0xBC143FA4, 0x04C0,  // 1e39
+    0x00000000, 0x5DCFAB08, 0x1AE525FD, 0xEB194F8E, 0x04C3,  // 1e40
+    0x00000000, 0x5AA1CAE5, 0xD0CF37BE, 0x92EFD1B8, 0x04C7,  // 1e41
+    0x40000000, 0xF14A3D9E, 0x050305AD, 0xB7ABC627, 0x04CA,  // 1e42
+    0xD0000000, 0x6D9CCD05, 0xC643C719, 0xE596B7B0, 0x04CD,  // 1e43
+    0xA2000000, 0xE4820023, 0x7BEA5C6F, 0x8F7E32CE, 0x04D1,  // 1e44
+    0x8A800000, 0xDDA2802C, 0x1AE4F38B, 0xB35DBF82, 0x04D4,  // 1e45
+    0xAD200000, 0xD50B2037, 0xA19E306E, 0xE0352F62, 0x04D7,  // 1e46
+    0xCC340000, 0x4526F422, 0xA502DE45, 0x8C213D9D, 0x04DB,  // 1e47
+    0x7F410000, 0x9670B12B, 0x0E4395D6, 0xAF298D05, 0x04DE,  // 1e48
+    0x5F114000, 0x3C0CDD76, 0x51D47B4C, 0xDAF3F046, 0x04E1,  // 1e49
+    0xFB6AC800, 0xA5880A69, 0xF324CD0F, 0x88D8762B, 0x04E5,  // 1e50
+    0x7A457A00, 0x8EEA0D04, 0xEFEE0053, 0xAB0E93B6, 0x04E8,  // 1e51
+    0x98D6D880, 0x72A49045, 0xABE98068, 0xD5D238A4, 0x04EB,  // 1e52
+    0x7F864750, 0x47A6DA2B, 0xEB71F041, 0x85A36366, 0x04EF,  // 1e53
+    0x5F67D924, 0x999090B6, 0xA64E6C51, 0xA70C3C40, 0x04F2,  // 1e54
+    0xF741CF6D, 0xFFF4B4E3, 0xCFE20765, 0xD0CF4B50, 0x04F5,  // 1e55
+    0x7A8921A4, 0xBFF8F10E, 0x81ED449F, 0x82818F12, 0x04F9,  // 1e56
+    0x192B6A0D, 0xAFF72D52, 0x226895C7, 0xA321F2D7, 0x04FC,  // 1e57
+    0x9F764490, 0x9BF4F8A6, 0xEB02BB39, 0xCBEA6F8C, 0x04FF,  // 1e58
+    0x4753D5B4, 0x02F236D0, 0x25C36A08, 0xFEE50B70, 0x0502,  // 1e59
+    0x2C946590, 0x01D76242, 0x179A2245, 0x9F4F2726, 0x0506,  // 1e60
+    0xB7B97EF5, 0x424D3AD2, 0x9D80AAD6, 0xC722F0EF, 0x0509,  // 1e61
+    0x65A7DEB2, 0xD2E08987, 0x84E0D58B, 0xF8EBAD2B, 0x050C,  // 1e62
+    0x9F88EB2F, 0x63CC55F4, 0x330C8577, 0x9B934C3B, 0x0510,  // 1e63
+    0xC76B25FB, 0x3CBF6B71, 0xFFCFA6D5, 0xC2781F49, 0x0513,  // 1e64
+    0x3945EF7A, 0x8BEF464E, 0x7FC3908A, 0xF316271C, 0x0516,  // 1e65
+    0xE3CBB5AC, 0x97758BF0, 0xCFDA3A56, 0x97EDD871, 0x051A,  // 1e66
+    0x1CBEA317, 0x3D52EEED, 0x43D0C8EC, 0xBDE94E8E, 0x051D,  // 1e67
+    0x63EE4BDD, 0x4CA7AAA8, 0xD4C4FB27, 0xED63A231, 0x0520,  // 1e68
+    0x3E74EF6A, 0x8FE8CAA9, 0x24FB1CF8, 0x945E455F, 0x0524,  // 1e69
+    0x8E122B44, 0xB3E2FD53, 0xEE39E436, 0xB975D6B6, 0x0527,  // 1e70
+    0x7196B616, 0x60DBBCA8, 0xA9C85D44, 0xE7D34C64, 0x052A,  // 1e71
+    0x46FE31CD, 0xBC8955E9, 0xEA1D3A4A, 0x90E40FBE, 0x052E,  // 1e72
+    0x98BDBE41, 0x6BABAB63, 0xA4A488DD, 0xB51D13AE, 0x0531,  // 1e73
+    0x7EED2DD1, 0xC696963C, 0x4DCDAB14, 0xE264589A, 0x0534,  // 1e74
+    0xCF543CA2, 0xFC1E1DE5, 0x70A08AEC, 0x8D7EB760, 0x0538,  // 1e75
+    0x43294BCB, 0x3B25A55F, 0x8CC8ADA8, 0xB0DE6538, 0x053B,  // 1e76
+    0x13F39EBE, 0x49EF0EB7, 0xAFFAD912, 0xDD15FE86, 0x053E,  // 1e77
+    0x6C784337, 0x6E356932, 0x2DFCC7AB, 0x8A2DBF14, 0x0542,  // 1e78
+    0x07965404, 0x49C2C37F, 0x397BF996, 0xACB92ED9, 0x0545,  // 1e79
+    0xC97BE906, 0xDC33745E, 0x87DAF7FB, 0xD7E77A8F, 0x0548,  // 1e80
+    0x3DED71A3, 0x69A028BB, 0xB4E8DAFD, 0x86F0AC99, 0x054C,  // 1e81
+    0x0D68CE0C, 0xC40832EA, 0x222311BC, 0xA8ACD7C0, 0x054F,  // 1e82
+    0x90C30190, 0xF50A3FA4, 0x2AABD62B, 0xD2D80DB0, 0x0552,  // 1e83
+    0xDA79E0FA, 0x792667C6, 0x1AAB65DB, 0x83C7088E, 0x0556,  // 1e84
+    0x91185938, 0x577001B8, 0xA1563F52, 0xA4B8CAB1, 0x0559,  // 1e85
+    0xB55E6F86, 0xED4C0226, 0x09ABCF26, 0xCDE6FD5E, 0x055C,  // 1e86
+    0x315B05B4, 0x544F8158, 0xC60B6178, 0x80B05E5A, 0x0560,  // 1e87
+    0x3DB1C721, 0x696361AE, 0x778E39D6, 0xA0DC75F1, 0x0563,  // 1e88
+    0xCD1E38E9, 0x03BC3A19, 0xD571C84C, 0xC913936D, 0x0566,  // 1e89
+    0x4065C723, 0x04AB48A0, 0x4ACE3A5F, 0xFB587849, 0x0569,  // 1e90
+    0x283F9C76, 0x62EB0D64, 0xCEC0E47B, 0x9D174B2D, 0x056D,  // 1e91
+    0x324F8394, 0x3BA5D0BD, 0x42711D9A, 0xC45D1DF9, 0x0570,  // 1e92
+    0x7EE36479, 0xCA8F44EC, 0x930D6500, 0xF5746577, 0x0573,  // 1e93
+    0xCF4E1ECB, 0x7E998B13, 0xBBE85F20, 0x9968BF6A, 0x0577,  // 1e94
+    0xC321A67E, 0x9E3FEDD8, 0x6AE276E8, 0xBFC2EF45, 0x057A,  // 1e95
+    0xF3EA101E, 0xC5CFE94E, 0xC59B14A2, 0xEFB3AB16, 0x057D,  // 1e96
+    0x58724A12, 0xBBA1F1D1, 0x3B80ECE5, 0x95D04AEE, 0x0581,  // 1e97
+    0xAE8EDC97, 0x2A8A6E45, 0xCA61281F, 0xBB445DA9, 0x0584,  // 1e98
+    0x1A3293BD, 0xF52D09D7, 0x3CF97226, 0xEA157514, 0x0587,  // 1e99
+    0x705F9C56, 0x593C2626, 0xA61BE758, 0x924D692C, 0x058B,  // 1e100
+    0x0C77836C, 0x6F8B2FB0, 0xCFA2E12E, 0xB6E0C377, 0x058E,  // 1e101
+    0x0F956447, 0x0B6DFB9C, 0xC38B997A, 0xE498F455, 0x0591,  // 1e102
+    0x89BD5EAC, 0x4724BD41, 0x9A373FEC, 0x8EDF98B5, 0x0595,  // 1e103
+    0xEC2CB657, 0x58EDEC91, 0x00C50FE7, 0xB2977EE3, 0x0598,  // 1e104
+    0x6737E3ED, 0x2F2967B6, 0xC0F653E1, 0xDF3D5E9B, 0x059B,  // 1e105
+    0x0082EE74, 0xBD79E0D2, 0x5899F46C, 0x8B865B21, 0x059F,  // 1e106
+    0x80A3AA11, 0xECD85906, 0xAEC07187, 0xAE67F1E9, 0x05A2,  // 1e107
+    0x20CC9495, 0xE80E6F48, 0x1A708DE9, 0xDA01EE64, 0x05A5,  // 1e108
+    0x147FDCDD, 0x3109058D, 0x908658B2, 0x884134FE, 0x05A9,  // 1e109
+    0x599FD415, 0xBD4B46F0, 0x34A7EEDE, 0xAA51823E, 0x05AC,  // 1e110
+    0x7007C91A, 0x6C9E18AC, 0xC1D1EA96, 0xD4E5E2CD, 0x05AF,  // 1e111
+    0xC604DDB0, 0x03E2CF6B, 0x9923329E, 0x850FADC0, 0x05B3,  // 1e112
+    0xB786151C, 0x84DB8346, 0xBF6BFF45, 0xA6539930, 0x05B6,  // 1e113
+    0x65679A63, 0xE6126418, 0xEF46FF16, 0xCFE87F7C, 0x05B9,  // 1e114
+    0x3F60C07E, 0x4FCB7E8F, 0x158C5F6E, 0x81F14FAE, 0x05BD,  // 1e115
+    0x0F38F09D, 0xE3BE5E33, 0x9AEF7749, 0xA26DA399, 0x05C0,  // 1e116
+    0xD3072CC5, 0x5CADF5BF, 0x01AB551C, 0xCB090C80, 0x05C3,  // 1e117
+    0xC7C8F7F6, 0x73D9732F, 0x02162A63, 0xFDCB4FA0, 0x05C6,  // 1e118
+    0xDCDD9AFA, 0x2867E7FD, 0x014DDA7E, 0x9E9F11C4, 0x05CA,  // 1e119
+    0x541501B8, 0xB281E1FD, 0x01A1511D, 0xC646D635, 0x05CD,  // 1e120
+    0xA91A4226, 0x1F225A7C, 0x4209A565, 0xF7D88BC2, 0x05D0,  // 1e121
+    0xE9B06958, 0x3375788D, 0x6946075F, 0x9AE75759, 0x05D4,  // 1e122
+    0x641C83AE, 0x0052D6B1, 0xC3978937, 0xC1A12D2F, 0x05D7,  // 1e123
+    0xBD23A49A, 0xC0678C5D, 0xB47D6B84, 0xF209787B, 0x05DA,  // 1e124
+    0x963646E0, 0xF840B7BA, 0x50CE6332, 0x9745EB4D, 0x05DE,  // 1e125
+    0x3BC3D898, 0xB650E5A9, 0xA501FBFF, 0xBD176620, 0x05E1,  // 1e126
+    0x8AB4CEBE, 0xA3E51F13, 0xCE427AFF, 0xEC5D3FA8, 0x05E4,  // 1e127
+    0x36B10137, 0xC66F336C, 0x80E98CDF, 0x93BA47C9, 0x05E8,  // 1e128
+    0x445D4184, 0xB80B0047, 0xE123F017, 0xB8A8D9BB, 0x05EB,  // 1e129
+    0x157491E5, 0xA60DC059, 0xD96CEC1D, 0xE6D3102A, 0x05EE,  // 1e130
+    0xAD68DB2F, 0x87C89837, 0xC7E41392, 0x9043EA1A, 0x05F2,  // 1e131
+    0x98C311FB, 0x29BABE45, 0x79DD1877, 0xB454E4A1, 0x05F5,  // 1e132
+    0xFEF3D67A, 0xF4296DD6, 0xD8545E94, 0xE16A1DC9, 0x05F8,  // 1e133
+    0x5F58660C, 0x1899E4A6, 0x2734BB1D, 0x8CE2529E, 0x05FC,  // 1e134
+    0xF72E7F8F, 0x5EC05DCF, 0xB101E9E4, 0xB01AE745, 0x05FF,  // 1e135
+    0xF4FA1F73, 0x76707543, 0x1D42645D, 0xDC21A117, 0x0602,  // 1e136
+    0x791C53A8, 0x6A06494A, 0x72497EBA, 0x899504AE, 0x0606,  // 1e137
+    0x17636892, 0x0487DB9D, 0x0EDBDE69, 0xABFA45DA, 0x0609,  // 1e138
+    0x5D3C42B6, 0x45A9D284, 0x9292D603, 0xD6F8D750, 0x060C,  // 1e139
+    0xBA45A9B2, 0x0B8A2392, 0x5B9BC5C2, 0x865B8692, 0x0610,  // 1e140
+    0x68D7141E, 0x8E6CAC77, 0xF282B732, 0xA7F26836, 0x0613,  // 1e141
+    0x430CD926, 0x3207D795, 0xAF2364FF, 0xD1EF0244, 0x0616,  // 1e142
+    0x49E807B8, 0x7F44E6BD, 0xED761F1F, 0x8335616A, 0x061A,  // 1e143
+    0x9C6209A6, 0x5F16206C, 0xA8D3A6E7, 0xA402B9C5, 0x061D,  // 1e144
+    0xC37A8C0F, 0x36DBA887, 0x130890A1, 0xCD036837, 0x0620,  // 1e145
+    0xDA2C9789, 0xC2494954, 0x6BE55A64, 0x80222122, 0x0624,  // 1e146
+    0x10B7BD6C, 0xF2DB9BAA, 0x06DEB0FD, 0xA02AA96B, 0x0627,  // 1e147
+    0x94E5ACC7, 0x6F928294, 0xC8965D3D, 0xC83553C5, 0x062A,  // 1e148
+    0xBA1F17F9, 0xCB772339, 0x3ABBF48C, 0xFA42A8B7, 0x062D,  // 1e149
+    0x14536EFB, 0xFF2A7604, 0x84B578D7, 0x9C69A972, 0x0631,  // 1e150
+    0x19684ABA, 0xFEF51385, 0x25E2D70D, 0xC38413CF, 0x0634,  // 1e151
+    0x5FC25D69, 0x7EB25866, 0xEF5B8CD1, 0xF46518C2, 0x0637,  // 1e152
+    0xFBD97A61, 0xEF2F773F, 0xD5993802, 0x98BF2F79, 0x063B,  // 1e153
+    0xFACFD8FA, 0xAAFB550F, 0x4AFF8603, 0xBEEEFB58, 0x063E,  // 1e154
+    0xF983CF38, 0x95BA2A53, 0x5DBF6784, 0xEEAABA2E, 0x0641,  // 1e155
+    0x7BF26183, 0xDD945A74, 0xFA97A0B2, 0x952AB45C, 0x0645,  // 1e156
+    0x9AEEF9E4, 0x94F97111, 0x393D88DF, 0xBA756174, 0x0648,  // 1e157
+    0x01AAB85D, 0x7A37CD56, 0x478CEB17, 0xE912B9D1, 0x064B,  // 1e158
+    0xC10AB33A, 0xAC62E055, 0xCCB812EE, 0x91ABB422, 0x064F,  // 1e159
+    0x314D6009, 0x577B986B, 0x7FE617AA, 0xB616A12B, 0x0652,  // 1e160
+    0xFDA0B80B, 0xED5A7E85, 0x5FDF9D94, 0xE39C4976, 0x0655,  // 1e161
+    0xBE847307, 0x14588F13, 0xFBEBC27D, 0x8E41ADE9, 0x0659,  // 1e162
+    0xAE258FC8, 0x596EB2D8, 0x7AE6B31C, 0xB1D21964, 0x065C,  // 1e163
+    0xD9AEF3BB, 0x6FCA5F8E, 0x99A05FE3, 0xDE469FBD, 0x065F,  // 1e164
+    0x480D5854, 0x25DE7BB9, 0x80043BEE, 0x8AEC23D6, 0x0663,  // 1e165
+    0x9A10AE6A, 0xAF561AA7, 0x20054AE9, 0xADA72CCC, 0x0666,  // 1e166
+    0x8094DA04, 0x1B2BA151, 0x28069DA4, 0xD910F7FF, 0x0669,  // 1e167
+    0xF05D0842, 0x90FB44D2, 0x79042286, 0x87AA9AFF, 0x066D,  // 1e168
+    0xAC744A53, 0x353A1607, 0x57452B28, 0xA99541BF, 0x0670,  // 1e169
+    0x97915CE8, 0x42889B89, 0x2D1675F2, 0xD3FA922F, 0x0673,  // 1e170
+    0xFEBADA11, 0x69956135, 0x7C2E09B7, 0x847C9B5D, 0x0677,  // 1e171
+    0x7E699095, 0x43FAB983, 0xDB398C25, 0xA59BC234, 0x067A,  // 1e172
+    0x5E03F4BB, 0x94F967E4, 0x1207EF2E, 0xCF02B2C2, 0x067D,  // 1e173
+    0xBAC278F5, 0x1D1BE0EE, 0x4B44F57D, 0x8161AFB9, 0x0681,  // 1e174
+    0x69731732, 0x6462D92A, 0x9E1632DC, 0xA1BA1BA7, 0x0684,  // 1e175
+    0x03CFDCFE, 0x7D7B8F75, 0x859BBF93, 0xCA28A291, 0x0687,  // 1e176
+    0x44C3D43E, 0x5CDA7352, 0xE702AF78, 0xFCB2CB35, 0x068A,  // 1e177
+    0x6AFA64A7, 0x3A088813, 0xB061ADAB, 0x9DEFBF01, 0x068E,  // 1e178
+    0x45B8FDD0, 0x088AAA18, 0x1C7A1916, 0xC56BAEC2, 0x0691,  // 1e179
+    0x57273D45, 0x8AAD549E, 0xA3989F5B, 0xF6C69A72, 0x0694,  // 1e180
+    0xF678864B, 0x36AC54E2, 0xA63F6399, 0x9A3C2087, 0x0698,  // 1e181
+    0xB416A7DD, 0x84576A1B, 0x8FCF3C7F, 0xC0CB28A9, 0x069B,  // 1e182
+    0xA11C51D5, 0x656D44A2, 0xF3C30B9F, 0xF0FDF2D3, 0x069E,  // 1e183
+    0xA4B1B325, 0x9F644AE5, 0x7859E743, 0x969EB7C4, 0x06A2,  // 1e184
+    0x0DDE1FEE, 0x873D5D9F, 0x96706114, 0xBC4665B5, 0x06A5,  // 1e185
+    0xD155A7EA, 0xA90CB506, 0xFC0C7959, 0xEB57FF22, 0x06A8,  // 1e186
+    0x42D588F2, 0x09A7F124, 0xDD87CBD8, 0x9316FF75, 0x06AC,  // 1e187
+    0x538AEB2F, 0x0C11ED6D, 0x54E9BECE, 0xB7DCBF53, 0x06AF,  // 1e188
+    0xA86DA5FA, 0x8F1668C8, 0x2A242E81, 0xE5D3EF28, 0x06B2,  // 1e189
+    0x694487BC, 0xF96E017D, 0x1A569D10, 0x8FA47579, 0x06B6,  // 1e190
+    0xC395A9AC, 0x37C981DC, 0x60EC4455, 0xB38D92D7, 0x06B9,  // 1e191
+    0xF47B1417, 0x85BBE253, 0x3927556A, 0xE070F78D, 0x06BC,  // 1e192
+    0x78CCEC8E, 0x93956D74, 0x43B89562, 0x8C469AB8, 0x06C0,  // 1e193
+    0x970027B2, 0x387AC8D1, 0x54A6BABB, 0xAF584166, 0x06C3,  // 1e194
+    0xFCC0319E, 0x06997B05, 0xE9D0696A, 0xDB2E51BF, 0x06C6,  // 1e195
+    0xBDF81F03, 0x441FECE3, 0xF22241E2, 0x88FCF317, 0x06CA,  // 1e196
+    0xAD7626C3, 0xD527E81C, 0xEEAAD25A, 0xAB3C2FDD, 0x06CD,  // 1e197
+    0xD8D3B074, 0x8A71E223, 0x6A5586F1, 0xD60B3BD5, 0x06D0,  // 1e198
+    0x67844E49, 0xF6872D56, 0x62757456, 0x85C70565, 0x06D4,  // 1e199
+    0x016561DB, 0xB428F8AC, 0xBB12D16C, 0xA738C6BE, 0x06D7,  // 1e200
+    0x01BEBA52, 0xE13336D7, 0x69D785C7, 0xD106F86E, 0x06DA,  // 1e201
+    0x61173473, 0xECC00246, 0x0226B39C, 0x82A45B45, 0x06DE,  // 1e202
+    0xF95D0190, 0x27F002D7, 0x42B06084, 0xA34D7216, 0x06E1,  // 1e203
+    0xF7B441F4, 0x31EC038D, 0xD35C78A5, 0xCC20CE9B, 0x06E4,  // 1e204
+    0x75A15271, 0x7E670471, 0xC83396CE, 0xFF290242, 0x06E7,  // 1e205
+    0xE984D386, 0x0F0062C6, 0xBD203E41, 0x9F79A169, 0x06EB,  // 1e206
+    0xA3E60868, 0x52C07B78, 0x2C684DD1, 0xC75809C4, 0x06EE,  // 1e207
+    0xCCDF8A82, 0xA7709A56, 0x37826145, 0xF92E0C35, 0x06F1,  // 1e208
+    0x400BB691, 0x88A66076, 0x42B17CCB, 0x9BBCC7A1, 0x06F5,  // 1e209
+    0xD00EA435, 0x6ACFF893, 0x935DDBFE, 0xC2ABF989, 0x06F8,  // 1e210
+    0xC4124D43, 0x0583F6B8, 0xF83552FE, 0xF356F7EB, 0x06FB,  // 1e211
+    0x7A8B704A, 0xC3727A33, 0x7B2153DE, 0x98165AF3, 0x06FF,  // 1e212
+    0x592E4C5C, 0x744F18C0, 0x59E9A8D6, 0xBE1BF1B0, 0x0702,  // 1e213
+    0x6F79DF73, 0x1162DEF0, 0x7064130C, 0xEDA2EE1C, 0x0705,  // 1e214
+    0x45AC2BA8, 0x8ADDCB56, 0xC63E8BE7, 0x9485D4D1, 0x0709,  // 1e215
+    0xD7173692, 0x6D953E2B, 0x37CE2EE1, 0xB9A74A06, 0x070C,  // 1e216
+    0xCCDD0437, 0xC8FA8DB6, 0xC5C1BA99, 0xE8111C87, 0x070F,  // 1e217
+    0x400A22A2, 0x1D9C9892, 0xDB9914A0, 0x910AB1D4, 0x0713,  // 1e218
+    0xD00CAB4B, 0x2503BEB6, 0x127F59C8, 0xB54D5E4A, 0x0716,  // 1e219
+    0x840FD61D, 0x2E44AE64, 0x971F303A, 0xE2A0B5DC, 0x0719,  // 1e220
+    0xD289E5D2, 0x5CEAECFE, 0xDE737E24, 0x8DA471A9, 0x071D,  // 1e221
+    0x872C5F47, 0x7425A83E, 0x56105DAD, 0xB10D8E14, 0x0720,  // 1e222
+    0x28F77719, 0xD12F124E, 0x6B947518, 0xDD50F199, 0x0723,  // 1e223
+    0xD99AAA6F, 0x82BD6B70, 0xE33CC92F, 0x8A5296FF, 0x0727,  // 1e224
+    0x1001550B, 0x636CC64D, 0xDC0BFB7B, 0xACE73CBF, 0x072A,  // 1e225
+    0x5401AA4E, 0x3C47F7E0, 0xD30EFA5A, 0xD8210BEF, 0x072D,  // 1e226
+    0x34810A71, 0x65ACFAEC, 0xE3E95C78, 0x8714A775, 0x0731,  // 1e227
+    0x41A14D0D, 0x7F1839A7, 0x5CE3B396, 0xA8D9D153, 0x0734,  // 1e228
+    0x1209A050, 0x1EDE4811, 0x341CA07C, 0xD31045A8, 0x0737,  // 1e229
+    0xAB460432, 0x934AED0A, 0x2091E44D, 0x83EA2B89, 0x073B,  // 1e230
+    0x5617853F, 0xF81DA84D, 0x68B65D60, 0xA4E4B66B, 0x073E,  // 1e231
+    0xAB9D668E, 0x36251260, 0x42E3F4B9, 0xCE1DE406, 0x0741,  // 1e232
+    0x6B426019, 0xC1D72B7C, 0xE9CE78F3, 0x80D2AE83, 0x0745,  // 1e233
+    0x8612F81F, 0xB24CF65B, 0xE4421730, 0xA1075A24, 0x0748,  // 1e234
+    0x6797B627, 0xDEE033F2, 0x1D529CFC, 0xC94930AE, 0x074B,  // 1e235
+    0x017DA3B1, 0x169840EF, 0xA4A7443C, 0xFB9B7CD9, 0x074E,  // 1e236
+    0x60EE864E, 0x8E1F2895, 0x06E88AA5, 0x9D412E08, 0x0752,  // 1e237
+    0xB92A27E2, 0xF1A6F2BA, 0x08A2AD4E, 0xC491798A, 0x0755,  // 1e238
+    0x6774B1DB, 0xAE10AF69, 0x8ACB58A2, 0xF5B5D7EC, 0x0758,  // 1e239
+    0xE0A8EF29, 0xACCA6DA1, 0xD6BF1765, 0x9991A6F3, 0x075C,  // 1e240
+    0x58D32AF3, 0x17FD090A, 0xCC6EDD3F, 0xBFF610B0, 0x075F,  // 1e241
+    0xEF07F5B0, 0xDDFC4B4C, 0xFF8A948E, 0xEFF394DC, 0x0762,  // 1e242
+    0x1564F98E, 0x4ABDAF10, 0x1FB69CD9, 0x95F83D0A, 0x0766,  // 1e243
+    0x1ABE37F1, 0x9D6D1AD4, 0xA7A4440F, 0xBB764C4C, 0x0769,  // 1e244
+    0x216DC5ED, 0x84C86189, 0xD18D5513, 0xEA53DF5F, 0x076C,  // 1e245
+    0xB4E49BB4, 0x32FD3CF5, 0xE2F8552C, 0x92746B9B, 0x0770,  // 1e246
+    0x221DC2A1, 0x3FBC8C33, 0xDBB66A77, 0xB7118682, 0x0773,  // 1e247
+    0xEAA5334A, 0x0FABAF3F, 0x92A40515, 0xE4D5E823, 0x0776,  // 1e248
+    0xF2A7400E, 0x29CB4D87, 0x3BA6832D, 0x8F05B116, 0x077A,  // 1e249
+    0xEF511012, 0x743E20E9, 0xCA9023F8, 0xB2C71D5B, 0x077D,  // 1e250
+    0x6B255416, 0x914DA924, 0xBD342CF6, 0xDF78E4B2, 0x0780,  // 1e251
+    0xC2F7548E, 0x1AD089B6, 0xB6409C1A, 0x8BAB8EEF, 0x0784,  // 1e252
+    0x73B529B1, 0xA184AC24, 0xA3D0C320, 0xAE9672AB, 0x0787,  // 1e253
+    0x90A2741E, 0xC9E5D72D, 0x8CC4F3E8, 0xDA3C0F56, 0x078A,  // 1e254
+    0x7A658892, 0x7E2FA67C, 0x17FB1871, 0x88658996, 0x078E,  // 1e255
+    0x98FEEAB7, 0xDDBB901B, 0x9DF9DE8D, 0xAA7EEBFB, 0x0791,  // 1e256
+    0x7F3EA565, 0x552A7422, 0x85785631, 0xD51EA6FA, 0x0794,  // 1e257
+    0x8F87275F, 0xD53A8895, 0x936B35DE, 0x8533285C, 0x0798,  // 1e258
+    0xF368F137, 0x8A892ABA, 0xB8460356, 0xA67FF273, 0x079B,  // 1e259
+    0xB0432D85, 0x2D2B7569, 0xA657842C, 0xD01FEF10, 0x079E,  // 1e260
+    0x0E29FC73, 0x9C3B2962, 0x67F6B29B, 0x8213F56A, 0x07A2,  // 1e261
+    0x91B47B8F, 0x8349F3BA, 0x01F45F42, 0xA298F2C5, 0x07A5,  // 1e262
+    0x36219A73, 0x241C70A9, 0x42717713, 0xCB3F2F76, 0x07A8,  // 1e263
+    0x83AA0110, 0xED238CD3, 0xD30DD4D7, 0xFE0EFB53, 0x07AB,  // 1e264
+    0x324A40AA, 0xF4363804, 0x63E8A506, 0x9EC95D14, 0x07AF,  // 1e265
+    0x3EDCD0D5, 0xB143C605, 0x7CE2CE48, 0xC67BB459, 0x07B2,  // 1e266
+    0x8E94050A, 0xDD94B786, 0xDC1B81DA, 0xF81AA16F, 0x07B5,  // 1e267
+    0x191C8326, 0xCA7CF2B4, 0xE9913128, 0x9B10A4E5, 0x07B9,  // 1e268
+    0x1F63A3F0, 0xFD1C2F61, 0x63F57D72, 0xC1D4CE1F, 0x07BC,  // 1e269
+    0x673C8CEC, 0xBC633B39, 0x3CF2DCCF, 0xF24A01A7, 0x07BF,  // 1e270
+    0xE085D813, 0xD5BE0503, 0x8617CA01, 0x976E4108, 0x07C3,  // 1e271
+    0xD8A74E18, 0x4B2D8644, 0xA79DBC82, 0xBD49D14A, 0x07C6,  // 1e272
+    0x0ED1219E, 0xDDF8E7D6, 0x51852BA2, 0xEC9C459D, 0x07C9,  // 1e273
+    0xC942B503, 0xCABB90E5, 0x52F33B45, 0x93E1AB82, 0x07CD,  // 1e274
+    0x3B936243, 0x3D6A751F, 0xE7B00A17, 0xB8DA1662, 0x07D0,  // 1e275
+    0x0A783AD4, 0x0CC51267, 0xA19C0C9D, 0xE7109BFB, 0x07D3,  // 1e276
+    0x668B24C5, 0x27FB2B80, 0x450187E2, 0x906A617D, 0x07D7,  // 1e277
+    0x802DEDF6, 0xB1F9F660, 0x9641E9DA, 0xB484F9DC, 0x07DA,  // 1e278
+    0xA0396973, 0x5E7873F8, 0xBBD26451, 0xE1A63853, 0x07DD,  // 1e279
+    0x6423E1E8, 0xDB0B487B, 0x55637EB2, 0x8D07E334, 0x07E1,  // 1e280
+    0x3D2CDA62, 0x91CE1A9A, 0x6ABC5E5F, 0xB049DC01, 0x07E4,  // 1e281
+    0xCC7810FB, 0x7641A140, 0xC56B75F7, 0xDC5C5301, 0x07E7,  // 1e282
+    0x7FCB0A9D, 0xA9E904C8, 0x1B6329BA, 0x89B9B3E1, 0x07EB,  // 1e283
+    0x9FBDCD44, 0x546345FA, 0x623BF429, 0xAC2820D9, 0x07EE,  // 1e284
+    0x47AD4095, 0xA97C1779, 0xBACAF133, 0xD732290F, 0x07F1,  // 1e285
+    0xCCCC485D, 0x49ED8EAB, 0xD4BED6C0, 0x867F59A9, 0x07F5,  // 1e286
+    0xBFFF5A74, 0x5C68F256, 0x49EE8C70, 0xA81F3014, 0x07F8,  // 1e287
+    0x6FFF3111, 0x73832EEC, 0x5C6A2F8C, 0xD226FC19, 0x07FB,  // 1e288
+    0xC5FF7EAB, 0xC831FD53, 0xD9C25DB7, 0x83585D8F, 0x07FF,  // 1e289
+    0xB77F5E55, 0xBA3E7CA8, 0xD032F525, 0xA42E74F3, 0x0802,  // 1e290
+    0xE55F35EB, 0x28CE1BD2, 0xC43FB26F, 0xCD3A1230, 0x0805,  // 1e291
+    0xCF5B81B3, 0x7980D163, 0x7AA7CF85, 0x80444B5E, 0x0809,  // 1e292
+    0xC332621F, 0xD7E105BC, 0x1951C366, 0xA0555E36, 0x080C,  // 1e293
+    0xF3FEFAA7, 0x8DD9472B, 0x9FA63440, 0xC86AB5C3, 0x080F,  // 1e294
+    0xF0FEB951, 0xB14F98F6, 0x878FC150, 0xFA856334, 0x0812,  // 1e295
+    0x569F33D3, 0x6ED1BF9A, 0xD4B9D8D2, 0x9C935E00, 0x0816,  // 1e296
+    0xEC4700C8, 0x0A862F80, 0x09E84F07, 0xC3B83581, 0x0819,  // 1e297
+    0x2758C0FA, 0xCD27BB61, 0x4C6262C8, 0xF4A642E1, 0x081C,  // 1e298
+    0xB897789C, 0x8038D51C, 0xCFBD7DBD, 0x98E7E9CC, 0x0820,  // 1e299
+    0xE6BD56C3, 0xE0470A63, 0x03ACDD2C, 0xBF21E440, 0x0823,  // 1e300
+    0xE06CAC74, 0x1858CCFC, 0x04981478, 0xEEEA5D50, 0x0826,  // 1e301
+    0x0C43EBC8, 0x0F37801E, 0x02DF0CCB, 0x95527A52, 0x082A,  // 1e302
+    0x8F54E6BA, 0xD3056025, 0x8396CFFD, 0xBAA718E6, 0x082D,  // 1e303
+    0xF32A2069, 0x47C6B82E, 0x247C83FD, 0xE950DF20, 0x0830,  // 1e304
+    0x57FA5441, 0x4CDC331D, 0x16CDD27E, 0x91D28B74, 0x0834,  // 1e305
+    0xADF8E952, 0xE0133FE4, 0x1C81471D, 0xB6472E51, 0x0837,  // 1e306
+    0xD97723A6, 0x58180FDD, 0x63A198E5, 0xE3D8F9E5, 0x083A,  // 1e307
+    0xA7EA7648, 0x570F09EA, 0x5E44FF8F, 0x8E679C2F, 0x083E,  // 1e308
+    0x51E513DA, 0x2CD2CC65, 0x35D63F73, 0xB201833B, 0x0841,  // 1e309
+    0xA65E58D1, 0xF8077F7E, 0x034BCF4F, 0xDE81E40A, 0x0844,  // 1e310
+};
+
+// wuffs_base__private_implementation__f64_powers_of_10 holds powers of 10 that
+// can be exactly represented by a float64 (what C calls a double).
+static const double wuffs_base__private_implementation__f64_powers_of_10[23] = {
+    1e0,  1e1,  1e2,  1e3,  1e4,  1e5,  1e6,  1e7,  1e8,  1e9,  1e10, 1e11,
+    1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22,
+};
diff --git a/internal/cgen/base/f64conv-submodule.c b/internal/cgen/base/f64conv-submodule.c
deleted file mode 100644
index e7e6b29..0000000
--- a/internal/cgen/base/f64conv-submodule.c
+++ /dev/null
@@ -1,2504 +0,0 @@
-// After editing this file, run "go generate" in the parent directory.
-
-// Copyright 2020 The Wuffs Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//    https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-// ---------------- IEEE 754 Floating Point
-
-#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE 2047
-#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION 800
-
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL is the largest N
-// such that ((10 << N) < (1 << 64)).
-#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL 60
-
-// wuffs_base__private_implementation__high_prec_dec (abbreviated as HPD) is a
-// fixed precision floating point decimal number, augmented with ±infinity
-// values, but it cannot represent NaN (Not a Number).
-//
-// "High precision" means that the mantissa holds 800 decimal digits. 800 is
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION.
-//
-// An HPD isn't for general purpose arithmetic, only for conversions to and
-// from IEEE 754 double-precision floating point, where the largest and
-// smallest positive, finite values are approximately 1.8e+308 and 4.9e-324.
-// HPD exponents above +2047 mean infinity, below -2047 mean zero. The ±2047
-// bounds are further away from zero than ±(324 + 800), where 800 and 2047 is
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION and
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
-//
-// digits[.. num_digits] are the number's digits in big-endian order. The
-// uint8_t values are in the range [0 ..= 9], not ['0' ..= '9'], where e.g. '7'
-// is the ASCII value 0x37.
-//
-// decimal_point is the index (within digits) of the decimal point. It may be
-// negative or be larger than num_digits, in which case the explicit digits are
-// padded with implicit zeroes.
-//
-// For example, if num_digits is 3 and digits is "\x07\x08\x09":
-//   - A decimal_point of -2 means ".00789"
-//   - A decimal_point of -1 means ".0789"
-//   - A decimal_point of +0 means ".789"
-//   - A decimal_point of +1 means "7.89"
-//   - A decimal_point of +2 means "78.9"
-//   - A decimal_point of +3 means "789."
-//   - A decimal_point of +4 means "7890."
-//   - A decimal_point of +5 means "78900."
-//
-// As above, a decimal_point higher than +2047 means that the overall value is
-// infinity, lower than -2047 means zero.
-//
-// negative is a sign bit. An HPD can distinguish positive and negative zero.
-//
-// truncated is whether there are more than
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION digits, and at
-// least one of those extra digits are non-zero. The existence of long-tail
-// digits can affect rounding.
-//
-// The "all fields are zero" value is valid, and represents the number +0.
-typedef struct {
-  uint32_t num_digits;
-  int32_t decimal_point;
-  bool negative;
-  bool truncated;
-  uint8_t digits[WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION];
-} wuffs_base__private_implementation__high_prec_dec;
-
-// wuffs_base__private_implementation__high_prec_dec__trim trims trailing
-// zeroes from the h->digits[.. h->num_digits] slice. They have no benefit,
-// since we explicitly track h->decimal_point.
-//
-// Preconditions:
-//  - h is non-NULL.
-static inline void  //
-wuffs_base__private_implementation__high_prec_dec__trim(
-    wuffs_base__private_implementation__high_prec_dec* h) {
-  while ((h->num_digits > 0) && (h->digits[h->num_digits - 1] == 0)) {
-    h->num_digits--;
-  }
-}
-
-// wuffs_base__private_implementation__high_prec_dec__assign sets h to
-// represent the number x.
-//
-// Preconditions:
-//  - h is non-NULL.
-static void  //
-wuffs_base__private_implementation__high_prec_dec__assign(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    uint64_t x,
-    bool negative) {
-  uint32_t n = 0;
-
-  // Set h->digits.
-  if (x > 0) {
-    // Calculate the digits, working right-to-left. After we determine n (how
-    // many digits there are), copy from buf to h->digits.
-    //
-    // UINT64_MAX, 18446744073709551615, is 20 digits long. It can be faster to
-    // copy a constant number of bytes than a variable number (20 instead of
-    // n). Make buf large enough (and start writing to it from the middle) so
-    // that can we always copy 20 bytes: the slice buf[(20-n) .. (40-n)].
-    uint8_t buf[40] = {0};
-    uint8_t* ptr = &buf[20];
-    do {
-      uint64_t remaining = x / 10;
-      x -= remaining * 10;
-      ptr--;
-      *ptr = (uint8_t)x;
-      n++;
-      x = remaining;
-    } while (x > 0);
-    memcpy(h->digits, ptr, 20);
-  }
-
-  // Set h's other fields.
-  h->num_digits = n;
-  h->decimal_point = (int32_t)n;
-  h->negative = negative;
-  h->truncated = false;
-  wuffs_base__private_implementation__high_prec_dec__trim(h);
-}
-
-static wuffs_base__status  //
-wuffs_base__private_implementation__high_prec_dec__parse(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    wuffs_base__slice_u8 s) {
-  if (!h) {
-    return wuffs_base__make_status(wuffs_base__error__bad_receiver);
-  }
-  h->num_digits = 0;
-  h->decimal_point = 0;
-  h->negative = false;
-  h->truncated = false;
-
-  uint8_t* p = s.ptr;
-  uint8_t* q = s.ptr + s.len;
-
-  for (;; p++) {
-    if (p >= q) {
-      return wuffs_base__make_status(wuffs_base__error__bad_argument);
-    } else if (*p != '_') {
-      break;
-    }
-  }
-
-  // Parse sign.
-  do {
-    if (*p == '+') {
-      p++;
-    } else if (*p == '-') {
-      h->negative = true;
-      p++;
-    } else {
-      break;
-    }
-    for (;; p++) {
-      if (p >= q) {
-        return wuffs_base__make_status(wuffs_base__error__bad_argument);
-      } else if (*p != '_') {
-        break;
-      }
-    }
-  } while (0);
-
-  // Parse digits, up to (and including) a '.', 'E' or 'e'. Examples for each
-  // limb in this if-else chain:
-  //  - "0.789"
-  //  - "1002.789"
-  //  - ".789"
-  //  - Other (invalid input).
-  uint32_t nd = 0;
-  int32_t dp = 0;
-  bool no_digits_before_separator = false;
-  if ('0' == *p) {
-    p++;
-    for (;; p++) {
-      if (p >= q) {
-        goto after_all;
-      } else if ((*p == '.') || (*p == ',')) {
-        p++;
-        goto after_sep;
-      } else if ((*p == 'E') || (*p == 'e')) {
-        p++;
-        goto after_exp;
-      } else if (*p != '_') {
-        return wuffs_base__make_status(wuffs_base__error__bad_argument);
-      }
-    }
-
-  } else if (('0' < *p) && (*p <= '9')) {
-    h->digits[nd++] = (uint8_t)(*p - '0');
-    dp = (int32_t)nd;
-    p++;
-    for (;; p++) {
-      if (p >= q) {
-        goto after_all;
-      } else if (('0' <= *p) && (*p <= '9')) {
-        if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-          h->digits[nd++] = (uint8_t)(*p - '0');
-          dp = (int32_t)nd;
-        } else if ('0' != *p) {
-          // Long-tail non-zeroes set the truncated bit.
-          h->truncated = true;
-        }
-      } else if ((*p == '.') || (*p == ',')) {
-        p++;
-        goto after_sep;
-      } else if ((*p == 'E') || (*p == 'e')) {
-        p++;
-        goto after_exp;
-      } else if (*p != '_') {
-        return wuffs_base__make_status(wuffs_base__error__bad_argument);
-      }
-    }
-
-  } else if ((*p == '.') || (*p == ',')) {
-    p++;
-    no_digits_before_separator = true;
-
-  } else {
-    return wuffs_base__make_status(wuffs_base__error__bad_argument);
-  }
-
-after_sep:
-  for (;; p++) {
-    if (p >= q) {
-      goto after_all;
-    } else if ('0' == *p) {
-      if (nd == 0) {
-        // Track leading zeroes implicitly.
-        dp--;
-      } else if (nd <
-                 WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-        h->digits[nd++] = (uint8_t)(*p - '0');
-      }
-    } else if (('0' < *p) && (*p <= '9')) {
-      if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-        h->digits[nd++] = (uint8_t)(*p - '0');
-      } else {
-        // Long-tail non-zeroes set the truncated bit.
-        h->truncated = true;
-      }
-    } else if ((*p == 'E') || (*p == 'e')) {
-      p++;
-      goto after_exp;
-    } else if (*p != '_') {
-      return wuffs_base__make_status(wuffs_base__error__bad_argument);
-    }
-  }
-
-after_exp:
-  do {
-    for (;; p++) {
-      if (p >= q) {
-        return wuffs_base__make_status(wuffs_base__error__bad_argument);
-      } else if (*p != '_') {
-        break;
-      }
-    }
-
-    int32_t exp_sign = +1;
-    if (*p == '+') {
-      p++;
-    } else if (*p == '-') {
-      exp_sign = -1;
-      p++;
-    }
-
-    int32_t exp = 0;
-    const int32_t exp_large =
-        WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE +
-        WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION;
-    bool saw_exp_digits = false;
-    for (; p < q; p++) {
-      if (*p == '_') {
-        // No-op.
-      } else if (('0' <= *p) && (*p <= '9')) {
-        saw_exp_digits = true;
-        if (exp < exp_large) {
-          exp = (10 * exp) + ((int32_t)(*p - '0'));
-        }
-      } else {
-        break;
-      }
-    }
-    if (!saw_exp_digits) {
-      return wuffs_base__make_status(wuffs_base__error__bad_argument);
-    }
-    dp += exp_sign * exp;
-  } while (0);
-
-after_all:
-  if (p != q) {
-    return wuffs_base__make_status(wuffs_base__error__bad_argument);
-  }
-  h->num_digits = nd;
-  if (nd == 0) {
-    if (no_digits_before_separator) {
-      return wuffs_base__make_status(wuffs_base__error__bad_argument);
-    }
-    h->decimal_point = 0;
-  } else if (dp <
-             -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
-    h->decimal_point =
-        -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE - 1;
-  } else if (dp >
-             +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
-    h->decimal_point =
-        +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE + 1;
-  } else {
-    h->decimal_point = dp;
-  }
-  wuffs_base__private_implementation__high_prec_dec__trim(h);
-  return wuffs_base__make_status(NULL);
-}
-
-// --------
-
-// The etc__hpd_left_shift and etc__powers_of_5 tables were printed by
-// script/print-hpd-left-shift.go. That script has an optional -comments flag,
-// whose output is not copied here, which prints further detail.
-//
-// These tables are used in
-// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits.
-
-// wuffs_base__private_implementation__hpd_left_shift[i] encodes the number of
-// new digits created after multiplying a positive integer by (1 << i): the
-// additional length in the decimal representation. For example, shifting "234"
-// by 3 (equivalent to multiplying by 8) will produce "1872". Going from a
-// 3-length string to a 4-length string means that 1 new digit was added (and
-// existing digits may have changed).
-//
-// Shifting by i can add either N or N-1 new digits, depending on whether the
-// original positive integer compares >= or < to the i'th power of 5 (as 10
-// equals 2 * 5). Comparison is lexicographic, not numerical.
-//
-// For example, shifting by 4 (i.e. multiplying by 16) can add 1 or 2 new
-// digits, depending on a lexicographic comparison to (5 ** 4), i.e. "625":
-//  - ("1"      << 4) is "16",       which adds 1 new digit.
-//  - ("5678"   << 4) is "90848",    which adds 1 new digit.
-//  - ("624"    << 4) is "9984",     which adds 1 new digit.
-//  - ("62498"  << 4) is "999968",   which adds 1 new digit.
-//  - ("625"    << 4) is "10000",    which adds 2 new digits.
-//  - ("625001" << 4) is "10000016", which adds 2 new digits.
-//  - ("7008"   << 4) is "112128",   which adds 2 new digits.
-//  - ("99"     << 4) is "1584",     which adds 2 new digits.
-//
-// Thus, when i is 4, N is 2 and (5 ** i) is "625". This etc__hpd_left_shift
-// array encodes this as:
-//  - etc__hpd_left_shift[4] is 0x1006 = (2 << 11) | 0x0006.
-//  - etc__hpd_left_shift[5] is 0x1009 = (? << 11) | 0x0009.
-// where the ? isn't relevant for i == 4.
-//
-// The high 5 bits of etc__hpd_left_shift[i] is N, the higher of the two
-// possible number of new digits. The low 11 bits are an offset into the
-// etc__powers_of_5 array (of length 0x051C, so offsets fit in 11 bits). When i
-// is 4, its offset and the next one is 6 and 9, and etc__powers_of_5[6 .. 9]
-// is the string "\x06\x02\x05", so the relevant power of 5 is "625".
-//
-// Thanks to Ken Thompson for the original idea.
-static const uint16_t wuffs_base__private_implementation__hpd_left_shift[65] = {
-    0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817,
-    0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067,
-    0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF,
-    0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0,
-    0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA,
-    0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC,
-    0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C,
-    0x051C, 0x051C,
-};
-
-// wuffs_base__private_implementation__powers_of_5 contains the powers of 5,
-// concatenated together: "5", "25", "125", "625", "3125", etc.
-static const uint8_t wuffs_base__private_implementation__powers_of_5[0x051C] = {
-    5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, 9,
-    0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, 1, 2,
-    5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, 0, 3, 5,
-    1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, 7, 8, 9, 0,
-    6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, 9, 7, 2, 6, 5,
-    6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1,
-    6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4,
-    1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7,
-    8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0,
-    2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, 4, 9, 0, 1, 1, 6, 1, 1, 9, 3,
-    8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1,
-    2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6,
-    2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5,
-    7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0,
-    7, 7, 3, 9, 2, 5, 7, 8, 1, 2, 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6,
-    9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8,
-    1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7,
-    2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6,
-    1, 3, 2, 8, 1, 2, 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8,
-    0, 6, 6, 4, 0, 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9,
-    0, 3, 3, 2, 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2,
-    9, 5, 1, 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8,
-    5, 6, 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7,
-    2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5,
-    0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, 3,
-    7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, 6, 2,
-    5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, 3, 7, 9,
-    8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, 0, 1, 4, 8,
-    6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, 9, 4, 3, 0, 4,
-    0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0,
-    8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5,
-    6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1,
-    2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5,
-    0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, 9, 0, 6, 2, 5, 1, 7, 7, 6, 3,
-    5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4,
-    5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3,
-    8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8,
-    5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2,
-    5, 2, 2, 2, 0, 4, 4, 6, 0, 4, 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6,
-    3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2,
-    5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2,
-    5, 5, 5, 5, 1, 1, 1, 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5,
-    8, 3, 4, 0, 4, 5, 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5,
-    6, 2, 8, 9, 1, 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8,
-    1, 2, 5, 1, 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9,
-    5, 3, 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3,
-    9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6,
-    2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1,
-    8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, 1,
-    7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, 4, 4,
-    8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, 7, 3, 7,
-    9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, 9, 5, 3, 3,
-    6, 9, 1, 4, 0, 6, 2, 5,
-};
-
-// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits
-// returns the number of additional decimal digits when left-shifting by shift.
-//
-// See below for preconditions.
-static uint32_t  //
-wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    uint32_t shift) {
-  // Masking with 0x3F should be unnecessary (assuming the preconditions) but
-  // it's cheap and ensures that we don't overflow the
-  // wuffs_base__private_implementation__hpd_left_shift array.
-  shift &= 63;
-
-  uint32_t x_a = wuffs_base__private_implementation__hpd_left_shift[shift];
-  uint32_t x_b = wuffs_base__private_implementation__hpd_left_shift[shift + 1];
-  uint32_t num_new_digits = x_a >> 11;
-  uint32_t pow5_a = 0x7FF & x_a;
-  uint32_t pow5_b = 0x7FF & x_b;
-
-  const uint8_t* pow5 =
-      &wuffs_base__private_implementation__powers_of_5[pow5_a];
-  uint32_t i = 0;
-  uint32_t n = pow5_b - pow5_a;
-  for (; i < n; i++) {
-    if (i >= h->num_digits) {
-      return num_new_digits - 1;
-    } else if (h->digits[i] == pow5[i]) {
-      continue;
-    } else if (h->digits[i] < pow5[i]) {
-      return num_new_digits - 1;
-    } else {
-      return num_new_digits;
-    }
-  }
-  return num_new_digits;
-}
-
-// --------
-
-// wuffs_base__private_implementation__high_prec_dec__rounded_integer returns
-// the integral (non-fractional) part of h, provided that it is 18 or fewer
-// decimal digits. For 19 or more digits, it returns UINT64_MAX. Note that:
-//   - (1 << 53) is    9007199254740992, which has 16 decimal digits.
-//   - (1 << 56) is   72057594037927936, which has 17 decimal digits.
-//   - (1 << 59) is  576460752303423488, which has 18 decimal digits.
-//   - (1 << 63) is 9223372036854775808, which has 19 decimal digits.
-// and that IEEE 754 double precision has 52 mantissa bits.
-//
-// That integral part is rounded-to-even: rounding 7.5 or 8.5 both give 8.
-//
-// h's negative bit is ignored: rounding -8.6 returns 9.
-//
-// See below for preconditions.
-static uint64_t  //
-wuffs_base__private_implementation__high_prec_dec__rounded_integer(
-    wuffs_base__private_implementation__high_prec_dec* h) {
-  if ((h->num_digits == 0) || (h->decimal_point < 0)) {
-    return 0;
-  } else if (h->decimal_point > 18) {
-    return UINT64_MAX;
-  }
-
-  uint32_t dp = (uint32_t)(h->decimal_point);
-  uint64_t n = 0;
-  uint32_t i = 0;
-  for (; i < dp; i++) {
-    n = (10 * n) + ((i < h->num_digits) ? h->digits[i] : 0);
-  }
-
-  bool round_up = false;
-  if (dp < h->num_digits) {
-    round_up = h->digits[dp] >= 5;
-    if ((h->digits[dp] == 5) && (dp + 1 == h->num_digits)) {
-      // We are exactly halfway. If we're truncated, round up, otherwise round
-      // to even.
-      round_up = h->truncated ||  //
-                 ((dp > 0) && (1 & h->digits[dp - 1]));
-    }
-  }
-  if (round_up) {
-    n++;
-  }
-
-  return n;
-}
-
-// wuffs_base__private_implementation__high_prec_dec__small_xshift shifts h's
-// number (where 'x' is 'l' or 'r' for left or right) by a small shift value.
-//
-// Preconditions:
-//  - h is non-NULL.
-//  - h->decimal_point is "not extreme".
-//  - shift is non-zero.
-//  - shift is "a small shift".
-//
-// "Not extreme" means within
-// ±WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
-//
-// "A small shift" means not more than
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.
-//
-// wuffs_base__private_implementation__high_prec_dec__rounded_integer and
-// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits
-// have the same preconditions.
-//
-// wuffs_base__private_implementation__high_prec_dec__lshift keeps the first
-// two preconditions but not the last two. Its shift argument is signed and
-// does not need to be "small": zero is a no-op, positive means left shift and
-// negative means right shift.
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__small_lshift(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    uint32_t shift) {
-  if (h->num_digits == 0) {
-    return;
-  }
-  uint32_t num_new_digits =
-      wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(
-          h, shift);
-  uint32_t rx = h->num_digits - 1;                   // Read  index.
-  uint32_t wx = h->num_digits - 1 + num_new_digits;  // Write index.
-  uint64_t n = 0;
-
-  // Repeat: pick up a digit, put down a digit, right to left.
-  while (((int32_t)rx) >= 0) {
-    n += ((uint64_t)(h->digits[rx])) << shift;
-    uint64_t quo = n / 10;
-    uint64_t rem = n - (10 * quo);
-    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-      h->digits[wx] = (uint8_t)rem;
-    } else if (rem > 0) {
-      h->truncated = true;
-    }
-    n = quo;
-    wx--;
-    rx--;
-  }
-
-  // Put down leading digits, right to left.
-  while (n > 0) {
-    uint64_t quo = n / 10;
-    uint64_t rem = n - (10 * quo);
-    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-      h->digits[wx] = (uint8_t)rem;
-    } else if (rem > 0) {
-      h->truncated = true;
-    }
-    n = quo;
-    wx--;
-  }
-
-  // Finish.
-  h->num_digits += num_new_digits;
-  if (h->num_digits >
-      WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-    h->num_digits = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION;
-  }
-  h->decimal_point += (int32_t)num_new_digits;
-  wuffs_base__private_implementation__high_prec_dec__trim(h);
-}
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__small_rshift(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    uint32_t shift) {
-  uint32_t rx = 0;  // Read  index.
-  uint32_t wx = 0;  // Write index.
-  uint64_t n = 0;
-
-  // Pick up enough leading digits to cover the first shift.
-  while ((n >> shift) == 0) {
-    if (rx < h->num_digits) {
-      // Read a digit.
-      n = (10 * n) + h->digits[rx++];
-    } else if (n == 0) {
-      // h's number used to be zero and remains zero.
-      return;
-    } else {
-      // Read sufficient implicit trailing zeroes.
-      while ((n >> shift) == 0) {
-        n = 10 * n;
-        rx++;
-      }
-      break;
-    }
-  }
-  h->decimal_point -= ((int32_t)(rx - 1));
-  if (h->decimal_point <
-      -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
-    // After the shift, h's number is effectively zero.
-    h->num_digits = 0;
-    h->decimal_point = 0;
-    h->negative = false;
-    h->truncated = false;
-    return;
-  }
-
-  // Repeat: pick up a digit, put down a digit, left to right.
-  uint64_t mask = (((uint64_t)(1)) << shift) - 1;
-  while (rx < h->num_digits) {
-    uint8_t new_digit = ((uint8_t)(n >> shift));
-    n = (10 * (n & mask)) + h->digits[rx++];
-    h->digits[wx++] = new_digit;
-  }
-
-  // Put down trailing digits, left to right.
-  while (n > 0) {
-    uint8_t new_digit = ((uint8_t)(n >> shift));
-    n = 10 * (n & mask);
-    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-      h->digits[wx++] = new_digit;
-    } else if (new_digit > 0) {
-      h->truncated = true;
-    }
-  }
-
-  // Finish.
-  h->num_digits = wx;
-  wuffs_base__private_implementation__high_prec_dec__trim(h);
-}
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__lshift(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    int32_t shift) {
-  if (shift > 0) {
-    while (shift > +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
-      wuffs_base__private_implementation__high_prec_dec__small_lshift(
-          h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL);
-      shift -= WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
-    }
-    wuffs_base__private_implementation__high_prec_dec__small_lshift(
-        h, ((uint32_t)(+shift)));
-  } else if (shift < 0) {
-    while (shift < -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
-      wuffs_base__private_implementation__high_prec_dec__small_rshift(
-          h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL);
-      shift += WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
-    }
-    wuffs_base__private_implementation__high_prec_dec__small_rshift(
-        h, ((uint32_t)(-shift)));
-  }
-}
-
-// --------
-
-// wuffs_base__private_implementation__high_prec_dec__round_etc rounds h's
-// number. For those functions that take an n argument, rounding produces at
-// most n digits (which is not necessarily at most n decimal places). Negative
-// n values are ignored, as well as any n greater than or equal to h's number
-// of digits. The etc__round_just_enough function implicitly chooses an n to
-// implement WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION.
-//
-// Preconditions:
-//  - h is non-NULL.
-//  - h->decimal_point is "not extreme".
-//
-// "Not extreme" means within
-// ±WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__round_down(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    int32_t n) {
-  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
-    return;
-  }
-  h->num_digits = (uint32_t)(n);
-  wuffs_base__private_implementation__high_prec_dec__trim(h);
-}
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__round_up(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    int32_t n) {
-  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
-    return;
-  }
-
-  for (n--; n >= 0; n--) {
-    if (h->digits[n] < 9) {
-      h->digits[n]++;
-      h->num_digits = (uint32_t)(n + 1);
-      return;
-    }
-  }
-
-  // The number is all 9s. Change to a single 1 and adjust the decimal point.
-  h->digits[0] = 1;
-  h->num_digits = 1;
-  h->decimal_point++;
-}
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__round_nearest(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    int32_t n) {
-  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
-    return;
-  }
-  bool up = h->digits[n] >= 5;
-  if ((h->digits[n] == 5) && ((n + 1) == ((int32_t)(h->num_digits)))) {
-    up = h->truncated ||  //
-         ((n > 0) && ((h->digits[n - 1] & 1) != 0));
-  }
-
-  if (up) {
-    wuffs_base__private_implementation__high_prec_dec__round_up(h, n);
-  } else {
-    wuffs_base__private_implementation__high_prec_dec__round_down(h, n);
-  }
-}
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__round_just_enough(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    int32_t exp2,
-    uint64_t mantissa) {
-  // The magic numbers 52 and 53 in this function are because IEEE 754 double
-  // precision has 52 mantissa bits.
-  //
-  // Let f be the floating point number represented by exp2 and mantissa (and
-  // also the number in h): the number (mantissa * (2 ** (exp2 - 52))).
-  //
-  // If f is zero or a small integer, we can return early.
-  if ((mantissa == 0) ||
-      ((exp2 < 53) && (h->decimal_point >= ((int32_t)(h->num_digits))))) {
-    return;
-  }
-
-  // The smallest normal f has an exp2 of -1022 and a mantissa of (1 << 52).
-  // Subnormal numbers have the same exp2 but a smaller mantissa.
-  static const int32_t min_incl_normal_exp2 = -1022;
-  static const uint64_t min_incl_normal_mantissa = 0x0010000000000000ul;
-
-  // Compute lower and upper bounds such that any number between them (possibly
-  // inclusive) will round to f. First, the lower bound. Our number f is:
-  //   ((mantissa + 0)         * (2 ** (  exp2 - 52)))
-  //
-  // The next lowest floating point number is:
-  //   ((mantissa - 1)         * (2 ** (  exp2 - 52)))
-  // unless (mantissa - 1) drops the (1 << 52) bit and exp2 is not the
-  // min_incl_normal_exp2. Either way, call it:
-  //   ((l_mantissa)           * (2 ** (l_exp2 - 52)))
-  //
-  // The lower bound is halfway between them (noting that 52 became 53):
-  //   (((2 * l_mantissa) + 1) * (2 ** (l_exp2 - 53)))
-  int32_t l_exp2 = exp2;
-  uint64_t l_mantissa = mantissa - 1;
-  if ((exp2 > min_incl_normal_exp2) && (mantissa <= min_incl_normal_mantissa)) {
-    l_exp2 = exp2 - 1;
-    l_mantissa = (2 * mantissa) - 1;
-  }
-  wuffs_base__private_implementation__high_prec_dec lower;
-  wuffs_base__private_implementation__high_prec_dec__assign(
-      &lower, (2 * l_mantissa) + 1, false);
-  wuffs_base__private_implementation__high_prec_dec__lshift(&lower,
-                                                            l_exp2 - 53);
-
-  // Next, the upper bound. Our number f is:
-  //   ((mantissa + 0)       * (2 ** (exp2 - 52)))
-  //
-  // The next highest floating point number is:
-  //   ((mantissa + 1)       * (2 ** (exp2 - 52)))
-  //
-  // The upper bound is halfway between them (noting that 52 became 53):
-  //   (((2 * mantissa) + 1) * (2 ** (exp2 - 53)))
-  wuffs_base__private_implementation__high_prec_dec upper;
-  wuffs_base__private_implementation__high_prec_dec__assign(
-      &upper, (2 * mantissa) + 1, false);
-  wuffs_base__private_implementation__high_prec_dec__lshift(&upper, exp2 - 53);
-
-  // The lower and upper bounds are possible outputs only if the original
-  // mantissa is even, so that IEEE round-to-even would round to the original
-  // mantissa and not its neighbors.
-  bool inclusive = (mantissa & 1) == 0;
-
-  // As we walk the digits, we want to know whether rounding up would fall
-  // within the upper bound. This is tracked by upper_delta:
-  //  - When -1, the digits of h and upper are the same so far.
-  //  - When +0, we saw a difference of 1 between h and upper on a previous
-  //    digit and subsequently only 9s for h and 0s for upper. Thus, rounding
-  //    up may fall outside of the bound if !inclusive.
-  //  - When +1, the difference is greater than 1 and we know that rounding up
-  //    falls within the bound.
-  //
-  // This is a state machine with three states. The numerical value for each
-  // state (-1, +0 or +1) isn't important, other than their order.
-  int upper_delta = -1;
-
-  // We can now figure out the shortest number of digits required. Walk the
-  // digits until h has distinguished itself from lower or upper.
-  //
-  // The zi and zd variables are indexes and digits, for z in l (lower), h (the
-  // number) and u (upper).
-  //
-  // The lower, h and upper numbers may have their decimal points at different
-  // places. In this case, upper is the longest, so we iterate ui starting from
-  // 0 and iterate li and hi starting from either 0 or -1.
-  int32_t ui = 0;
-  for (;; ui++) {
-    // Calculate hd, the middle number's digit.
-    int32_t hi = ui - upper.decimal_point + h->decimal_point;
-    if (hi >= ((int32_t)(h->num_digits))) {
-      break;
-    }
-    uint8_t hd = (((uint32_t)hi) < h->num_digits) ? h->digits[hi] : 0;
-
-    // Calculate ld, the lower bound's digit.
-    int32_t li = ui - upper.decimal_point + lower.decimal_point;
-    uint8_t ld = (((uint32_t)li) < lower.num_digits) ? lower.digits[li] : 0;
-
-    // We can round down (truncate) if lower has a different digit than h or if
-    // lower is inclusive and is exactly the result of rounding down (i.e. we
-    // have reached the final digit of lower).
-    bool can_round_down =
-        (ld != hd) ||  //
-        (inclusive && ((li + 1) == ((int32_t)(lower.num_digits))));
-
-    // Calculate ud, the upper bound's digit, and update upper_delta.
-    uint8_t ud = (((uint32_t)ui) < upper.num_digits) ? upper.digits[ui] : 0;
-    if (upper_delta < 0) {
-      if ((hd + 1) < ud) {
-        // For example:
-        // h     = 12345???
-        // upper = 12347???
-        upper_delta = +1;
-      } else if (hd != ud) {
-        // For example:
-        // h     = 12345???
-        // upper = 12346???
-        upper_delta = +0;
-      }
-    } else if (upper_delta == 0) {
-      if ((hd != 9) || (ud != 0)) {
-        // For example:
-        // h     = 1234598?
-        // upper = 1234600?
-        upper_delta = +1;
-      }
-    }
-
-    // We can round up if upper has a different digit than h and either upper
-    // is inclusive or upper is bigger than the result of rounding up.
-    bool can_round_up =
-        (upper_delta > 0) ||    //
-        ((upper_delta == 0) &&  //
-         (inclusive || ((ui + 1) < ((int32_t)(upper.num_digits)))));
-
-    // If we can round either way, round to nearest. If we can round only one
-    // way, do it. If we can't round, continue the loop.
-    if (can_round_down) {
-      if (can_round_up) {
-        wuffs_base__private_implementation__high_prec_dec__round_nearest(
-            h, hi + 1);
-        return;
-      } else {
-        wuffs_base__private_implementation__high_prec_dec__round_down(h,
-                                                                      hi + 1);
-        return;
-      }
-    } else {
-      if (can_round_up) {
-        wuffs_base__private_implementation__high_prec_dec__round_up(h, hi + 1);
-        return;
-      }
-    }
-  }
-}
-
-// --------
-
-// wuffs_base__private_implementation__powers_of_10 contains truncated
-// approximations to the powers of 10, ranging from 1e-326 to 1e+310 inclusive,
-// as 637 uint32_t quintuples (128-bit mantissa, 32-bit base-2 exponent biased
-// by 0x04BE (which is 1214)). The array size is 637 * 5 = 3185.
-//
-// The 1214 bias in this look-up table equals 1023 + 191. 1023 is the bias for
-// IEEE 754 double-precision floating point. 191 is ((3 * 64) - 1) and
-// wuffs_base__private_implementation__parse_number_f64_eisel works with
-// multiples-of-64-bit mantissas.
-//
-// For example, the third approximation, for 1e-324, consists of the uint32_t
-// quintuple (0x828675B9, 0x52064CAC, 0x5DCE35EA, 0xCF42894A, 0x000A). The
-// first four form a little-endian uint128_t value. The last one is an int32_t
-// value: -1140. Together, they represent the approximation to 1e-324:
-//   0xCF42894A_5DCE35EA_52064CAC_828675B9 * (2 ** (0x000A - 0x04BE))
-//
-// Similarly, 1e+4 is approximated by the uint64_t quintuple
-// (0x00000000, 0x00000000, 0x00000000, 0x9C400000, 0x044C) which means:
-//   0x9C400000_00000000_00000000_00000000 * (2 ** (0x044C - 0x04BE))
-//
-// Similarly, 1e+68 is approximated by the uint64_t quintuple
-// (0x63EE4BDD, 0x4CA7AAA8, 0xD4C4FB27, 0xED63A231, 0x0520) which means:
-//   0xED63A231_D4C4FB27.4CA7AAA8_63EE4BDD * (2 ** (0x0520 - 0x04BE))
-//
-// This table was generated by by script/print-mpb-powers-of-10.go
-static const uint32_t wuffs_base__private_implementation__powers_of_10[3185] = {
-    0xF7604B57, 0x014BB630, 0xFE98746D, 0x84A57695, 0x0004,  // 1e-326
-    0x35385E2D, 0x419EA3BD, 0x7E3E9188, 0xA5CED43B, 0x0007,  // 1e-325
-    0x828675B9, 0x52064CAC, 0x5DCE35EA, 0xCF42894A, 0x000A,  // 1e-324
-    0xD1940993, 0x7343EFEB, 0x7AA0E1B2, 0x818995CE, 0x000E,  // 1e-323
-    0xC5F90BF8, 0x1014EBE6, 0x19491A1F, 0xA1EBFB42, 0x0011,  // 1e-322
-    0x77774EF6, 0xD41A26E0, 0x9F9B60A6, 0xCA66FA12, 0x0014,  // 1e-321
-    0x955522B4, 0x8920B098, 0x478238D0, 0xFD00B897, 0x0017,  // 1e-320
-    0x5D5535B0, 0x55B46E5F, 0x8CB16382, 0x9E20735E, 0x001B,  // 1e-319
-    0x34AA831D, 0xEB2189F7, 0x2FDDBC62, 0xC5A89036, 0x001E,  // 1e-318
-    0x01D523E4, 0xA5E9EC75, 0xBBD52B7B, 0xF712B443, 0x0021,  // 1e-317
-    0x2125366E, 0x47B233C9, 0x55653B2D, 0x9A6BB0AA, 0x0025,  // 1e-316
-    0x696E840A, 0x999EC0BB, 0xEABE89F8, 0xC1069CD4, 0x0028,  // 1e-315
-    0x43CA250D, 0xC00670EA, 0x256E2C76, 0xF148440A, 0x002B,  // 1e-314
-    0x6A5E5728, 0x38040692, 0x5764DBCA, 0x96CD2A86, 0x002F,  // 1e-313
-    0x04F5ECF2, 0xC6050837, 0xED3E12BC, 0xBC807527, 0x0032,  // 1e-312
-    0xC633682E, 0xF7864A44, 0xE88D976B, 0xEBA09271, 0x0035,  // 1e-311
-    0xFBE0211D, 0x7AB3EE6A, 0x31587EA3, 0x93445B87, 0x0039,  // 1e-310
-    0xBAD82964, 0x5960EA05, 0xFDAE9E4C, 0xB8157268, 0x003C,  // 1e-309
-    0x298E33BD, 0x6FB92487, 0x3D1A45DF, 0xE61ACF03, 0x003F,  // 1e-308
-    0x79F8E056, 0xA5D3B6D4, 0x06306BAB, 0x8FD0C162, 0x0043,  // 1e-307
-    0x9877186C, 0x8F48A489, 0x87BC8696, 0xB3C4F1BA, 0x0046,  // 1e-306
-    0xFE94DE87, 0x331ACDAB, 0x29ABA83C, 0xE0B62E29, 0x0049,  // 1e-305
-    0x7F1D0B14, 0x9FF0C08B, 0xBA0B4925, 0x8C71DCD9, 0x004D,  // 1e-304
-    0x5EE44DD9, 0x07ECF0AE, 0x288E1B6F, 0xAF8E5410, 0x0050,  // 1e-303
-    0xF69D6150, 0xC9E82CD9, 0x32B1A24A, 0xDB71E914, 0x0053,  // 1e-302
-    0x3A225CD2, 0xBE311C08, 0x9FAF056E, 0x892731AC, 0x0057,  // 1e-301
-    0x48AAF406, 0x6DBD630A, 0xC79AC6CA, 0xAB70FE17, 0x005A,  // 1e-300
-    0xDAD5B108, 0x092CBBCC, 0xB981787D, 0xD64D3D9D, 0x005D,  // 1e-299
-    0x08C58EA5, 0x25BBF560, 0x93F0EB4E, 0x85F04682, 0x0061,  // 1e-298
-    0x0AF6F24E, 0xAF2AF2B8, 0x38ED2621, 0xA76C5823, 0x0064,  // 1e-297
-    0x0DB4AEE1, 0x1AF5AF66, 0x07286FAA, 0xD1476E2C, 0x0067,  // 1e-296
-    0xC890ED4D, 0x50D98D9F, 0x847945CA, 0x82CCA4DB, 0x006B,  // 1e-295
-    0xBAB528A0, 0xE50FF107, 0x6597973C, 0xA37FCE12, 0x006E,  // 1e-294
-    0xA96272C8, 0x1E53ED49, 0xFEFD7D0C, 0xCC5FC196, 0x0071,  // 1e-293
-    0x13BB0F7A, 0x25E8E89C, 0xBEBCDC4F, 0xFF77B1FC, 0x0074,  // 1e-292
-    0x8C54E9AC, 0x77B19161, 0xF73609B1, 0x9FAACF3D, 0x0078,  // 1e-291
-    0xEF6A2417, 0xD59DF5B9, 0x75038C1D, 0xC795830D, 0x007B,  // 1e-290
-    0x6B44AD1D, 0x4B057328, 0xD2446F25, 0xF97AE3D0, 0x007E,  // 1e-289
-    0x430AEC32, 0x4EE367F9, 0x836AC577, 0x9BECCE62, 0x0082,  // 1e-288
-    0x93CDA73F, 0x229C41F7, 0x244576D5, 0xC2E801FB, 0x0085,  // 1e-287
-    0x78C1110F, 0x6B435275, 0xED56D48A, 0xF3A20279, 0x0088,  // 1e-286
-    0x6B78AAA9, 0x830A1389, 0x345644D6, 0x9845418C, 0x008C,  // 1e-285
-    0xC656D553, 0x23CC986B, 0x416BD60C, 0xBE5691EF, 0x008F,  // 1e-284
-    0xB7EC8AA8, 0x2CBFBE86, 0x11C6CB8F, 0xEDEC366B, 0x0092,  // 1e-283
-    0x32F3D6A9, 0x7BF7D714, 0xEB1C3F39, 0x94B3A202, 0x0096,  // 1e-282
-    0x3FB0CC53, 0xDAF5CCD9, 0xA5E34F07, 0xB9E08A83, 0x0099,  // 1e-281
-    0x8F9CFF68, 0xD1B3400F, 0x8F5C22C9, 0xE858AD24, 0x009C,  // 1e-280
-    0xB9C21FA1, 0x23100809, 0xD99995BE, 0x91376C36, 0x00A0,  // 1e-279
-    0x2832A78A, 0xABD40A0C, 0x8FFFFB2D, 0xB5854744, 0x00A3,  // 1e-278
-    0x323F516C, 0x16C90C8F, 0xB3FFF9F9, 0xE2E69915, 0x00A6,  // 1e-277
-    0x7F6792E3, 0xAE3DA7D9, 0x907FFC3B, 0x8DD01FAD, 0x00AA,  // 1e-276
-    0xDF41779C, 0x99CD11CF, 0xF49FFB4A, 0xB1442798, 0x00AD,  // 1e-275
-    0xD711D583, 0x40405643, 0x31C7FA1D, 0xDD95317F, 0x00B0,  // 1e-274
-    0x666B2572, 0x482835EA, 0x7F1CFC52, 0x8A7D3EEF, 0x00B4,  // 1e-273
-    0x0005EECF, 0xDA324365, 0x5EE43B66, 0xAD1C8EAB, 0x00B7,  // 1e-272
-    0x40076A82, 0x90BED43E, 0x369D4A40, 0xD863B256, 0x00BA,  // 1e-271
-    0xE804A291, 0x5A7744A6, 0xE2224E68, 0x873E4F75, 0x00BE,  // 1e-270
-    0xA205CB36, 0x711515D0, 0x5AAAE202, 0xA90DE353, 0x00C1,  // 1e-269
-    0xCA873E03, 0x0D5A5B44, 0x31559A83, 0xD3515C28, 0x00C4,  // 1e-268
-    0xFE9486C2, 0xE858790A, 0x1ED58091, 0x8412D999, 0x00C8,  // 1e-267
-    0xBE39A872, 0x626E974D, 0x668AE0B6, 0xA5178FFF, 0x00CB,  // 1e-266
-    0x2DC8128F, 0xFB0A3D21, 0x402D98E3, 0xCE5D73FF, 0x00CE,  // 1e-265
-    0xBC9D0B99, 0x7CE66634, 0x881C7F8E, 0x80FA687F, 0x00D2,  // 1e-264
-    0xEBC44E80, 0x1C1FFFC1, 0x6A239F72, 0xA139029F, 0x00D5,  // 1e-263
-    0x66B56220, 0xA327FFB2, 0x44AC874E, 0xC9874347, 0x00D8,  // 1e-262
-    0x0062BAA8, 0x4BF1FF9F, 0x15D7A922, 0xFBE91419, 0x00DB,  // 1e-261
-    0x603DB4A9, 0x6F773FC3, 0xADA6C9B5, 0x9D71AC8F, 0x00DF,  // 1e-260
-    0x384D21D3, 0xCB550FB4, 0x99107C22, 0xC4CE17B3, 0x00E2,  // 1e-259
-    0x46606A48, 0x7E2A53A1, 0x7F549B2B, 0xF6019DA0, 0x00E5,  // 1e-258
-    0xCBFC426D, 0x2EDA7444, 0x4F94E0FB, 0x99C10284, 0x00E9,  // 1e-257
-    0xFEFB5308, 0xFA911155, 0x637A1939, 0xC0314325, 0x00EC,  // 1e-256
-    0x7EBA27CA, 0x793555AB, 0xBC589F88, 0xF03D93EE, 0x00EF,  // 1e-255
-    0x2F3458DE, 0x4BC1558B, 0x35B763B5, 0x96267C75, 0x00F3,  // 1e-254
-    0xFB016F16, 0x9EB1AAED, 0x83253CA2, 0xBBB01B92, 0x00F6,  // 1e-253
-    0x79C1CADC, 0x465E15A9, 0x23EE8BCB, 0xEA9C2277, 0x00F9,  // 1e-252
-    0xEC191EC9, 0x0BFACD89, 0x7675175F, 0x92A1958A, 0x00FD,  // 1e-251
-    0x671F667B, 0xCEF980EC, 0x14125D36, 0xB749FAED, 0x0100,  // 1e-250
-    0x80E7401A, 0x82B7E127, 0x5916F484, 0xE51C79A8, 0x0103,  // 1e-249
-    0xB0908810, 0xD1B2ECB8, 0x37AE58D2, 0x8F31CC09, 0x0107,  // 1e-248
-    0xDCB4AA15, 0x861FA7E6, 0x8599EF07, 0xB2FE3F0B, 0x010A,  // 1e-247
-    0x93E1D49A, 0x67A791E0, 0x67006AC9, 0xDFBDCECE, 0x010D,  // 1e-246
-    0x5C6D24E0, 0xE0C8BB2C, 0x006042BD, 0x8BD6A141, 0x0111,  // 1e-245
-    0x73886E18, 0x58FAE9F7, 0x4078536D, 0xAECC4991, 0x0114,  // 1e-244
-    0x506A899E, 0xAF39A475, 0x90966848, 0xDA7F5BF5, 0x0117,  // 1e-243
-    0x52429603, 0x6D8406C9, 0x7A5E012D, 0x888F9979, 0x011B,  // 1e-242
-    0xA6D33B83, 0xC8E5087B, 0xD8F58178, 0xAAB37FD7, 0x011E,  // 1e-241
-    0x90880A64, 0xFB1E4A9A, 0xCF32E1D6, 0xD5605FCD, 0x0121,  // 1e-240
-    0x9A55067F, 0x5CF2EEA0, 0xA17FCD26, 0x855C3BE0, 0x0125,  // 1e-239
-    0xC0EA481E, 0xF42FAA48, 0xC9DFC06F, 0xA6B34AD8, 0x0128,  // 1e-238
-    0xF124DA26, 0xF13B94DA, 0xFC57B08B, 0xD0601D8E, 0x012B,  // 1e-237
-    0xD6B70858, 0x76C53D08, 0x5DB6CE57, 0x823C1279, 0x012F,  // 1e-236
-    0x0C64CA6E, 0x54768C4B, 0xB52481ED, 0xA2CB1717, 0x0132,  // 1e-235
-    0xCF7DFD09, 0xA9942F5D, 0xA26DA268, 0xCB7DDCDD, 0x0135,  // 1e-234
-    0x435D7C4C, 0xD3F93B35, 0x0B090B02, 0xFE5D5415, 0x0138,  // 1e-233
-    0x4A1A6DAF, 0xC47BC501, 0x26E5A6E1, 0x9EFA548D, 0x013C,  // 1e-232
-    0x9CA1091B, 0x359AB641, 0x709F109A, 0xC6B8E9B0, 0x013F,  // 1e-231
-    0x03C94B62, 0xC30163D2, 0x8CC6D4C0, 0xF867241C, 0x0142,  // 1e-230
-    0x425DCF1D, 0x79E0DE63, 0xD7FC44F8, 0x9B407691, 0x0146,  // 1e-229
-    0x12F542E4, 0x985915FC, 0x4DFB5636, 0xC2109436, 0x0149,  // 1e-228
-    0x17B2939D, 0x3E6F5B7B, 0xE17A2BC4, 0xF294B943, 0x014C,  // 1e-227
-    0xEECF9C42, 0xA705992C, 0x6CEC5B5A, 0x979CF3CA, 0x0150,  // 1e-226
-    0x2A838353, 0x50C6FF78, 0x08277231, 0xBD8430BD, 0x0153,  // 1e-225
-    0x35246428, 0xA4F8BF56, 0x4A314EBD, 0xECE53CEC, 0x0156,  // 1e-224
-    0xE136BE99, 0x871B7795, 0xAE5ED136, 0x940F4613, 0x015A,  // 1e-223
-    0x59846E3F, 0x28E2557B, 0x99F68584, 0xB9131798, 0x015D,  // 1e-222
-    0x2FE589CF, 0x331AEADA, 0xC07426E5, 0xE757DD7E, 0x0160,  // 1e-221
-    0x5DEF7621, 0x3FF0D2C8, 0x3848984F, 0x9096EA6F, 0x0164,  // 1e-220
-    0x756B53A9, 0x0FED077A, 0x065ABE63, 0xB4BCA50B, 0x0167,  // 1e-219
-    0x12C62894, 0xD3E84959, 0xC7F16DFB, 0xE1EBCE4D, 0x016A,  // 1e-218
-    0xABBBD95C, 0x64712DD7, 0x9CF6E4BD, 0x8D3360F0, 0x016E,  // 1e-217
-    0x96AACFB3, 0xBD8D794D, 0xC4349DEC, 0xB080392C, 0x0171,  // 1e-216
-    0xFC5583A0, 0xECF0D7A0, 0xF541C567, 0xDCA04777, 0x0174,  // 1e-215
-    0x9DB57244, 0xF41686C4, 0xF9491B60, 0x89E42CAA, 0x0178,  // 1e-214
-    0xC522CED5, 0x311C2875, 0xB79B6239, 0xAC5D37D5, 0x017B,  // 1e-213
-    0x366B828B, 0x7D633293, 0x25823AC7, 0xD77485CB, 0x017E,  // 1e-212
-    0x02033197, 0xAE5DFF9C, 0xF77164BC, 0x86A8D39E, 0x0182,  // 1e-211
-    0x0283FDFC, 0xD9F57F83, 0xB54DBDEB, 0xA8530886, 0x0185,  // 1e-210
-    0xC324FD7B, 0xD072DF63, 0x62A12D66, 0xD267CAA8, 0x0188,  // 1e-209
-    0x59F71E6D, 0x4247CB9E, 0x3DA4BC60, 0x8380DEA9, 0x018C,  // 1e-208
-    0xF074E608, 0x52D9BE85, 0x8D0DEB78, 0xA4611653, 0x018F,  // 1e-207
-    0x6C921F8B, 0x67902E27, 0x70516656, 0xCD795BE8, 0x0192,  // 1e-206
-    0xA3DB53B6, 0x00BA1CD8, 0x4632DFF6, 0x806BD971, 0x0196,  // 1e-205
-    0xCCD228A4, 0x80E8A40E, 0x97BF97F3, 0xA086CFCD, 0x0199,  // 1e-204
-    0x8006B2CD, 0x6122CD12, 0xFDAF7DF0, 0xC8A883C0, 0x019C,  // 1e-203
-    0x20085F81, 0x796B8057, 0x3D1B5D6C, 0xFAD2A4B1, 0x019F,  // 1e-202
-    0x74053BB0, 0xCBE33036, 0xC6311A63, 0x9CC3A6EE, 0x01A3,  // 1e-201
-    0x11068A9C, 0xBEDBFC44, 0x77BD60FC, 0xC3F490AA, 0x01A6,  // 1e-200
-    0x15482D44, 0xEE92FB55, 0x15ACB93B, 0xF4F1B4D5, 0x01A9,  // 1e-199
-    0x2D4D1C4A, 0x751BDD15, 0x2D8BF3C5, 0x99171105, 0x01AD,  // 1e-198
-    0x78A0635D, 0xD262D45A, 0x78EEF0B6, 0xBF5CD546, 0x01B0,  // 1e-197
-    0x16C87C34, 0x86FB8971, 0x172AACE4, 0xEF340A98, 0x01B3,  // 1e-196
-    0xAE3D4DA0, 0xD45D35E6, 0x0E7AAC0E, 0x9580869F, 0x01B7,  // 1e-195
-    0x59CCA109, 0x89748360, 0xD2195712, 0xBAE0A846, 0x01BA,  // 1e-194
-    0x703FC94B, 0x2BD1A438, 0x869FACD7, 0xE998D258, 0x01BD,  // 1e-193
-    0x4627DDCF, 0x7B6306A3, 0x5423CC06, 0x91FF8377, 0x01C1,  // 1e-192
-    0x17B1D542, 0x1A3BC84C, 0x292CBF08, 0xB67F6455, 0x01C4,  // 1e-191
-    0x1D9E4A93, 0x20CABA5F, 0x7377EECA, 0xE41F3D6A, 0x01C7,  // 1e-190
-    0x7282EE9C, 0x547EB47B, 0x882AF53E, 0x8E938662, 0x01CB,  // 1e-189
-    0x4F23AA43, 0xE99E619A, 0x2A35B28D, 0xB23867FB, 0x01CE,  // 1e-188
-    0xE2EC94D4, 0x6405FA00, 0xF4C31F31, 0xDEC681F9, 0x01D1,  // 1e-187
-    0x8DD3DD04, 0xDE83BC40, 0x38F9F37E, 0x8B3C113C, 0x01D5,  // 1e-186
-    0xB148D445, 0x9624AB50, 0x4738705E, 0xAE0B158B, 0x01D8,  // 1e-185
-    0xDD9B0957, 0x3BADD624, 0x19068C76, 0xD98DDAEE, 0x01DB,  // 1e-184
-    0x0A80E5D6, 0xE54CA5D7, 0xCFA417C9, 0x87F8A8D4, 0x01DF,  // 1e-183
-    0xCD211F4C, 0x5E9FCF4C, 0x038D1DBC, 0xA9F6D30A, 0x01E2,  // 1e-182
-    0x0069671F, 0x7647C320, 0x8470652B, 0xD47487CC, 0x01E5,  // 1e-181
-    0x0041E073, 0x29ECD9F4, 0xD2C63F3B, 0x84C8D4DF, 0x01E9,  // 1e-180
-    0x00525890, 0xF4681071, 0xC777CF09, 0xA5FB0A17, 0x01EC,  // 1e-179
-    0x4066EEB4, 0x7182148D, 0xB955C2CC, 0xCF79CC9D, 0x01EF,  // 1e-178
-    0x48405530, 0xC6F14CD8, 0x93D599BF, 0x81AC1FE2, 0x01F3,  // 1e-177
-    0x5A506A7C, 0xB8ADA00E, 0x38CB002F, 0xA21727DB, 0x01F6,  // 1e-176
-    0xF0E4851C, 0xA6D90811, 0x06FDC03B, 0xCA9CF1D2, 0x01F9,  // 1e-175
-    0x6D1DA663, 0x908F4A16, 0x88BD304A, 0xFD442E46, 0x01FC,  // 1e-174
-    0x043287FE, 0x9A598E4E, 0x15763E2E, 0x9E4A9CEC, 0x0200,  // 1e-173
-    0x853F29FD, 0x40EFF1E1, 0x1AD3CDBA, 0xC5DD4427, 0x0203,  // 1e-172
-    0xE68EF47C, 0xD12BEE59, 0xE188C128, 0xF7549530, 0x0206,  // 1e-171
-    0x301958CE, 0x82BB74F8, 0x8CF578B9, 0x9A94DD3E, 0x020A,  // 1e-170
-    0x3C1FAF01, 0xE36A5236, 0x3032D6E7, 0xC13A148E, 0x020D,  // 1e-169
-    0xCB279AC1, 0xDC44E6C3, 0xBC3F8CA1, 0xF18899B1, 0x0210,  // 1e-168
-    0x5EF8C0B9, 0x29AB103A, 0x15A7B7E5, 0x96F5600F, 0x0214,  // 1e-167
-    0xF6B6F0E7, 0x7415D448, 0xDB11A5DE, 0xBCB2B812, 0x0217,  // 1e-166
-    0x3464AD21, 0x111B495B, 0x91D60F56, 0xEBDF6617, 0x021A,  // 1e-165
-    0x00BEEC34, 0xCAB10DD9, 0xBB25C995, 0x936B9FCE, 0x021E,  // 1e-164
-    0x40EEA742, 0x3D5D514F, 0x69EF3BFB, 0xB84687C2, 0x0221,  // 1e-163
-    0x112A5112, 0x0CB4A5A3, 0x046B0AFA, 0xE65829B3, 0x0224,  // 1e-162
-    0xEABA72AB, 0x47F0E785, 0xE2C2E6DC, 0x8FF71A0F, 0x0228,  // 1e-161
-    0x65690F56, 0x59ED2167, 0xDB73A093, 0xB3F4E093, 0x022B,  // 1e-160
-    0x3EC3532C, 0x306869C1, 0xD25088B8, 0xE0F218B8, 0x022E,  // 1e-159
-    0xC73A13FB, 0x1E414218, 0x83725573, 0x8C974F73, 0x0232,  // 1e-158
-    0xF90898FA, 0xE5D1929E, 0x644EEACF, 0xAFBD2350, 0x0235,  // 1e-157
-    0xB74ABF39, 0xDF45F746, 0x7D62A583, 0xDBAC6C24, 0x0238,  // 1e-156
-    0x328EB783, 0x6B8BBA8C, 0xCE5DA772, 0x894BC396, 0x023C,  // 1e-155
-    0x3F326564, 0x066EA92F, 0x81F5114F, 0xAB9EB47C, 0x023F,  // 1e-154
-    0x0EFEFEBD, 0xC80A537B, 0xA27255A2, 0xD686619B, 0x0242,  // 1e-153
-    0xE95F5F36, 0xBD06742C, 0x45877585, 0x8613FD01, 0x0246,  // 1e-152
-    0x23B73704, 0x2C481138, 0x96E952E7, 0xA798FC41, 0x0249,  // 1e-151
-    0x2CA504C5, 0xF75A1586, 0xFCA3A7A0, 0xD17F3B51, 0x024C,  // 1e-150
-    0xDBE722FB, 0x9A984D73, 0x3DE648C4, 0x82EF8513, 0x0250,  // 1e-149
-    0xD2E0EBBA, 0xC13E60D0, 0x0D5FDAF5, 0xA3AB6658, 0x0253,  // 1e-148
-    0x079926A8, 0x318DF905, 0x10B7D1B3, 0xCC963FEE, 0x0256,  // 1e-147
-    0x497F7052, 0xFDF17746, 0x94E5C61F, 0xFFBBCFE9, 0x0259,  // 1e-146
-    0xEDEFA633, 0xFEB6EA8B, 0xFD0F9BD3, 0x9FD561F1, 0x025D,  // 1e-145
-    0xE96B8FC0, 0xFE64A52E, 0x7C5382C8, 0xC7CABA6E, 0x0260,  // 1e-144
-    0xA3C673B0, 0x3DFDCE7A, 0x1B68637B, 0xF9BD690A, 0x0263,  // 1e-143
-    0xA65C084E, 0x06BEA10C, 0x51213E2D, 0x9C1661A6, 0x0267,  // 1e-142
-    0xCFF30A62, 0x486E494F, 0xE5698DB8, 0xC31BFA0F, 0x026A,  // 1e-141
-    0xC3EFCCFA, 0x5A89DBA3, 0xDEC3F126, 0xF3E2F893, 0x026D,  // 1e-140
-    0x5A75E01C, 0xF8962946, 0x6B3A76B7, 0x986DDB5C, 0x0271,  // 1e-139
-    0xF1135823, 0xF6BBB397, 0x86091465, 0xBE895233, 0x0274,  // 1e-138
-    0xED582E2C, 0x746AA07D, 0x678B597F, 0xEE2BA6C0, 0x0277,  // 1e-137
-    0xB4571CDC, 0xA8C2A44E, 0x40B717EF, 0x94DB4838, 0x027B,  // 1e-136
-    0x616CE413, 0x92F34D62, 0x50E4DDEB, 0xBA121A46, 0x027E,  // 1e-135
-    0xF9C81D17, 0x77B020BA, 0xE51E1566, 0xE896A0D7, 0x0281,  // 1e-134
-    0xDC1D122E, 0x0ACE1474, 0xEF32CD60, 0x915E2486, 0x0285,  // 1e-133
-    0x132456BA, 0x0D819992, 0xAAFF80B8, 0xB5B5ADA8, 0x0288,  // 1e-132
-    0x97ED6C69, 0x10E1FFF6, 0xD5BF60E6, 0xE3231912, 0x028B,  // 1e-131
-    0x1EF463C1, 0xCA8D3FFA, 0xC5979C8F, 0x8DF5EFAB, 0x028F,  // 1e-130
-    0xA6B17CB2, 0xBD308FF8, 0xB6FD83B3, 0xB1736B96, 0x0292,  // 1e-129
-    0xD05DDBDE, 0xAC7CB3F6, 0x64BCE4A0, 0xDDD0467C, 0x0295,  // 1e-128
-    0x423AA96B, 0x6BCDF07A, 0xBEF60EE4, 0x8AA22C0D, 0x0299,  // 1e-127
-    0xD2C953C6, 0x86C16C98, 0x2EB3929D, 0xAD4AB711, 0x029C,  // 1e-126
-    0x077BA8B7, 0xE871C7BF, 0x7A607744, 0xD89D64D5, 0x029F,  // 1e-125
-    0x64AD4972, 0x11471CD7, 0x6C7C4A8B, 0x87625F05, 0x02A3,  // 1e-124
-    0x3DD89BCF, 0xD598E40D, 0xC79B5D2D, 0xA93AF6C6, 0x02A6,  // 1e-123
-    0x8D4EC2C3, 0x4AFF1D10, 0x79823479, 0xD389B478, 0x02A9,  // 1e-122
-    0x585139BA, 0xCEDF722A, 0x4BF160CB, 0x843610CB, 0x02AD,  // 1e-121
-    0xEE658828, 0xC2974EB4, 0x1EEDB8FE, 0xA54394FE, 0x02B0,  // 1e-120
-    0x29FEEA32, 0x733D2262, 0xA6A9273E, 0xCE947A3D, 0x02B3,  // 1e-119
-    0x5A3F525F, 0x0806357D, 0x8829B887, 0x811CCC66, 0x02B7,  // 1e-118
-    0xB0CF26F7, 0xCA07C2DC, 0x2A3426A8, 0xA163FF80, 0x02BA,  // 1e-117
-    0xDD02F0B5, 0xFC89B393, 0x34C13052, 0xC9BCFF60, 0x02BD,  // 1e-116
-    0xD443ACE2, 0xBBAC2078, 0x41F17C67, 0xFC2C3F38, 0x02C0,  // 1e-115
-    0x84AA4C0D, 0xD54B944B, 0x2936EDC0, 0x9D9BA783, 0x02C4,  // 1e-114
-    0x65D4DF11, 0x0A9E795E, 0xF384A931, 0xC5029163, 0x02C7,  // 1e-113
-    0xFF4A16D5, 0x4D4617B5, 0xF065D37D, 0xF64335BC, 0x02CA,  // 1e-112
-    0xBF8E4E45, 0x504BCED1, 0x163FA42E, 0x99EA0196, 0x02CE,  // 1e-111
-    0x2F71E1D6, 0xE45EC286, 0x9BCF8D39, 0xC06481FB, 0x02D1,  // 1e-110
-    0xBB4E5A4C, 0x5D767327, 0x82C37088, 0xF07DA27A, 0x02D4,  // 1e-109
-    0xD510F86F, 0x3A6A07F8, 0x91BA2655, 0x964E858C, 0x02D8,  // 1e-108
-    0x0A55368B, 0x890489F7, 0xB628AFEA, 0xBBE226EF, 0x02DB,  // 1e-107
-    0xCCEA842E, 0x2B45AC74, 0xA3B2DBE5, 0xEADAB0AB, 0x02DE,  // 1e-106
-    0x0012929D, 0x3B0B8BC9, 0x464FC96F, 0x92C8AE6B, 0x02E2,  // 1e-105
-    0x40173744, 0x09CE6EBB, 0x17E3BBCB, 0xB77ADA06, 0x02E5,  // 1e-104
-    0x101D0515, 0xCC420A6A, 0x9DDCAABD, 0xE5599087, 0x02E8,  // 1e-103
-    0x4A12232D, 0x9FA94682, 0xC2A9EAB6, 0x8F57FA54, 0x02EC,  // 1e-102
-    0xDC96ABF9, 0x47939822, 0xF3546564, 0xB32DF8E9, 0x02EF,  // 1e-101
-    0x93BC56F7, 0x59787E2B, 0x70297EBD, 0xDFF97724, 0x02F2,  // 1e-100
-    0x3C55B65A, 0x57EB4EDB, 0xC619EF36, 0x8BFBEA76, 0x02F6,  // 1e-99
-    0x0B6B23F1, 0xEDE62292, 0x77A06B03, 0xAEFAE514, 0x02F9,  // 1e-98
-    0x8E45ECED, 0xE95FAB36, 0x958885C4, 0xDAB99E59, 0x02FC,  // 1e-97
-    0x18EBB414, 0x11DBCB02, 0xFD75539B, 0x88B402F7, 0x0300,  // 1e-96
-    0x9F26A119, 0xD652BDC2, 0xFCD2A881, 0xAAE103B5, 0x0303,  // 1e-95
-    0x46F0495F, 0x4BE76D33, 0x7C0752A2, 0xD59944A3, 0x0306,  // 1e-94
-    0x0C562DDB, 0x6F70A440, 0x2D8493A5, 0x857FCAE6, 0x030A,  // 1e-93
-    0x0F6BB952, 0xCB4CCD50, 0xB8E5B88E, 0xA6DFBD9F, 0x030D,  // 1e-92
-    0x1346A7A7, 0x7E2000A4, 0xA71F26B2, 0xD097AD07, 0x0310,  // 1e-91
-    0x8C0C28C8, 0x8ED40066, 0xC873782F, 0x825ECC24, 0x0314,  // 1e-90
-    0x2F0F32FA, 0x72890080, 0xFA90563B, 0xA2F67F2D, 0x0317,  // 1e-89
-    0x3AD2FFB9, 0x4F2B40A0, 0x79346BCA, 0xCBB41EF9, 0x031A,  // 1e-88
-    0x4987BFA8, 0xE2F610C8, 0xD78186BC, 0xFEA126B7, 0x031D,  // 1e-87
-    0x2DF4D7C9, 0x0DD9CA7D, 0xE6B0F436, 0x9F24B832, 0x0321,  // 1e-86
-    0x79720DBB, 0x91503D1C, 0xA05D3143, 0xC6EDE63F, 0x0324,  // 1e-85
-    0x97CE912A, 0x75A44C63, 0x88747D94, 0xF8A95FCF, 0x0327,  // 1e-84
-    0x3EE11ABA, 0xC986AFBE, 0xB548CE7C, 0x9B69DBE1, 0x032B,  // 1e-83
-    0xCE996168, 0xFBE85BAD, 0x229B021B, 0xC24452DA, 0x032E,  // 1e-82
-    0x423FB9C3, 0xFAE27299, 0xAB41C2A2, 0xF2D56790, 0x0331,  // 1e-81
-    0xC967D41A, 0xDCCD879F, 0x6B0919A5, 0x97C560BA, 0x0335,  // 1e-80
-    0xBBC1C920, 0x5400E987, 0x05CB600F, 0xBDB6B8E9, 0x0338,  // 1e-79
-    0xAAB23B68, 0x290123E9, 0x473E3813, 0xED246723, 0x033B,  // 1e-78
-    0x0AAF6521, 0xF9A0B672, 0x0C86E30B, 0x9436C076, 0x033F,  // 1e-77
-    0x8D5B3E69, 0xF808E40E, 0x8FA89BCE, 0xB9447093, 0x0342,  // 1e-76
-    0x30B20E04, 0xB60B1D12, 0x7392C2C2, 0xE7958CB8, 0x0345,  // 1e-75
-    0x5E6F48C2, 0xB1C6F22B, 0x483BB9B9, 0x90BD77F3, 0x0349,  // 1e-74
-    0x360B1AF3, 0x1E38AEB6, 0x1A4AA828, 0xB4ECD5F0, 0x034C,  // 1e-73
-    0xC38DE1B0, 0x25C6DA63, 0x20DD5232, 0xE2280B6C, 0x034F,  // 1e-72
-    0x5A38AD0E, 0x579C487E, 0x948A535F, 0x8D590723, 0x0353,  // 1e-71
-    0xF0C6D851, 0x2D835A9D, 0x79ACE837, 0xB0AF48EC, 0x0356,  // 1e-70
-    0x6CF88E65, 0xF8E43145, 0x98182244, 0xDCDB1B27, 0x0359,  // 1e-69
-    0x641B58FF, 0x1B8E9ECB, 0xBF0F156B, 0x8A08F0F8, 0x035D,  // 1e-68
-    0x3D222F3F, 0xE272467E, 0xEED2DAC5, 0xAC8B2D36, 0x0360,  // 1e-67
-    0xCC6ABB0F, 0x5B0ED81D, 0xAA879177, 0xD7ADF884, 0x0363,  // 1e-66
-    0x9FC2B4E9, 0x98E94712, 0xEA94BAEA, 0x86CCBB52, 0x0367,  // 1e-65
-    0x47B36224, 0x3F2398D7, 0xA539E9A5, 0xA87FEA27, 0x036A,  // 1e-64
-    0x19A03AAD, 0x8EEC7F0D, 0x8E88640E, 0xD29FE4B1, 0x036D,  // 1e-63
-    0x300424AC, 0x1953CF68, 0xF9153E89, 0x83A3EEEE, 0x0371,  // 1e-62
-    0x3C052DD7, 0x5FA8C342, 0xB75A8E2B, 0xA48CEAAA, 0x0374,  // 1e-61
-    0xCB06794D, 0x3792F412, 0x653131B6, 0xCDB02555, 0x0377,  // 1e-60
-    0xBEE40BD0, 0xE2BBD88B, 0x5F3EBF11, 0x808E1755, 0x037B,  // 1e-59
-    0xAE9D0EC4, 0x5B6ACEAE, 0xB70E6ED6, 0xA0B19D2A, 0x037E,  // 1e-58
-    0x5A445275, 0xF245825A, 0x64D20A8B, 0xC8DE0475, 0x0381,  // 1e-57
-    0xF0D56712, 0xEED6E2F0, 0xBE068D2E, 0xFB158592, 0x0384,  // 1e-56
-    0x9685606B, 0x55464DD6, 0xB6C4183D, 0x9CED737B, 0x0388,  // 1e-55
-    0x3C26B886, 0xAA97E14C, 0xA4751E4C, 0xC428D05A, 0x038B,  // 1e-54
-    0x4B3066A8, 0xD53DD99F, 0x4D9265DF, 0xF5330471, 0x038E,  // 1e-53
-    0x8EFE4029, 0xE546A803, 0xD07B7FAB, 0x993FE2C6, 0x0392,  // 1e-52
-    0x72BDD033, 0xDE985204, 0x849A5F96, 0xBF8FDB78, 0x0395,  // 1e-51
-    0x8F6D4440, 0x963E6685, 0xA5C0F77C, 0xEF73D256, 0x0398,  // 1e-50
-    0x79A44AA8, 0xDDE70013, 0x27989AAD, 0x95A86376, 0x039C,  // 1e-49
-    0x580D5D52, 0x5560C018, 0xB17EC159, 0xBB127C53, 0x039F,  // 1e-48
-    0x6E10B4A6, 0xAAB8F01E, 0x9DDE71AF, 0xE9D71B68, 0x03A2,  // 1e-47
-    0x04CA70E8, 0xCAB39613, 0x62AB070D, 0x92267121, 0x03A6,  // 1e-46
-    0xC5FD0D22, 0x3D607B97, 0xBB55C8D1, 0xB6B00D69, 0x03A9,  // 1e-45
-    0xB77C506A, 0x8CB89A7D, 0x2A2B3B05, 0xE45C10C4, 0x03AC,  // 1e-44
-    0x92ADB242, 0x77F3608E, 0x9A5B04E3, 0x8EB98A7A, 0x03B0,  // 1e-43
-    0x37591ED3, 0x55F038B2, 0x40F1C61C, 0xB267ED19, 0x03B3,  // 1e-42
-    0xC52F6688, 0x6B6C46DE, 0x912E37A3, 0xDF01E85F, 0x03B6,  // 1e-41
-    0x3B3DA015, 0x2323AC4B, 0xBABCE2C6, 0x8B61313B, 0x03BA,  // 1e-40
-    0x0A0D081A, 0xABEC975E, 0xA96C1B77, 0xAE397D8A, 0x03BD,  // 1e-39
-    0x8C904A21, 0x96E7BD35, 0x53C72255, 0xD9C7DCED, 0x03C0,  // 1e-38
-    0x77DA2E54, 0x7E50D641, 0x545C7575, 0x881CEA14, 0x03C4,  // 1e-37
-    0xD5D0B9E9, 0xDDE50BD1, 0x697392D2, 0xAA242499, 0x03C7,  // 1e-36
-    0x4B44E864, 0x955E4EC6, 0xC3D07787, 0xD4AD2DBF, 0x03CA,  // 1e-35
-    0xEF0B113E, 0xBD5AF13B, 0xDA624AB4, 0x84EC3C97, 0x03CE,  // 1e-34
-    0xEACDD58E, 0xECB1AD8A, 0xD0FADD61, 0xA6274BBD, 0x03D1,  // 1e-33
-    0xA5814AF2, 0x67DE18ED, 0x453994BA, 0xCFB11EAD, 0x03D4,  // 1e-32
-    0x8770CED7, 0x80EACF94, 0x4B43FCF4, 0x81CEB32C, 0x03D8,  // 1e-31
-    0xA94D028D, 0xA1258379, 0x5E14FC31, 0xA2425FF7, 0x03DB,  // 1e-30
-    0x13A04330, 0x096EE458, 0x359A3B3E, 0xCAD2F7F5, 0x03DE,  // 1e-29
-    0x188853FC, 0x8BCA9D6E, 0x8300CA0D, 0xFD87B5F2, 0x03E1,  // 1e-28
-    0xCF55347D, 0x775EA264, 0x91E07E48, 0x9E74D1B7, 0x03E5,  // 1e-27
-    0x032A819D, 0x95364AFE, 0x76589DDA, 0xC6120625, 0x03E8,  // 1e-26
-    0x83F52204, 0x3A83DDBD, 0xD3EEC551, 0xF79687AE, 0x03EB,  // 1e-25
-    0x72793542, 0xC4926A96, 0x44753B52, 0x9ABE14CD, 0x03EF,  // 1e-24
-    0x0F178293, 0x75B7053C, 0x95928A27, 0xC16D9A00, 0x03F2,  // 1e-23
-    0x12DD6338, 0x5324C68B, 0xBAF72CB1, 0xF1C90080, 0x03F5,  // 1e-22
-    0xEBCA5E03, 0xD3F6FC16, 0x74DA7BEE, 0x971DA050, 0x03F9,  // 1e-21
-    0xA6BCF584, 0x88F4BB1C, 0x92111AEA, 0xBCE50864, 0x03FC,  // 1e-20
-    0xD06C32E5, 0x2B31E9E3, 0xB69561A5, 0xEC1E4A7D, 0x03FF,  // 1e-19
-    0x62439FCF, 0x3AFF322E, 0x921D5D07, 0x9392EE8E, 0x0403,  // 1e-18
-    0xFAD487C2, 0x09BEFEB9, 0x36A4B449, 0xB877AA32, 0x0406,  // 1e-17
-    0x7989A9B3, 0x4C2EBE68, 0xC44DE15B, 0xE69594BE, 0x0409,  // 1e-16
-    0x4BF60A10, 0x0F9D3701, 0x3AB0ACD9, 0x901D7CF7, 0x040D,  // 1e-15
-    0x9EF38C94, 0x538484C1, 0x095CD80F, 0xB424DC35, 0x0410,  // 1e-14
-    0x06B06FB9, 0x2865A5F2, 0x4BB40E13, 0xE12E1342, 0x0413,  // 1e-13
-    0x442E45D3, 0xF93F87B7, 0x6F5088CB, 0x8CBCCC09, 0x0417,  // 1e-12
-    0x1539D748, 0xF78F69A5, 0xCB24AAFE, 0xAFEBFF0B, 0x041A,  // 1e-11
-    0x5A884D1B, 0xB573440E, 0xBDEDD5BE, 0xDBE6FECE, 0x041D,  // 1e-10
-    0xF8953030, 0x31680A88, 0x36B4A597, 0x89705F41, 0x0421,  // 1e-9
-    0x36BA7C3D, 0xFDC20D2B, 0x8461CEFC, 0xABCC7711, 0x0424,  // 1e-8
-    0x04691B4C, 0x3D329076, 0xE57A42BC, 0xD6BF94D5, 0x0427,  // 1e-7
-    0xC2C1B10F, 0xA63F9A49, 0xAF6C69B5, 0x8637BD05, 0x042B,  // 1e-6
-    0x33721D53, 0x0FCF80DC, 0x1B478423, 0xA7C5AC47, 0x042E,  // 1e-5
-    0x404EA4A8, 0xD3C36113, 0xE219652B, 0xD1B71758, 0x0431,  // 1e-4
-    0x083126E9, 0x645A1CAC, 0x8D4FDF3B, 0x83126E97, 0x0435,  // 1e-3
-    0x0A3D70A3, 0x3D70A3D7, 0x70A3D70A, 0xA3D70A3D, 0x0438,  // 1e-2
-    0xCCCCCCCC, 0xCCCCCCCC, 0xCCCCCCCC, 0xCCCCCCCC, 0x043B,  // 1e-1
-    0x00000000, 0x00000000, 0x00000000, 0x80000000, 0x043F,  // 1e0
-    0x00000000, 0x00000000, 0x00000000, 0xA0000000, 0x0442,  // 1e1
-    0x00000000, 0x00000000, 0x00000000, 0xC8000000, 0x0445,  // 1e2
-    0x00000000, 0x00000000, 0x00000000, 0xFA000000, 0x0448,  // 1e3
-    0x00000000, 0x00000000, 0x00000000, 0x9C400000, 0x044C,  // 1e4
-    0x00000000, 0x00000000, 0x00000000, 0xC3500000, 0x044F,  // 1e5
-    0x00000000, 0x00000000, 0x00000000, 0xF4240000, 0x0452,  // 1e6
-    0x00000000, 0x00000000, 0x00000000, 0x98968000, 0x0456,  // 1e7
-    0x00000000, 0x00000000, 0x00000000, 0xBEBC2000, 0x0459,  // 1e8
-    0x00000000, 0x00000000, 0x00000000, 0xEE6B2800, 0x045C,  // 1e9
-    0x00000000, 0x00000000, 0x00000000, 0x9502F900, 0x0460,  // 1e10
-    0x00000000, 0x00000000, 0x00000000, 0xBA43B740, 0x0463,  // 1e11
-    0x00000000, 0x00000000, 0x00000000, 0xE8D4A510, 0x0466,  // 1e12
-    0x00000000, 0x00000000, 0x00000000, 0x9184E72A, 0x046A,  // 1e13
-    0x00000000, 0x00000000, 0x80000000, 0xB5E620F4, 0x046D,  // 1e14
-    0x00000000, 0x00000000, 0xA0000000, 0xE35FA931, 0x0470,  // 1e15
-    0x00000000, 0x00000000, 0x04000000, 0x8E1BC9BF, 0x0474,  // 1e16
-    0x00000000, 0x00000000, 0xC5000000, 0xB1A2BC2E, 0x0477,  // 1e17
-    0x00000000, 0x00000000, 0x76400000, 0xDE0B6B3A, 0x047A,  // 1e18
-    0x00000000, 0x00000000, 0x89E80000, 0x8AC72304, 0x047E,  // 1e19
-    0x00000000, 0x00000000, 0xAC620000, 0xAD78EBC5, 0x0481,  // 1e20
-    0x00000000, 0x00000000, 0x177A8000, 0xD8D726B7, 0x0484,  // 1e21
-    0x00000000, 0x00000000, 0x6EAC9000, 0x87867832, 0x0488,  // 1e22
-    0x00000000, 0x00000000, 0x0A57B400, 0xA968163F, 0x048B,  // 1e23
-    0x00000000, 0x00000000, 0xCCEDA100, 0xD3C21BCE, 0x048E,  // 1e24
-    0x00000000, 0x00000000, 0x401484A0, 0x84595161, 0x0492,  // 1e25
-    0x00000000, 0x00000000, 0x9019A5C8, 0xA56FA5B9, 0x0495,  // 1e26
-    0x00000000, 0x00000000, 0xF4200F3A, 0xCECB8F27, 0x0498,  // 1e27
-    0x00000000, 0x40000000, 0xF8940984, 0x813F3978, 0x049C,  // 1e28
-    0x00000000, 0x50000000, 0x36B90BE5, 0xA18F07D7, 0x049F,  // 1e29
-    0x00000000, 0xA4000000, 0x04674EDE, 0xC9F2C9CD, 0x04A2,  // 1e30
-    0x00000000, 0x4D000000, 0x45812296, 0xFC6F7C40, 0x04A5,  // 1e31
-    0x00000000, 0xF0200000, 0x2B70B59D, 0x9DC5ADA8, 0x04A9,  // 1e32
-    0x00000000, 0x6C280000, 0x364CE305, 0xC5371912, 0x04AC,  // 1e33
-    0x00000000, 0xC7320000, 0xC3E01BC6, 0xF684DF56, 0x04AF,  // 1e34
-    0x00000000, 0x3C7F4000, 0x3A6C115C, 0x9A130B96, 0x04B3,  // 1e35
-    0x00000000, 0x4B9F1000, 0xC90715B3, 0xC097CE7B, 0x04B6,  // 1e36
-    0x00000000, 0x1E86D400, 0xBB48DB20, 0xF0BDC21A, 0x04B9,  // 1e37
-    0x00000000, 0x13144480, 0xB50D88F4, 0x96769950, 0x04BD,  // 1e38
-    0x00000000, 0x17D955A0, 0xE250EB31, 0xBC143FA4, 0x04C0,  // 1e39
-    0x00000000, 0x5DCFAB08, 0x1AE525FD, 0xEB194F8E, 0x04C3,  // 1e40
-    0x00000000, 0x5AA1CAE5, 0xD0CF37BE, 0x92EFD1B8, 0x04C7,  // 1e41
-    0x40000000, 0xF14A3D9E, 0x050305AD, 0xB7ABC627, 0x04CA,  // 1e42
-    0xD0000000, 0x6D9CCD05, 0xC643C719, 0xE596B7B0, 0x04CD,  // 1e43
-    0xA2000000, 0xE4820023, 0x7BEA5C6F, 0x8F7E32CE, 0x04D1,  // 1e44
-    0x8A800000, 0xDDA2802C, 0x1AE4F38B, 0xB35DBF82, 0x04D4,  // 1e45
-    0xAD200000, 0xD50B2037, 0xA19E306E, 0xE0352F62, 0x04D7,  // 1e46
-    0xCC340000, 0x4526F422, 0xA502DE45, 0x8C213D9D, 0x04DB,  // 1e47
-    0x7F410000, 0x9670B12B, 0x0E4395D6, 0xAF298D05, 0x04DE,  // 1e48
-    0x5F114000, 0x3C0CDD76, 0x51D47B4C, 0xDAF3F046, 0x04E1,  // 1e49
-    0xFB6AC800, 0xA5880A69, 0xF324CD0F, 0x88D8762B, 0x04E5,  // 1e50
-    0x7A457A00, 0x8EEA0D04, 0xEFEE0053, 0xAB0E93B6, 0x04E8,  // 1e51
-    0x98D6D880, 0x72A49045, 0xABE98068, 0xD5D238A4, 0x04EB,  // 1e52
-    0x7F864750, 0x47A6DA2B, 0xEB71F041, 0x85A36366, 0x04EF,  // 1e53
-    0x5F67D924, 0x999090B6, 0xA64E6C51, 0xA70C3C40, 0x04F2,  // 1e54
-    0xF741CF6D, 0xFFF4B4E3, 0xCFE20765, 0xD0CF4B50, 0x04F5,  // 1e55
-    0x7A8921A4, 0xBFF8F10E, 0x81ED449F, 0x82818F12, 0x04F9,  // 1e56
-    0x192B6A0D, 0xAFF72D52, 0x226895C7, 0xA321F2D7, 0x04FC,  // 1e57
-    0x9F764490, 0x9BF4F8A6, 0xEB02BB39, 0xCBEA6F8C, 0x04FF,  // 1e58
-    0x4753D5B4, 0x02F236D0, 0x25C36A08, 0xFEE50B70, 0x0502,  // 1e59
-    0x2C946590, 0x01D76242, 0x179A2245, 0x9F4F2726, 0x0506,  // 1e60
-    0xB7B97EF5, 0x424D3AD2, 0x9D80AAD6, 0xC722F0EF, 0x0509,  // 1e61
-    0x65A7DEB2, 0xD2E08987, 0x84E0D58B, 0xF8EBAD2B, 0x050C,  // 1e62
-    0x9F88EB2F, 0x63CC55F4, 0x330C8577, 0x9B934C3B, 0x0510,  // 1e63
-    0xC76B25FB, 0x3CBF6B71, 0xFFCFA6D5, 0xC2781F49, 0x0513,  // 1e64
-    0x3945EF7A, 0x8BEF464E, 0x7FC3908A, 0xF316271C, 0x0516,  // 1e65
-    0xE3CBB5AC, 0x97758BF0, 0xCFDA3A56, 0x97EDD871, 0x051A,  // 1e66
-    0x1CBEA317, 0x3D52EEED, 0x43D0C8EC, 0xBDE94E8E, 0x051D,  // 1e67
-    0x63EE4BDD, 0x4CA7AAA8, 0xD4C4FB27, 0xED63A231, 0x0520,  // 1e68
-    0x3E74EF6A, 0x8FE8CAA9, 0x24FB1CF8, 0x945E455F, 0x0524,  // 1e69
-    0x8E122B44, 0xB3E2FD53, 0xEE39E436, 0xB975D6B6, 0x0527,  // 1e70
-    0x7196B616, 0x60DBBCA8, 0xA9C85D44, 0xE7D34C64, 0x052A,  // 1e71
-    0x46FE31CD, 0xBC8955E9, 0xEA1D3A4A, 0x90E40FBE, 0x052E,  // 1e72
-    0x98BDBE41, 0x6BABAB63, 0xA4A488DD, 0xB51D13AE, 0x0531,  // 1e73
-    0x7EED2DD1, 0xC696963C, 0x4DCDAB14, 0xE264589A, 0x0534,  // 1e74
-    0xCF543CA2, 0xFC1E1DE5, 0x70A08AEC, 0x8D7EB760, 0x0538,  // 1e75
-    0x43294BCB, 0x3B25A55F, 0x8CC8ADA8, 0xB0DE6538, 0x053B,  // 1e76
-    0x13F39EBE, 0x49EF0EB7, 0xAFFAD912, 0xDD15FE86, 0x053E,  // 1e77
-    0x6C784337, 0x6E356932, 0x2DFCC7AB, 0x8A2DBF14, 0x0542,  // 1e78
-    0x07965404, 0x49C2C37F, 0x397BF996, 0xACB92ED9, 0x0545,  // 1e79
-    0xC97BE906, 0xDC33745E, 0x87DAF7FB, 0xD7E77A8F, 0x0548,  // 1e80
-    0x3DED71A3, 0x69A028BB, 0xB4E8DAFD, 0x86F0AC99, 0x054C,  // 1e81
-    0x0D68CE0C, 0xC40832EA, 0x222311BC, 0xA8ACD7C0, 0x054F,  // 1e82
-    0x90C30190, 0xF50A3FA4, 0x2AABD62B, 0xD2D80DB0, 0x0552,  // 1e83
-    0xDA79E0FA, 0x792667C6, 0x1AAB65DB, 0x83C7088E, 0x0556,  // 1e84
-    0x91185938, 0x577001B8, 0xA1563F52, 0xA4B8CAB1, 0x0559,  // 1e85
-    0xB55E6F86, 0xED4C0226, 0x09ABCF26, 0xCDE6FD5E, 0x055C,  // 1e86
-    0x315B05B4, 0x544F8158, 0xC60B6178, 0x80B05E5A, 0x0560,  // 1e87
-    0x3DB1C721, 0x696361AE, 0x778E39D6, 0xA0DC75F1, 0x0563,  // 1e88
-    0xCD1E38E9, 0x03BC3A19, 0xD571C84C, 0xC913936D, 0x0566,  // 1e89
-    0x4065C723, 0x04AB48A0, 0x4ACE3A5F, 0xFB587849, 0x0569,  // 1e90
-    0x283F9C76, 0x62EB0D64, 0xCEC0E47B, 0x9D174B2D, 0x056D,  // 1e91
-    0x324F8394, 0x3BA5D0BD, 0x42711D9A, 0xC45D1DF9, 0x0570,  // 1e92
-    0x7EE36479, 0xCA8F44EC, 0x930D6500, 0xF5746577, 0x0573,  // 1e93
-    0xCF4E1ECB, 0x7E998B13, 0xBBE85F20, 0x9968BF6A, 0x0577,  // 1e94
-    0xC321A67E, 0x9E3FEDD8, 0x6AE276E8, 0xBFC2EF45, 0x057A,  // 1e95
-    0xF3EA101E, 0xC5CFE94E, 0xC59B14A2, 0xEFB3AB16, 0x057D,  // 1e96
-    0x58724A12, 0xBBA1F1D1, 0x3B80ECE5, 0x95D04AEE, 0x0581,  // 1e97
-    0xAE8EDC97, 0x2A8A6E45, 0xCA61281F, 0xBB445DA9, 0x0584,  // 1e98
-    0x1A3293BD, 0xF52D09D7, 0x3CF97226, 0xEA157514, 0x0587,  // 1e99
-    0x705F9C56, 0x593C2626, 0xA61BE758, 0x924D692C, 0x058B,  // 1e100
-    0x0C77836C, 0x6F8B2FB0, 0xCFA2E12E, 0xB6E0C377, 0x058E,  // 1e101
-    0x0F956447, 0x0B6DFB9C, 0xC38B997A, 0xE498F455, 0x0591,  // 1e102
-    0x89BD5EAC, 0x4724BD41, 0x9A373FEC, 0x8EDF98B5, 0x0595,  // 1e103
-    0xEC2CB657, 0x58EDEC91, 0x00C50FE7, 0xB2977EE3, 0x0598,  // 1e104
-    0x6737E3ED, 0x2F2967B6, 0xC0F653E1, 0xDF3D5E9B, 0x059B,  // 1e105
-    0x0082EE74, 0xBD79E0D2, 0x5899F46C, 0x8B865B21, 0x059F,  // 1e106
-    0x80A3AA11, 0xECD85906, 0xAEC07187, 0xAE67F1E9, 0x05A2,  // 1e107
-    0x20CC9495, 0xE80E6F48, 0x1A708DE9, 0xDA01EE64, 0x05A5,  // 1e108
-    0x147FDCDD, 0x3109058D, 0x908658B2, 0x884134FE, 0x05A9,  // 1e109
-    0x599FD415, 0xBD4B46F0, 0x34A7EEDE, 0xAA51823E, 0x05AC,  // 1e110
-    0x7007C91A, 0x6C9E18AC, 0xC1D1EA96, 0xD4E5E2CD, 0x05AF,  // 1e111
-    0xC604DDB0, 0x03E2CF6B, 0x9923329E, 0x850FADC0, 0x05B3,  // 1e112
-    0xB786151C, 0x84DB8346, 0xBF6BFF45, 0xA6539930, 0x05B6,  // 1e113
-    0x65679A63, 0xE6126418, 0xEF46FF16, 0xCFE87F7C, 0x05B9,  // 1e114
-    0x3F60C07E, 0x4FCB7E8F, 0x158C5F6E, 0x81F14FAE, 0x05BD,  // 1e115
-    0x0F38F09D, 0xE3BE5E33, 0x9AEF7749, 0xA26DA399, 0x05C0,  // 1e116
-    0xD3072CC5, 0x5CADF5BF, 0x01AB551C, 0xCB090C80, 0x05C3,  // 1e117
-    0xC7C8F7F6, 0x73D9732F, 0x02162A63, 0xFDCB4FA0, 0x05C6,  // 1e118
-    0xDCDD9AFA, 0x2867E7FD, 0x014DDA7E, 0x9E9F11C4, 0x05CA,  // 1e119
-    0x541501B8, 0xB281E1FD, 0x01A1511D, 0xC646D635, 0x05CD,  // 1e120
-    0xA91A4226, 0x1F225A7C, 0x4209A565, 0xF7D88BC2, 0x05D0,  // 1e121
-    0xE9B06958, 0x3375788D, 0x6946075F, 0x9AE75759, 0x05D4,  // 1e122
-    0x641C83AE, 0x0052D6B1, 0xC3978937, 0xC1A12D2F, 0x05D7,  // 1e123
-    0xBD23A49A, 0xC0678C5D, 0xB47D6B84, 0xF209787B, 0x05DA,  // 1e124
-    0x963646E0, 0xF840B7BA, 0x50CE6332, 0x9745EB4D, 0x05DE,  // 1e125
-    0x3BC3D898, 0xB650E5A9, 0xA501FBFF, 0xBD176620, 0x05E1,  // 1e126
-    0x8AB4CEBE, 0xA3E51F13, 0xCE427AFF, 0xEC5D3FA8, 0x05E4,  // 1e127
-    0x36B10137, 0xC66F336C, 0x80E98CDF, 0x93BA47C9, 0x05E8,  // 1e128
-    0x445D4184, 0xB80B0047, 0xE123F017, 0xB8A8D9BB, 0x05EB,  // 1e129
-    0x157491E5, 0xA60DC059, 0xD96CEC1D, 0xE6D3102A, 0x05EE,  // 1e130
-    0xAD68DB2F, 0x87C89837, 0xC7E41392, 0x9043EA1A, 0x05F2,  // 1e131
-    0x98C311FB, 0x29BABE45, 0x79DD1877, 0xB454E4A1, 0x05F5,  // 1e132
-    0xFEF3D67A, 0xF4296DD6, 0xD8545E94, 0xE16A1DC9, 0x05F8,  // 1e133
-    0x5F58660C, 0x1899E4A6, 0x2734BB1D, 0x8CE2529E, 0x05FC,  // 1e134
-    0xF72E7F8F, 0x5EC05DCF, 0xB101E9E4, 0xB01AE745, 0x05FF,  // 1e135
-    0xF4FA1F73, 0x76707543, 0x1D42645D, 0xDC21A117, 0x0602,  // 1e136
-    0x791C53A8, 0x6A06494A, 0x72497EBA, 0x899504AE, 0x0606,  // 1e137
-    0x17636892, 0x0487DB9D, 0x0EDBDE69, 0xABFA45DA, 0x0609,  // 1e138
-    0x5D3C42B6, 0x45A9D284, 0x9292D603, 0xD6F8D750, 0x060C,  // 1e139
-    0xBA45A9B2, 0x0B8A2392, 0x5B9BC5C2, 0x865B8692, 0x0610,  // 1e140
-    0x68D7141E, 0x8E6CAC77, 0xF282B732, 0xA7F26836, 0x0613,  // 1e141
-    0x430CD926, 0x3207D795, 0xAF2364FF, 0xD1EF0244, 0x0616,  // 1e142
-    0x49E807B8, 0x7F44E6BD, 0xED761F1F, 0x8335616A, 0x061A,  // 1e143
-    0x9C6209A6, 0x5F16206C, 0xA8D3A6E7, 0xA402B9C5, 0x061D,  // 1e144
-    0xC37A8C0F, 0x36DBA887, 0x130890A1, 0xCD036837, 0x0620,  // 1e145
-    0xDA2C9789, 0xC2494954, 0x6BE55A64, 0x80222122, 0x0624,  // 1e146
-    0x10B7BD6C, 0xF2DB9BAA, 0x06DEB0FD, 0xA02AA96B, 0x0627,  // 1e147
-    0x94E5ACC7, 0x6F928294, 0xC8965D3D, 0xC83553C5, 0x062A,  // 1e148
-    0xBA1F17F9, 0xCB772339, 0x3ABBF48C, 0xFA42A8B7, 0x062D,  // 1e149
-    0x14536EFB, 0xFF2A7604, 0x84B578D7, 0x9C69A972, 0x0631,  // 1e150
-    0x19684ABA, 0xFEF51385, 0x25E2D70D, 0xC38413CF, 0x0634,  // 1e151
-    0x5FC25D69, 0x7EB25866, 0xEF5B8CD1, 0xF46518C2, 0x0637,  // 1e152
-    0xFBD97A61, 0xEF2F773F, 0xD5993802, 0x98BF2F79, 0x063B,  // 1e153
-    0xFACFD8FA, 0xAAFB550F, 0x4AFF8603, 0xBEEEFB58, 0x063E,  // 1e154
-    0xF983CF38, 0x95BA2A53, 0x5DBF6784, 0xEEAABA2E, 0x0641,  // 1e155
-    0x7BF26183, 0xDD945A74, 0xFA97A0B2, 0x952AB45C, 0x0645,  // 1e156
-    0x9AEEF9E4, 0x94F97111, 0x393D88DF, 0xBA756174, 0x0648,  // 1e157
-    0x01AAB85D, 0x7A37CD56, 0x478CEB17, 0xE912B9D1, 0x064B,  // 1e158
-    0xC10AB33A, 0xAC62E055, 0xCCB812EE, 0x91ABB422, 0x064F,  // 1e159
-    0x314D6009, 0x577B986B, 0x7FE617AA, 0xB616A12B, 0x0652,  // 1e160
-    0xFDA0B80B, 0xED5A7E85, 0x5FDF9D94, 0xE39C4976, 0x0655,  // 1e161
-    0xBE847307, 0x14588F13, 0xFBEBC27D, 0x8E41ADE9, 0x0659,  // 1e162
-    0xAE258FC8, 0x596EB2D8, 0x7AE6B31C, 0xB1D21964, 0x065C,  // 1e163
-    0xD9AEF3BB, 0x6FCA5F8E, 0x99A05FE3, 0xDE469FBD, 0x065F,  // 1e164
-    0x480D5854, 0x25DE7BB9, 0x80043BEE, 0x8AEC23D6, 0x0663,  // 1e165
-    0x9A10AE6A, 0xAF561AA7, 0x20054AE9, 0xADA72CCC, 0x0666,  // 1e166
-    0x8094DA04, 0x1B2BA151, 0x28069DA4, 0xD910F7FF, 0x0669,  // 1e167
-    0xF05D0842, 0x90FB44D2, 0x79042286, 0x87AA9AFF, 0x066D,  // 1e168
-    0xAC744A53, 0x353A1607, 0x57452B28, 0xA99541BF, 0x0670,  // 1e169
-    0x97915CE8, 0x42889B89, 0x2D1675F2, 0xD3FA922F, 0x0673,  // 1e170
-    0xFEBADA11, 0x69956135, 0x7C2E09B7, 0x847C9B5D, 0x0677,  // 1e171
-    0x7E699095, 0x43FAB983, 0xDB398C25, 0xA59BC234, 0x067A,  // 1e172
-    0x5E03F4BB, 0x94F967E4, 0x1207EF2E, 0xCF02B2C2, 0x067D,  // 1e173
-    0xBAC278F5, 0x1D1BE0EE, 0x4B44F57D, 0x8161AFB9, 0x0681,  // 1e174
-    0x69731732, 0x6462D92A, 0x9E1632DC, 0xA1BA1BA7, 0x0684,  // 1e175
-    0x03CFDCFE, 0x7D7B8F75, 0x859BBF93, 0xCA28A291, 0x0687,  // 1e176
-    0x44C3D43E, 0x5CDA7352, 0xE702AF78, 0xFCB2CB35, 0x068A,  // 1e177
-    0x6AFA64A7, 0x3A088813, 0xB061ADAB, 0x9DEFBF01, 0x068E,  // 1e178
-    0x45B8FDD0, 0x088AAA18, 0x1C7A1916, 0xC56BAEC2, 0x0691,  // 1e179
-    0x57273D45, 0x8AAD549E, 0xA3989F5B, 0xF6C69A72, 0x0694,  // 1e180
-    0xF678864B, 0x36AC54E2, 0xA63F6399, 0x9A3C2087, 0x0698,  // 1e181
-    0xB416A7DD, 0x84576A1B, 0x8FCF3C7F, 0xC0CB28A9, 0x069B,  // 1e182
-    0xA11C51D5, 0x656D44A2, 0xF3C30B9F, 0xF0FDF2D3, 0x069E,  // 1e183
-    0xA4B1B325, 0x9F644AE5, 0x7859E743, 0x969EB7C4, 0x06A2,  // 1e184
-    0x0DDE1FEE, 0x873D5D9F, 0x96706114, 0xBC4665B5, 0x06A5,  // 1e185
-    0xD155A7EA, 0xA90CB506, 0xFC0C7959, 0xEB57FF22, 0x06A8,  // 1e186
-    0x42D588F2, 0x09A7F124, 0xDD87CBD8, 0x9316FF75, 0x06AC,  // 1e187
-    0x538AEB2F, 0x0C11ED6D, 0x54E9BECE, 0xB7DCBF53, 0x06AF,  // 1e188
-    0xA86DA5FA, 0x8F1668C8, 0x2A242E81, 0xE5D3EF28, 0x06B2,  // 1e189
-    0x694487BC, 0xF96E017D, 0x1A569D10, 0x8FA47579, 0x06B6,  // 1e190
-    0xC395A9AC, 0x37C981DC, 0x60EC4455, 0xB38D92D7, 0x06B9,  // 1e191
-    0xF47B1417, 0x85BBE253, 0x3927556A, 0xE070F78D, 0x06BC,  // 1e192
-    0x78CCEC8E, 0x93956D74, 0x43B89562, 0x8C469AB8, 0x06C0,  // 1e193
-    0x970027B2, 0x387AC8D1, 0x54A6BABB, 0xAF584166, 0x06C3,  // 1e194
-    0xFCC0319E, 0x06997B05, 0xE9D0696A, 0xDB2E51BF, 0x06C6,  // 1e195
-    0xBDF81F03, 0x441FECE3, 0xF22241E2, 0x88FCF317, 0x06CA,  // 1e196
-    0xAD7626C3, 0xD527E81C, 0xEEAAD25A, 0xAB3C2FDD, 0x06CD,  // 1e197
-    0xD8D3B074, 0x8A71E223, 0x6A5586F1, 0xD60B3BD5, 0x06D0,  // 1e198
-    0x67844E49, 0xF6872D56, 0x62757456, 0x85C70565, 0x06D4,  // 1e199
-    0x016561DB, 0xB428F8AC, 0xBB12D16C, 0xA738C6BE, 0x06D7,  // 1e200
-    0x01BEBA52, 0xE13336D7, 0x69D785C7, 0xD106F86E, 0x06DA,  // 1e201
-    0x61173473, 0xECC00246, 0x0226B39C, 0x82A45B45, 0x06DE,  // 1e202
-    0xF95D0190, 0x27F002D7, 0x42B06084, 0xA34D7216, 0x06E1,  // 1e203
-    0xF7B441F4, 0x31EC038D, 0xD35C78A5, 0xCC20CE9B, 0x06E4,  // 1e204
-    0x75A15271, 0x7E670471, 0xC83396CE, 0xFF290242, 0x06E7,  // 1e205
-    0xE984D386, 0x0F0062C6, 0xBD203E41, 0x9F79A169, 0x06EB,  // 1e206
-    0xA3E60868, 0x52C07B78, 0x2C684DD1, 0xC75809C4, 0x06EE,  // 1e207
-    0xCCDF8A82, 0xA7709A56, 0x37826145, 0xF92E0C35, 0x06F1,  // 1e208
-    0x400BB691, 0x88A66076, 0x42B17CCB, 0x9BBCC7A1, 0x06F5,  // 1e209
-    0xD00EA435, 0x6ACFF893, 0x935DDBFE, 0xC2ABF989, 0x06F8,  // 1e210
-    0xC4124D43, 0x0583F6B8, 0xF83552FE, 0xF356F7EB, 0x06FB,  // 1e211
-    0x7A8B704A, 0xC3727A33, 0x7B2153DE, 0x98165AF3, 0x06FF,  // 1e212
-    0x592E4C5C, 0x744F18C0, 0x59E9A8D6, 0xBE1BF1B0, 0x0702,  // 1e213
-    0x6F79DF73, 0x1162DEF0, 0x7064130C, 0xEDA2EE1C, 0x0705,  // 1e214
-    0x45AC2BA8, 0x8ADDCB56, 0xC63E8BE7, 0x9485D4D1, 0x0709,  // 1e215
-    0xD7173692, 0x6D953E2B, 0x37CE2EE1, 0xB9A74A06, 0x070C,  // 1e216
-    0xCCDD0437, 0xC8FA8DB6, 0xC5C1BA99, 0xE8111C87, 0x070F,  // 1e217
-    0x400A22A2, 0x1D9C9892, 0xDB9914A0, 0x910AB1D4, 0x0713,  // 1e218
-    0xD00CAB4B, 0x2503BEB6, 0x127F59C8, 0xB54D5E4A, 0x0716,  // 1e219
-    0x840FD61D, 0x2E44AE64, 0x971F303A, 0xE2A0B5DC, 0x0719,  // 1e220
-    0xD289E5D2, 0x5CEAECFE, 0xDE737E24, 0x8DA471A9, 0x071D,  // 1e221
-    0x872C5F47, 0x7425A83E, 0x56105DAD, 0xB10D8E14, 0x0720,  // 1e222
-    0x28F77719, 0xD12F124E, 0x6B947518, 0xDD50F199, 0x0723,  // 1e223
-    0xD99AAA6F, 0x82BD6B70, 0xE33CC92F, 0x8A5296FF, 0x0727,  // 1e224
-    0x1001550B, 0x636CC64D, 0xDC0BFB7B, 0xACE73CBF, 0x072A,  // 1e225
-    0x5401AA4E, 0x3C47F7E0, 0xD30EFA5A, 0xD8210BEF, 0x072D,  // 1e226
-    0x34810A71, 0x65ACFAEC, 0xE3E95C78, 0x8714A775, 0x0731,  // 1e227
-    0x41A14D0D, 0x7F1839A7, 0x5CE3B396, 0xA8D9D153, 0x0734,  // 1e228
-    0x1209A050, 0x1EDE4811, 0x341CA07C, 0xD31045A8, 0x0737,  // 1e229
-    0xAB460432, 0x934AED0A, 0x2091E44D, 0x83EA2B89, 0x073B,  // 1e230
-    0x5617853F, 0xF81DA84D, 0x68B65D60, 0xA4E4B66B, 0x073E,  // 1e231
-    0xAB9D668E, 0x36251260, 0x42E3F4B9, 0xCE1DE406, 0x0741,  // 1e232
-    0x6B426019, 0xC1D72B7C, 0xE9CE78F3, 0x80D2AE83, 0x0745,  // 1e233
-    0x8612F81F, 0xB24CF65B, 0xE4421730, 0xA1075A24, 0x0748,  // 1e234
-    0x6797B627, 0xDEE033F2, 0x1D529CFC, 0xC94930AE, 0x074B,  // 1e235
-    0x017DA3B1, 0x169840EF, 0xA4A7443C, 0xFB9B7CD9, 0x074E,  // 1e236
-    0x60EE864E, 0x8E1F2895, 0x06E88AA5, 0x9D412E08, 0x0752,  // 1e237
-    0xB92A27E2, 0xF1A6F2BA, 0x08A2AD4E, 0xC491798A, 0x0755,  // 1e238
-    0x6774B1DB, 0xAE10AF69, 0x8ACB58A2, 0xF5B5D7EC, 0x0758,  // 1e239
-    0xE0A8EF29, 0xACCA6DA1, 0xD6BF1765, 0x9991A6F3, 0x075C,  // 1e240
-    0x58D32AF3, 0x17FD090A, 0xCC6EDD3F, 0xBFF610B0, 0x075F,  // 1e241
-    0xEF07F5B0, 0xDDFC4B4C, 0xFF8A948E, 0xEFF394DC, 0x0762,  // 1e242
-    0x1564F98E, 0x4ABDAF10, 0x1FB69CD9, 0x95F83D0A, 0x0766,  // 1e243
-    0x1ABE37F1, 0x9D6D1AD4, 0xA7A4440F, 0xBB764C4C, 0x0769,  // 1e244
-    0x216DC5ED, 0x84C86189, 0xD18D5513, 0xEA53DF5F, 0x076C,  // 1e245
-    0xB4E49BB4, 0x32FD3CF5, 0xE2F8552C, 0x92746B9B, 0x0770,  // 1e246
-    0x221DC2A1, 0x3FBC8C33, 0xDBB66A77, 0xB7118682, 0x0773,  // 1e247
-    0xEAA5334A, 0x0FABAF3F, 0x92A40515, 0xE4D5E823, 0x0776,  // 1e248
-    0xF2A7400E, 0x29CB4D87, 0x3BA6832D, 0x8F05B116, 0x077A,  // 1e249
-    0xEF511012, 0x743E20E9, 0xCA9023F8, 0xB2C71D5B, 0x077D,  // 1e250
-    0x6B255416, 0x914DA924, 0xBD342CF6, 0xDF78E4B2, 0x0780,  // 1e251
-    0xC2F7548E, 0x1AD089B6, 0xB6409C1A, 0x8BAB8EEF, 0x0784,  // 1e252
-    0x73B529B1, 0xA184AC24, 0xA3D0C320, 0xAE9672AB, 0x0787,  // 1e253
-    0x90A2741E, 0xC9E5D72D, 0x8CC4F3E8, 0xDA3C0F56, 0x078A,  // 1e254
-    0x7A658892, 0x7E2FA67C, 0x17FB1871, 0x88658996, 0x078E,  // 1e255
-    0x98FEEAB7, 0xDDBB901B, 0x9DF9DE8D, 0xAA7EEBFB, 0x0791,  // 1e256
-    0x7F3EA565, 0x552A7422, 0x85785631, 0xD51EA6FA, 0x0794,  // 1e257
-    0x8F87275F, 0xD53A8895, 0x936B35DE, 0x8533285C, 0x0798,  // 1e258
-    0xF368F137, 0x8A892ABA, 0xB8460356, 0xA67FF273, 0x079B,  // 1e259
-    0xB0432D85, 0x2D2B7569, 0xA657842C, 0xD01FEF10, 0x079E,  // 1e260
-    0x0E29FC73, 0x9C3B2962, 0x67F6B29B, 0x8213F56A, 0x07A2,  // 1e261
-    0x91B47B8F, 0x8349F3BA, 0x01F45F42, 0xA298F2C5, 0x07A5,  // 1e262
-    0x36219A73, 0x241C70A9, 0x42717713, 0xCB3F2F76, 0x07A8,  // 1e263
-    0x83AA0110, 0xED238CD3, 0xD30DD4D7, 0xFE0EFB53, 0x07AB,  // 1e264
-    0x324A40AA, 0xF4363804, 0x63E8A506, 0x9EC95D14, 0x07AF,  // 1e265
-    0x3EDCD0D5, 0xB143C605, 0x7CE2CE48, 0xC67BB459, 0x07B2,  // 1e266
-    0x8E94050A, 0xDD94B786, 0xDC1B81DA, 0xF81AA16F, 0x07B5,  // 1e267
-    0x191C8326, 0xCA7CF2B4, 0xE9913128, 0x9B10A4E5, 0x07B9,  // 1e268
-    0x1F63A3F0, 0xFD1C2F61, 0x63F57D72, 0xC1D4CE1F, 0x07BC,  // 1e269
-    0x673C8CEC, 0xBC633B39, 0x3CF2DCCF, 0xF24A01A7, 0x07BF,  // 1e270
-    0xE085D813, 0xD5BE0503, 0x8617CA01, 0x976E4108, 0x07C3,  // 1e271
-    0xD8A74E18, 0x4B2D8644, 0xA79DBC82, 0xBD49D14A, 0x07C6,  // 1e272
-    0x0ED1219E, 0xDDF8E7D6, 0x51852BA2, 0xEC9C459D, 0x07C9,  // 1e273
-    0xC942B503, 0xCABB90E5, 0x52F33B45, 0x93E1AB82, 0x07CD,  // 1e274
-    0x3B936243, 0x3D6A751F, 0xE7B00A17, 0xB8DA1662, 0x07D0,  // 1e275
-    0x0A783AD4, 0x0CC51267, 0xA19C0C9D, 0xE7109BFB, 0x07D3,  // 1e276
-    0x668B24C5, 0x27FB2B80, 0x450187E2, 0x906A617D, 0x07D7,  // 1e277
-    0x802DEDF6, 0xB1F9F660, 0x9641E9DA, 0xB484F9DC, 0x07DA,  // 1e278
-    0xA0396973, 0x5E7873F8, 0xBBD26451, 0xE1A63853, 0x07DD,  // 1e279
-    0x6423E1E8, 0xDB0B487B, 0x55637EB2, 0x8D07E334, 0x07E1,  // 1e280
-    0x3D2CDA62, 0x91CE1A9A, 0x6ABC5E5F, 0xB049DC01, 0x07E4,  // 1e281
-    0xCC7810FB, 0x7641A140, 0xC56B75F7, 0xDC5C5301, 0x07E7,  // 1e282
-    0x7FCB0A9D, 0xA9E904C8, 0x1B6329BA, 0x89B9B3E1, 0x07EB,  // 1e283
-    0x9FBDCD44, 0x546345FA, 0x623BF429, 0xAC2820D9, 0x07EE,  // 1e284
-    0x47AD4095, 0xA97C1779, 0xBACAF133, 0xD732290F, 0x07F1,  // 1e285
-    0xCCCC485D, 0x49ED8EAB, 0xD4BED6C0, 0x867F59A9, 0x07F5,  // 1e286
-    0xBFFF5A74, 0x5C68F256, 0x49EE8C70, 0xA81F3014, 0x07F8,  // 1e287
-    0x6FFF3111, 0x73832EEC, 0x5C6A2F8C, 0xD226FC19, 0x07FB,  // 1e288
-    0xC5FF7EAB, 0xC831FD53, 0xD9C25DB7, 0x83585D8F, 0x07FF,  // 1e289
-    0xB77F5E55, 0xBA3E7CA8, 0xD032F525, 0xA42E74F3, 0x0802,  // 1e290
-    0xE55F35EB, 0x28CE1BD2, 0xC43FB26F, 0xCD3A1230, 0x0805,  // 1e291
-    0xCF5B81B3, 0x7980D163, 0x7AA7CF85, 0x80444B5E, 0x0809,  // 1e292
-    0xC332621F, 0xD7E105BC, 0x1951C366, 0xA0555E36, 0x080C,  // 1e293
-    0xF3FEFAA7, 0x8DD9472B, 0x9FA63440, 0xC86AB5C3, 0x080F,  // 1e294
-    0xF0FEB951, 0xB14F98F6, 0x878FC150, 0xFA856334, 0x0812,  // 1e295
-    0x569F33D3, 0x6ED1BF9A, 0xD4B9D8D2, 0x9C935E00, 0x0816,  // 1e296
-    0xEC4700C8, 0x0A862F80, 0x09E84F07, 0xC3B83581, 0x0819,  // 1e297
-    0x2758C0FA, 0xCD27BB61, 0x4C6262C8, 0xF4A642E1, 0x081C,  // 1e298
-    0xB897789C, 0x8038D51C, 0xCFBD7DBD, 0x98E7E9CC, 0x0820,  // 1e299
-    0xE6BD56C3, 0xE0470A63, 0x03ACDD2C, 0xBF21E440, 0x0823,  // 1e300
-    0xE06CAC74, 0x1858CCFC, 0x04981478, 0xEEEA5D50, 0x0826,  // 1e301
-    0x0C43EBC8, 0x0F37801E, 0x02DF0CCB, 0x95527A52, 0x082A,  // 1e302
-    0x8F54E6BA, 0xD3056025, 0x8396CFFD, 0xBAA718E6, 0x082D,  // 1e303
-    0xF32A2069, 0x47C6B82E, 0x247C83FD, 0xE950DF20, 0x0830,  // 1e304
-    0x57FA5441, 0x4CDC331D, 0x16CDD27E, 0x91D28B74, 0x0834,  // 1e305
-    0xADF8E952, 0xE0133FE4, 0x1C81471D, 0xB6472E51, 0x0837,  // 1e306
-    0xD97723A6, 0x58180FDD, 0x63A198E5, 0xE3D8F9E5, 0x083A,  // 1e307
-    0xA7EA7648, 0x570F09EA, 0x5E44FF8F, 0x8E679C2F, 0x083E,  // 1e308
-    0x51E513DA, 0x2CD2CC65, 0x35D63F73, 0xB201833B, 0x0841,  // 1e309
-    0xA65E58D1, 0xF8077F7E, 0x034BCF4F, 0xDE81E40A, 0x0844,  // 1e310
-};
-
-// wuffs_base__private_implementation__f64_powers_of_10 holds powers of 10 that
-// can be exactly represented by a float64 (what C calls a double).
-static const double wuffs_base__private_implementation__f64_powers_of_10[23] = {
-    1e0,  1e1,  1e2,  1e3,  1e4,  1e5,  1e6,  1e7,  1e8,  1e9,  1e10, 1e11,
-    1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22,
-};
-
-// --------
-
-// wuffs_base__private_implementation__parse_number_f64_eisel produces the IEEE
-// 754 double-precision value for an exact mantissa and base-10 exponent.
-//
-// On success, it returns a non-negative int64_t such that the low 63 bits hold
-// the 11-bit exponent and 52-bit mantissa.
-//
-// On failure, it returns a negative value.
-//
-// The algorithm is based on an original idea by Michael Eisel. See
-// https://lemire.me/blog/2020/03/10/fast-float-parsing-in-practice/
-//
-// Preconditions:
-//  - man is non-zero.
-//  - exp10 is in the range -326 ..= 310, the same range of the
-//    wuffs_base__private_implementation__powers_of_10 array.
-static int64_t  //
-wuffs_base__private_implementation__parse_number_f64_eisel(uint64_t man,
-                                                           int32_t exp10) {
-  // Look up the (possibly truncated) base-2 representation of (10 ** exp10).
-  // The look-up table was constructed so that it is already normalized: the
-  // table entry's mantissa's MSB (most significant bit) is on.
-  const uint32_t* po10 =
-      &wuffs_base__private_implementation__powers_of_10[5 * (exp10 + 326)];
-
-  // Normalize the man argument. The (man != 0) precondition means that a
-  // non-zero bit exists.
-  uint32_t clz = wuffs_base__count_leading_zeroes_u64(man);
-  man <<= clz;
-
-  // Calculate the return value's base-2 exponent. We might tweak it by ±1
-  // later, but its initial value comes from the look-up table and clz.
-  uint64_t ret_exp2 = ((uint64_t)po10[4]) - ((uint64_t)clz);
-
-  // Multiply the two mantissas. Normalization means that both mantissas are at
-  // least (1<<63), so the 128-bit product must be at least (1<<126). The high
-  // 64 bits of the product, x.hi, must therefore be at least (1<<62).
-  //
-  // As a consequence, x.hi has either 0 or 1 leading zeroes. Shifting x.hi
-  // right by either 9 or 10 bits (depending on x.hi's MSB) will therefore
-  // leave the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on.
-  wuffs_base__multiply_u64__output x = wuffs_base__multiply_u64(
-      man, ((uint64_t)po10[2]) | (((uint64_t)po10[3]) << 32));
-
-  // Before we shift right by at least 9 bits, recall that the look-up table
-  // entry was possibly truncated. We have so far only calculated a lower bound
-  // for the product (man * e), where e is (10 ** exp10). The upper bound would
-  // add a further (man * 1) to the 128-bit product, which overflows the lower
-  // 64-bit limb if ((x.lo + man) < man).
-  //
-  // If overflow occurs, that adds 1 to x.hi. Since we're about to shift right
-  // by at least 9 bits, that carried 1 can be ignored unless the higher 64-bit
-  // limb's low 9 bits are all on.
-  if (((x.hi & 0x1FF) == 0x1FF) && ((x.lo + man) < man)) {
-    // Refine our calculation of (man * e). Before, our approximation of e used
-    // a "low resolution" 64-bit mantissa. Now use a "high resolution" 128-bit
-    // mantissa. We've already calculated x = (man * bits_0_to_63_incl_of_e).
-    // Now calculate y = (man * bits_64_to_127_incl_of_e).
-    wuffs_base__multiply_u64__output y = wuffs_base__multiply_u64(
-        man, ((uint64_t)po10[0]) | (((uint64_t)po10[1]) << 32));
-
-    // Merge the 128-bit x and 128-bit y, which overlap by 64 bits, to
-    // calculate the 192-bit product of the 64-bit man by the 128-bit e.
-    // As we exit this if-block, we only care about the high 128 bits
-    // (merged_hi and merged_lo) of that 192-bit product.
-    uint64_t merged_hi = x.hi;
-    uint64_t merged_lo = x.lo + y.hi;
-    if (merged_lo < x.lo) {
-      merged_hi++;  // Carry the overflow bit.
-    }
-
-    // The "high resolution" approximation of e is still a lower bound. Once
-    // again, see if the upper bound is large enough to produce a different
-    // result. This time, if it does, give up instead of reaching for an even
-    // more precise approximation to e.
-    //
-    // This three-part check is similar to the two-part check that guarded the
-    // if block that we're now in, but it has an extra term for the middle 64
-    // bits (checking that adding 1 to merged_lo would overflow).
-    if (((merged_hi & 0x1FF) == 0x1FF) && ((merged_lo + 1) == 0) &&
-        (y.lo + man < man)) {
-      return -1;
-    }
-
-    // Replace the 128-bit x with merged.
-    x.hi = merged_hi;
-    x.lo = merged_lo;
-  }
-
-  // As mentioned above, shifting x.hi right by either 9 or 10 bits will leave
-  // the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on. If the
-  // MSB (before shifting) was on, adjust ret_exp2 for the larger shift.
-  //
-  // Having bit 53 on (and higher bits off) means that ret_mantissa is a 54-bit
-  // number.
-  uint64_t msb = x.hi >> 63;
-  uint64_t ret_mantissa = x.hi >> (msb + 9);
-  ret_exp2 -= 1 ^ msb;
-
-  // IEEE 754 rounds to-nearest with ties rounded to-even. Rounding to-even can
-  // be tricky. If we're half-way between two exactly representable numbers
-  // (x's low 73 bits are zero and the next 2 bits that matter are "01"), give
-  // up instead of trying to pick the winner.
-  //
-  // Technically, we could tighten the condition by changing "73" to "73 or 74,
-  // depending on msb", but a flat "73" is simpler.
-  if ((x.lo == 0) && ((x.hi & 0x1FF) == 0) && ((ret_mantissa & 3) == 1)) {
-    return -1;
-  }
-
-  // If we're not halfway then it's rounding to-nearest. Starting with a 54-bit
-  // number, carry the lowest bit (bit 0) up if it's on. Regardless of whether
-  // it was on or off, shifting right by one then produces a 53-bit number. If
-  // carrying up overflowed, shift again.
-  ret_mantissa += ret_mantissa & 1;
-  ret_mantissa >>= 1;
-  if ((ret_mantissa >> 53) > 0) {
-    ret_mantissa >>= 1;
-    ret_exp2++;
-  }
-
-  // Starting with a 53-bit number, IEEE 754 double-precision normal numbers
-  // have an implicit mantissa bit. Mask that away and keep the low 52 bits.
-  ret_mantissa &= 0x000FFFFFFFFFFFFF;
-
-  // IEEE 754 double-precision floating point has 11 exponent bits. All off (0)
-  // means subnormal numbers. All on (2047) means infinity or NaN.
-  if ((ret_exp2 <= 0) || (2047 <= ret_exp2)) {
-    return -1;
-  }
-
-  // Pack the bits and return.
-  return ((int64_t)(ret_mantissa | (ret_exp2 << 52)));
-}
-
-// --------
-
-static wuffs_base__result_f64  //
-wuffs_base__parse_number_f64_special(wuffs_base__slice_u8 s,
-                                     const char* fallback_status_repr) {
-  do {
-    uint8_t* p = s.ptr;
-    uint8_t* q = s.ptr + s.len;
-
-    for (; (p < q) && (*p == '_'); p++) {
-    }
-    if (p >= q) {
-      goto fallback;
-    }
-
-    // Parse sign.
-    bool negative = false;
-    do {
-      if (*p == '+') {
-        p++;
-      } else if (*p == '-') {
-        negative = true;
-        p++;
-      } else {
-        break;
-      }
-      for (; (p < q) && (*p == '_'); p++) {
-      }
-    } while (0);
-    if (p >= q) {
-      goto fallback;
-    }
-
-    bool nan = false;
-    switch (p[0]) {
-      case 'I':
-      case 'i':
-        if (((q - p) < 3) ||                     //
-            ((p[1] != 'N') && (p[1] != 'n')) ||  //
-            ((p[2] != 'F') && (p[2] != 'f'))) {
-          goto fallback;
-        }
-        p += 3;
-
-        if ((p >= q) || (*p == '_')) {
-          break;
-        } else if (((q - p) < 5) ||                     //
-                   ((p[0] != 'I') && (p[0] != 'i')) ||  //
-                   ((p[1] != 'N') && (p[1] != 'n')) ||  //
-                   ((p[2] != 'I') && (p[2] != 'i')) ||  //
-                   ((p[3] != 'T') && (p[3] != 't')) ||  //
-                   ((p[4] != 'Y') && (p[4] != 'y'))) {
-          goto fallback;
-        }
-        p += 5;
-
-        if ((p >= q) || (*p == '_')) {
-          break;
-        }
-        goto fallback;
-
-      case 'N':
-      case 'n':
-        if (((q - p) < 3) ||                     //
-            ((p[1] != 'A') && (p[1] != 'a')) ||  //
-            ((p[2] != 'N') && (p[2] != 'n'))) {
-          goto fallback;
-        }
-        p += 3;
-
-        if ((p >= q) || (*p == '_')) {
-          nan = true;
-          break;
-        }
-        goto fallback;
-
-      default:
-        goto fallback;
-    }
-
-    // Finish.
-    for (; (p < q) && (*p == '_'); p++) {
-    }
-    if (p != q) {
-      goto fallback;
-    }
-    wuffs_base__result_f64 ret;
-    ret.status.repr = NULL;
-    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(
-        (nan ? 0x7FFFFFFFFFFFFFFF : 0x7FF0000000000000) |
-        (negative ? 0x8000000000000000 : 0));
-    return ret;
-  } while (0);
-
-fallback:
-  do {
-    wuffs_base__result_f64 ret;
-    ret.status.repr = fallback_status_repr;
-    ret.value = 0;
-    return ret;
-  } while (0);
-}
-
-WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //
-wuffs_base__private_implementation__parse_number_f64__fallback(
-    wuffs_base__private_implementation__high_prec_dec* h) {
-  do {
-    // powers converts decimal powers of 10 to binary powers of 2. For example,
-    // (10000 >> 13) is 1. It stops before the elements exceed 60, also known
-    // as WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.
-    static const uint32_t num_powers = 19;
-    static const uint8_t powers[19] = {
-        0,  3,  6,  9,  13, 16, 19, 23, 26, 29,  //
-        33, 36, 39, 43, 46, 49, 53, 56, 59,      //
-    };
-
-    // Handle zero and obvious extremes. The largest and smallest positive
-    // finite f64 values are approximately 1.8e+308 and 4.9e-324.
-    if ((h->num_digits == 0) || (h->decimal_point < -326)) {
-      goto zero;
-    } else if (h->decimal_point > 310) {
-      goto infinity;
-    }
-
-    // Try the fast Eisel algorithm again. Calculating the (man, exp10) pair
-    // from the high_prec_dec h is more correct but slower than the approach
-    // taken in wuffs_base__parse_number_f64. The latter is optimized for the
-    // common cases (e.g. assuming no underscores or a leading '+' sign) rather
-    // than the full set of cases allowed by the Wuffs API.
-    if (h->num_digits <= 19) {
-      uint64_t man = 0;
-      uint32_t i;
-      for (i = 0; i < h->num_digits; i++) {
-        man = (10 * man) + h->digits[i];
-      }
-      int32_t exp10 = h->decimal_point - ((int32_t)(h->num_digits));
-      if ((man != 0) && (-326 <= exp10) && (exp10 <= 310)) {
-        int64_t r = wuffs_base__private_implementation__parse_number_f64_eisel(
-            man, exp10);
-        if (r >= 0) {
-          wuffs_base__result_f64 ret;
-          ret.status.repr = NULL;
-          ret.value = wuffs_base__ieee_754_bit_representation__to_f64(
-              ((uint64_t)r) | (((uint64_t)(h->negative)) << 63));
-          return ret;
-        }
-      }
-    }
-
-    // Scale by powers of 2 until we're in the range [½ .. 1], which gives us
-    // our exponent (in base-2). First we shift right, possibly a little too
-    // far, ending with a value certainly below 1 and possibly below ½...
-    const int32_t f64_bias = -1023;
-    int32_t exp2 = 0;
-    while (h->decimal_point > 0) {
-      uint32_t n = (uint32_t)(+h->decimal_point);
-      uint32_t shift =
-          (n < num_powers)
-              ? powers[n]
-              : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
-
-      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, shift);
-      if (h->decimal_point <
-          -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
-        goto zero;
-      }
-      exp2 += (int32_t)shift;
-    }
-    // ...then we shift left, putting us in [½ .. 1].
-    while (h->decimal_point <= 0) {
-      uint32_t shift;
-      if (h->decimal_point == 0) {
-        if (h->digits[0] >= 5) {
-          break;
-        }
-        shift = (h->digits[0] <= 2) ? 2 : 1;
-      } else {
-        uint32_t n = (uint32_t)(-h->decimal_point);
-        shift = (n < num_powers)
-                    ? powers[n]
-                    : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
-      }
-
-      wuffs_base__private_implementation__high_prec_dec__small_lshift(h, shift);
-      if (h->decimal_point >
-          +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
-        goto infinity;
-      }
-      exp2 -= (int32_t)shift;
-    }
-
-    // We're in the range [½ .. 1] but f64 uses [1 .. 2].
-    exp2--;
-
-    // The minimum normal exponent is (f64_bias + 1).
-    while ((f64_bias + 1) > exp2) {
-      uint32_t n = (uint32_t)((f64_bias + 1) - exp2);
-      if (n > WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
-        n = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
-      }
-      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, n);
-      exp2 += (int32_t)n;
-    }
-
-    // Check for overflow.
-    if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.
-      goto infinity;
-    }
-
-    // Extract 53 bits for the mantissa (in base-2).
-    wuffs_base__private_implementation__high_prec_dec__small_lshift(h, 53);
-    uint64_t man2 =
-        wuffs_base__private_implementation__high_prec_dec__rounded_integer(h);
-
-    // Rounding might have added one bit. If so, shift and re-check overflow.
-    if ((man2 >> 53) != 0) {
-      man2 >>= 1;
-      exp2++;
-      if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.
-        goto infinity;
-      }
-    }
-
-    // Handle subnormal numbers.
-    if ((man2 >> 52) == 0) {
-      exp2 = f64_bias;
-    }
-
-    // Pack the bits and return.
-    uint64_t exp2_bits =
-        (uint64_t)((exp2 - f64_bias) & 0x07FF);              // (1 << 11) - 1.
-    uint64_t bits = (man2 & 0x000FFFFFFFFFFFFF) |            // (1 << 52) - 1.
-                    (exp2_bits << 52) |                      //
-                    (h->negative ? 0x8000000000000000 : 0);  // (1 << 63).
-
-    wuffs_base__result_f64 ret;
-    ret.status.repr = NULL;
-    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);
-    return ret;
-  } while (0);
-
-zero:
-  do {
-    uint64_t bits = h->negative ? 0x8000000000000000 : 0;
-
-    wuffs_base__result_f64 ret;
-    ret.status.repr = NULL;
-    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);
-    return ret;
-  } while (0);
-
-infinity:
-  do {
-    uint64_t bits = h->negative ? 0xFFF0000000000000 : 0x7FF0000000000000;
-
-    wuffs_base__result_f64 ret;
-    ret.status.repr = NULL;
-    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);
-    return ret;
-  } while (0);
-}
-
-static inline bool  //
-wuffs_base__private_implementation__is_decimal_digit(uint8_t c) {
-  return ('0' <= c) && (c <= '9');
-}
-
-WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //
-wuffs_base__parse_number_f64(wuffs_base__slice_u8 s, uint32_t options) {
-  // In practice, almost all "dd.ddddE±xxx" numbers can be represented
-  // losslessly by a uint64_t mantissa "dddddd" and an int32_t base-10
-  // exponent, adjusting "xxx" for the position (if present) of the decimal
-  // separator '.' or ','.
-  //
-  // This (u64 man, i32 exp10) data structure is superficially similar to the
-  // "Do It Yourself Floating Point" type from Loitsch (†), but the exponent
-  // here is base-10, not base-2.
-  //
-  // If s's number fits in a (man, exp10), parse that pair with the Eisel
-  // algorithm. If not, or if Eisel fails, parsing s with the fallback
-  // algorithm is slower but comprehensive.
-  //
-  // † "Printing Floating-Point Numbers Quickly and Accurately with Integers"
-  // (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf).
-  // Florian Loitsch is also the primary contributor to
-  // https://github.com/google/double-conversion
-  do {
-    // Calculating that (man, exp10) pair needs to stay within s's bounds.
-    // Provided that s isn't extremely long, work on a NUL-terminated copy of
-    // s's contents. The NUL byte isn't a valid part of "±dd.ddddE±xxx".
-    //
-    // As the pointer p walks the contents, it's faster to repeatedly check "is
-    // *p a valid digit" than "is p within bounds and *p a valid digit".
-    if (s.len >= 256) {
-      goto fallback;
-    }
-    uint8_t z[256];
-    memcpy(&z[0], s.ptr, s.len);
-    z[s.len] = 0;
-    const uint8_t* p = &z[0];
-
-    // Look for a leading minus sign. Technically, we could also look for an
-    // optional plus sign, but the "script/process-json-numbers.c with -p"
-    // benchmark is noticably slower if we do. It's optional and, in practice,
-    // usually absent. Let the fallback catch it.
-    bool negative = (*p == '-');
-    if (negative) {
-      p++;
-    }
-
-    // After walking "dd.dddd", comparing p later with p now will produce the
-    // number of "d"s and "."s.
-    const uint8_t* const start_of_digits_ptr = p;
-
-    // Walk the "d"s before a '.', 'E', NUL byte, etc. If it starts with '0',
-    // it must be a single '0'. If it starts with a non-zero decimal digit, it
-    // can be a sequence of decimal digits.
-    //
-    // Update the man variable during the walk. It's OK if man overflows now.
-    // We'll detect that later.
-    uint64_t man;
-    if (*p == '0') {
-      man = 0;
-      p++;
-      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
-        goto fallback;
-      }
-    } else if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
-      man = ((uint8_t)(*p - '0'));
-      p++;
-      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {
-        man = (10 * man) + ((uint8_t)(*p - '0'));
-      }
-    } else {
-      goto fallback;
-    }
-
-    // Walk the "d"s after the optional decimal separator ('.' or ','),
-    // updating the man and exp10 variables.
-    int32_t exp10 = 0;
-    if ((*p == '.') || (*p == ',')) {
-      p++;
-      const uint8_t* first_after_separator_ptr = p;
-      if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {
-        goto fallback;
-      }
-      man = (10 * man) + ((uint8_t)(*p - '0'));
-      p++;
-      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {
-        man = (10 * man) + ((uint8_t)(*p - '0'));
-      }
-      exp10 = ((int32_t)(first_after_separator_ptr - p));
-    }
-
-    // Count the number of digits:
-    //  - for an input of "314159",  digit_count is 6.
-    //  - for an input of "3.14159", digit_count is 7.
-    //
-    // This is off-by-one if there is a decimal separator. That's OK for now.
-    // We'll correct for that later. The "script/process-json-numbers.c with
-    // -p" benchmark is noticably slower if we try to correct for that now.
-    uint32_t digit_count = (uint32_t)(p - start_of_digits_ptr);
-
-    // Update exp10 for the optional exponent, starting with 'E' or 'e'.
-    if ((*p | 0x20) == 'e') {
-      p++;
-      int32_t exp_sign = +1;
-      if (*p == '-') {
-        p++;
-        exp_sign = -1;
-      } else if (*p == '+') {
-        p++;
-      }
-      if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {
-        goto fallback;
-      }
-      int32_t exp_num = ((uint8_t)(*p - '0'));
-      p++;
-      // The rest of the exp_num walking has a peculiar control flow but, once
-      // again, the "script/process-json-numbers.c with -p" benchmark is
-      // sensitive to alternative formulations.
-      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
-        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));
-        p++;
-      }
-      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
-        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));
-        p++;
-      }
-      while (wuffs_base__private_implementation__is_decimal_digit(*p)) {
-        if (exp_num > 0x1000000) {
-          goto fallback;
-        }
-        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));
-        p++;
-      }
-      exp10 += exp_sign * exp_num;
-    }
-
-    // The Wuffs API is that the original slice has no trailing data. It also
-    // allows underscores, which we don't catch here but the fallback should.
-    if (p != &z[s.len]) {
-      goto fallback;
-    }
-
-    // Check that the uint64_t typed man variable has not overflowed, based on
-    // digit_count.
-    //
-    // For reference:
-    //   - (1 << 63) is  9223372036854775808, which has 19 decimal digits.
-    //   - (1 << 64) is 18446744073709551616, which has 20 decimal digits.
-    //   - 19 nines,  9999999999999999999, is  0x8AC7230489E7FFFF, which has 64
-    //     bits and 16 hexadecimal digits.
-    //   - 20 nines, 99999999999999999999, is 0x56BC75E2D630FFFFF, which has 67
-    //     bits and 17 hexadecimal digits.
-    if (digit_count > 19) {
-      // Even if we have more than 19 pseudo-digits, it's not yet definitely an
-      // overflow. Recall that digit_count might be off-by-one (too large) if
-      // there's a decimal separator. It will also over-report the number of
-      // meaningful digits if the input looks something like "0.000dddExxx".
-      //
-      // We adjust by the number of leading '0's and '.'s and re-compare to 19.
-      // Once again, technically, we could skip ','s too, but that perturbs the
-      // "script/process-json-numbers.c with -p" benchmark.
-      const uint8_t* q = start_of_digits_ptr;
-      for (; (*q == '0') || (*q == '.'); q++) {
-      }
-      digit_count -= (uint32_t)(q - start_of_digits_ptr);
-      if (digit_count > 19) {
-        goto fallback;
-      }
-    }
-
-    // The wuffs_base__private_implementation__parse_number_f64_eisel
-    // preconditions include that exp10 is in the range -326 ..= 310.
-    if ((exp10 < -326) || (310 < exp10)) {
-      goto fallback;
-    }
-
-    // If man and exp10 are small enough, all three of (man), (10 ** exp10) and
-    // (man ** (10 ** exp10)) are exactly representable by a double. We don't
-    // need to run the Eisel algorithm.
-    if ((-22 <= exp10) && (exp10 <= 22) && ((man >> 53) == 0)) {
-      double d = (double)man;
-      if (exp10 >= 0) {
-        d *= wuffs_base__private_implementation__f64_powers_of_10[+exp10];
-      } else {
-        d /= wuffs_base__private_implementation__f64_powers_of_10[-exp10];
-      }
-      wuffs_base__result_f64 ret;
-      ret.status.repr = NULL;
-      ret.value = negative ? -d : +d;
-      return ret;
-    }
-
-    // The wuffs_base__private_implementation__parse_number_f64_eisel
-    // preconditions include that man is non-zero. Parsing "0" should be caught
-    // by the "If man and exp10 are small enough" above, but "0e99" might not.
-    if (man == 0) {
-      goto fallback;
-    }
-
-    // Our man and exp10 are in range. Run the Eisel algorithm.
-    int64_t r =
-        wuffs_base__private_implementation__parse_number_f64_eisel(man, exp10);
-    if (r < 0) {
-      goto fallback;
-    }
-    wuffs_base__result_f64 ret;
-    ret.status.repr = NULL;
-    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(
-        ((uint64_t)r) | (((uint64_t)negative) << 63));
-    return ret;
-  } while (0);
-
-fallback:
-  do {
-    wuffs_base__private_implementation__high_prec_dec h;
-    wuffs_base__status status =
-        wuffs_base__private_implementation__high_prec_dec__parse(&h, s);
-    if (status.repr) {
-      return wuffs_base__parse_number_f64_special(s, status.repr);
-    }
-    return wuffs_base__private_implementation__parse_number_f64__fallback(&h);
-  } while (0);
-}
-
-// --------
-
-static inline size_t  //
-wuffs_base__private_implementation__render_inf(wuffs_base__slice_u8 dst,
-                                               bool neg,
-                                               uint32_t options) {
-  if (neg) {
-    if (dst.len < 4) {
-      return 0;
-    }
-    wuffs_base__store_u32le__no_bounds_check(dst.ptr, 0x666E492D);  // '-Inf'le.
-    return 4;
-  }
-
-  if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {
-    if (dst.len < 4) {
-      return 0;
-    }
-    wuffs_base__store_u32le__no_bounds_check(dst.ptr, 0x666E492B);  // '+Inf'le.
-    return 4;
-  }
-
-  if (dst.len < 3) {
-    return 0;
-  }
-  wuffs_base__store_u24le__no_bounds_check(dst.ptr, 0x666E49);  // 'Inf'le.
-  return 3;
-}
-
-static inline size_t  //
-wuffs_base__private_implementation__render_nan(wuffs_base__slice_u8 dst) {
-  if (dst.len < 3) {
-    return 0;
-  }
-  wuffs_base__store_u24le__no_bounds_check(dst.ptr, 0x4E614E);  // 'NaN'le.
-  return 3;
-}
-
-static size_t  //
-wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(
-    wuffs_base__slice_u8 dst,
-    wuffs_base__private_implementation__high_prec_dec* h,
-    uint32_t precision,
-    uint32_t options) {
-  size_t n = (h->negative ||
-              (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN))
-                 ? 1
-                 : 0;
-  if (h->decimal_point <= 0) {
-    n += 1;
-  } else {
-    n += (size_t)(h->decimal_point);
-  }
-  if (precision > 0) {
-    n += precision + 1;  // +1 for the '.'.
-  }
-
-  // Don't modify dst if the formatted number won't fit.
-  if (n > dst.len) {
-    return 0;
-  }
-
-  // Align-left or align-right.
-  uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)
-                     ? &dst.ptr[dst.len - n]
-                     : &dst.ptr[0];
-
-  // Leading "±".
-  if (h->negative) {
-    *ptr++ = '-';
-  } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {
-    *ptr++ = '+';
-  }
-
-  // Integral digits.
-  if (h->decimal_point <= 0) {
-    *ptr++ = '0';
-  } else {
-    uint32_t m =
-        wuffs_base__u32__min(h->num_digits, (uint32_t)(h->decimal_point));
-    uint32_t i = 0;
-    for (; i < m; i++) {
-      *ptr++ = (uint8_t)('0' | h->digits[i]);
-    }
-    for (; i < (uint32_t)(h->decimal_point); i++) {
-      *ptr++ = '0';
-    }
-  }
-
-  // Separator and then fractional digits.
-  if (precision > 0) {
-    *ptr++ =
-        (options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)
-            ? ','
-            : '.';
-    uint32_t i = 0;
-    for (; i < precision; i++) {
-      uint32_t j = ((uint32_t)(h->decimal_point)) + i;
-      *ptr++ = (uint8_t)('0' | ((j < h->num_digits) ? h->digits[j] : 0));
-    }
-  }
-
-  return n;
-}
-
-static size_t  //
-wuffs_base__private_implementation__high_prec_dec__render_exponent_present(
-    wuffs_base__slice_u8 dst,
-    wuffs_base__private_implementation__high_prec_dec* h,
-    uint32_t precision,
-    uint32_t options) {
-  int32_t exp = 0;
-  if (h->num_digits > 0) {
-    exp = h->decimal_point - 1;
-  }
-  bool negative_exp = exp < 0;
-  if (negative_exp) {
-    exp = -exp;
-  }
-
-  size_t n = (h->negative ||
-              (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN))
-                 ? 4
-                 : 3;  // Mininum 3 bytes: first digit and then "e±".
-  if (precision > 0) {
-    n += precision + 1;  // +1 for the '.'.
-  }
-  n += (exp < 100) ? 2 : 3;
-
-  // Don't modify dst if the formatted number won't fit.
-  if (n > dst.len) {
-    return 0;
-  }
-
-  // Align-left or align-right.
-  uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)
-                     ? &dst.ptr[dst.len - n]
-                     : &dst.ptr[0];
-
-  // Leading "±".
-  if (h->negative) {
-    *ptr++ = '-';
-  } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {
-    *ptr++ = '+';
-  }
-
-  // Integral digit.
-  if (h->num_digits > 0) {
-    *ptr++ = (uint8_t)('0' | h->digits[0]);
-  } else {
-    *ptr++ = '0';
-  }
-
-  // Separator and then fractional digits.
-  if (precision > 0) {
-    *ptr++ =
-        (options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)
-            ? ','
-            : '.';
-    uint32_t i = 1;
-    uint32_t j = wuffs_base__u32__min(h->num_digits, precision + 1);
-    for (; i < j; i++) {
-      *ptr++ = (uint8_t)('0' | h->digits[i]);
-    }
-    for (; i <= precision; i++) {
-      *ptr++ = '0';
-    }
-  }
-
-  // Exponent: "e±" and then 2 or 3 digits.
-  *ptr++ = 'e';
-  *ptr++ = negative_exp ? '-' : '+';
-  if (exp < 10) {
-    *ptr++ = '0';
-    *ptr++ = (uint8_t)('0' | exp);
-  } else if (exp < 100) {
-    *ptr++ = (uint8_t)('0' | (exp / 10));
-    *ptr++ = (uint8_t)('0' | (exp % 10));
-  } else {
-    int32_t e = exp / 100;
-    exp -= e * 100;
-    *ptr++ = (uint8_t)('0' | e);
-    *ptr++ = (uint8_t)('0' | (exp / 10));
-    *ptr++ = (uint8_t)('0' | (exp % 10));
-  }
-
-  return n;
-}
-
-WUFFS_BASE__MAYBE_STATIC size_t  //
-wuffs_base__render_number_f64(wuffs_base__slice_u8 dst,
-                              double x,
-                              uint32_t precision,
-                              uint32_t options) {
-  // Decompose x (64 bits) into negativity (1 bit), base-2 exponent (11 bits
-  // with a -1023 bias) and mantissa (52 bits).
-  uint64_t bits = wuffs_base__ieee_754_bit_representation__from_f64(x);
-  bool neg = (bits >> 63) != 0;
-  int32_t exp2 = ((int32_t)(bits >> 52)) & 0x7FF;
-  uint64_t man = bits & 0x000FFFFFFFFFFFFFul;
-
-  // Apply the exponent bias and set the implicit top bit of the mantissa,
-  // unless x is subnormal. Also take care of Inf and NaN.
-  if (exp2 == 0x7FF) {
-    if (man != 0) {
-      return wuffs_base__private_implementation__render_nan(dst);
-    }
-    return wuffs_base__private_implementation__render_inf(dst, neg, options);
-  } else if (exp2 == 0) {
-    exp2 = -1022;
-  } else {
-    exp2 -= 1023;
-    man |= 0x0010000000000000ul;
-  }
-
-  // Ensure that precision isn't too large.
-  if (precision > 4095) {
-    precision = 4095;
-  }
-
-  // Convert from the (neg, exp2, man) tuple to an HPD.
-  wuffs_base__private_implementation__high_prec_dec h;
-  wuffs_base__private_implementation__high_prec_dec__assign(&h, man, neg);
-  if (h.num_digits > 0) {
-    wuffs_base__private_implementation__high_prec_dec__lshift(
-        &h, exp2 - 52);  // 52 mantissa bits.
-  }
-
-  // Handle the "%e" and "%f" formats.
-  switch (options & (WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT |
-                     WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT)) {
-    case WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT:  // The "%"f" format.
-      if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {
-        wuffs_base__private_implementation__high_prec_dec__round_just_enough(
-            &h, exp2, man);
-        int32_t p = ((int32_t)(h.num_digits)) - h.decimal_point;
-        precision = ((uint32_t)(wuffs_base__i32__max(0, p)));
-      } else {
-        wuffs_base__private_implementation__high_prec_dec__round_nearest(
-            &h, ((int32_t)precision) + h.decimal_point);
-      }
-      return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(
-          dst, &h, precision, options);
-
-    case WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT:  // The "%e" format.
-      if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {
-        wuffs_base__private_implementation__high_prec_dec__round_just_enough(
-            &h, exp2, man);
-        precision = (h.num_digits > 0) ? (h.num_digits - 1) : 0;
-      } else {
-        wuffs_base__private_implementation__high_prec_dec__round_nearest(
-            &h, ((int32_t)precision) + 1);
-      }
-      return wuffs_base__private_implementation__high_prec_dec__render_exponent_present(
-          dst, &h, precision, options);
-  }
-
-  // We have the "%g" format and so precision means the number of significant
-  // digits, not the number of digits after the decimal separator. Perform
-  // rounding and determine whether to use "%e" or "%f".
-  int32_t e_threshold = 0;
-  if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {
-    wuffs_base__private_implementation__high_prec_dec__round_just_enough(
-        &h, exp2, man);
-    precision = h.num_digits;
-    e_threshold = 6;
-  } else {
-    if (precision == 0) {
-      precision = 1;
-    }
-    wuffs_base__private_implementation__high_prec_dec__round_nearest(
-        &h, ((int32_t)precision));
-    e_threshold = ((int32_t)precision);
-    int32_t nd = ((int32_t)(h.num_digits));
-    if ((e_threshold > nd) && (nd >= h.decimal_point)) {
-      e_threshold = nd;
-    }
-  }
-
-  // Use the "%e" format if the exponent is large.
-  int32_t e = h.decimal_point - 1;
-  if ((e < -4) || (e_threshold <= e)) {
-    uint32_t p = wuffs_base__u32__min(precision, h.num_digits);
-    return wuffs_base__private_implementation__high_prec_dec__render_exponent_present(
-        dst, &h, (p > 0) ? (p - 1) : 0, options);
-  }
-
-  // Use the "%f" format otherwise.
-  int32_t p = ((int32_t)precision);
-  if (p > h.decimal_point) {
-    p = ((int32_t)(h.num_digits));
-  }
-  precision = ((uint32_t)(wuffs_base__i32__max(0, p - h.decimal_point)));
-  return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(
-      dst, &h, precision, options);
-}
diff --git a/internal/cgen/cgen.go b/internal/cgen/cgen.go
index 4e3009b..b039b17 100644
--- a/internal/cgen/cgen.go
+++ b/internal/cgen/cgen.go
@@ -342,7 +342,9 @@
 }
 
 func insertBaseF64ConvSubmoduleC(buf *buffer) error {
-	buf.writes(data.BaseF64ConvSubmoduleC)
+	buf.writes(data.BaseF64ConvSubmoduleDataC)
+	buf.writeb('\n')
+	buf.writes(data.BaseF64ConvSubmoduleCodeC)
 	return nil
 }
 
diff --git a/internal/cgen/data/data.go b/internal/cgen/data/data.go
index 801f8f7..176150b 100644
--- a/internal/cgen/data/data.go
+++ b/internal/cgen/data/data.go
@@ -28,7 +28,7 @@
 	"ONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \\\n    defined(WUFFS_CONFIG__MODULE__BASE__UTF8)\n\n// !! INSERT base/utf8-submodule.c.\n\n#endif  // !defined(WUFFS_CONFIG__MODULES) ||\n        // defined(WUFFS_CONFIG__MODULE__BASE) ||\n        // defined(WUFFS_CONFIG__MODULE__BASE__UTF8)\n\n#ifdef __cplusplus\n}  // extern \"C\"\n#endif\n\n#endif  // WUFFS_IMPLEMENTATION\n\n// !! WUFFS MONOLITHIC RELEASE DISCARDS EVERYTHING BELOW.\n\n#endif  // WUFFS_INCLUDE_GUARD__BASE\n" +
 	""
 
-const BaseF64ConvSubmoduleC = "" +
+const BaseF64ConvSubmoduleCodeC = "" +
 	"// ---------------- IEEE 754 Floating Point\n\n#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE 2047\n#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION 800\n\n// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL is the largest N\n// such that ((10 << N) < (1 << 64)).\n#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL 60\n\n// wuffs_base__private_implementation__high_prec_dec (abbreviated as HPD) is a\n// fixed precision floating point decimal number, augmented with ±infinity\n// values, but it cannot represent NaN (Not a Number).\n//\n// \"High precision\" means that the mantissa holds 800 decimal digits. 800 is\n// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION.\n//\n// An HPD isn't for general purpose arithmetic, only for conversions to and\n// from IEEE 754 double-precision floating point, where the largest and\n// smallest positive, finite values are approximately 1.8e+308 and 4.9e-324.\n// HPD exponents above +2047 mean infinity, below -2047 mean zero. Th" +
 	"e ±2047\n// bounds are further away from zero than ±(324 + 800), where 800 and 2047 is\n// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION and\n// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.\n//\n// digits[.. num_digits] are the number's digits in big-endian order. The\n// uint8_t values are in the range [0 ..= 9], not ['0' ..= '9'], where e.g. '7'\n// is the ASCII value 0x37.\n//\n// decimal_point is the index (within digits) of the decimal point. It may be\n// negative or be larger than num_digits, in which case the explicit digits are\n// padded with implicit zeroes.\n//\n// For example, if num_digits is 3 and digits is \"\\x07\\x08\\x09\":\n//   - A decimal_point of -2 means \".00789\"\n//   - A decimal_point of -1 means \".0789\"\n//   - A decimal_point of +0 means \".789\"\n//   - A decimal_point of +1 means \"7.89\"\n//   - A decimal_point of +2 means \"78.9\"\n//   - A decimal_point of +3 means \"789.\"\n//   - A decimal_point of +4 means \"7890.\"\n//   - A decimal_point of +5 means \"78900.\"\n//\n// As above, a" +
 	" decimal_point higher than +2047 means that the overall value is\n// infinity, lower than -2047 means zero.\n//\n// negative is a sign bit. An HPD can distinguish positive and negative zero.\n//\n// truncated is whether there are more than\n// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION digits, and at\n// least one of those extra digits are non-zero. The existence of long-tail\n// digits can affect rounding.\n//\n// The \"all fields are zero\" value is valid, and represents the number +0.\ntypedef struct {\n  uint32_t num_digits;\n  int32_t decimal_point;\n  bool negative;\n  bool truncated;\n  uint8_t digits[WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION];\n} wuffs_base__private_implementation__high_prec_dec;\n\n// wuffs_base__private_implementation__high_prec_dec__trim trims trailing\n// zeroes from the h->digits[.. h->num_digits] slice. They have no benefit,\n// since we explicitly track h->decimal_point.\n//\n// Preconditions:\n//  - h is non-NULL.\nstatic inline void  //\nwuffs_base__private_implementation_" +
@@ -40,15 +40,8 @@
 	"2_t exp_large =\n        WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE +\n        WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION;\n    bool saw_exp_digits = false;\n    for (; p < q; p++) {\n      if (*p == '_') {\n        // No-op.\n      } else if (('0' <= *p) && (*p <= '9')) {\n        saw_exp_digits = true;\n        if (exp < exp_large) {\n          exp = (10 * exp) + ((int32_t)(*p - '0'));\n        }\n      } else {\n        break;\n      }\n    }\n    if (!saw_exp_digits) {\n      return wuffs_base__make_status(wuffs_base__error__bad_argument);\n    }\n    dp += exp_sign * exp;\n  } while (0);\n\nafter_all:\n  if (p != q) {\n    return wuffs_base__make_status(wuffs_base__error__bad_argument);\n  }\n  h->num_digits = nd;\n  if (nd == 0) {\n    if (no_digits_before_separator) {\n      return wuffs_base__make_status(wuffs_base__error__bad_argument);\n    }\n    h->decimal_point = 0;\n  } else if (dp <\n             -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {\n    h->decimal_point =\n        -" +
 	"WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE - 1;\n  } else if (dp >\n             +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {\n    h->decimal_point =\n        +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE + 1;\n  } else {\n    h->decimal_point = dp;\n  }\n  wuffs_base__private_implementation__high_prec_dec__trim(h);\n  return wuffs_base__make_status(NULL);\n}\n\n" +
 	"" +
-	"// --------\n\n// The etc__hpd_left_shift and etc__powers_of_5 tables were printed by\n// script/print-hpd-left-shift.go. That script has an optional -comments flag,\n// whose output is not copied here, which prints further detail.\n//\n// These tables are used in\n// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits.\n\n// wuffs_base__private_implementation__hpd_left_shift[i] encodes the number of\n// new digits created after multiplying a positive integer by (1 << i): the\n// additional length in the decimal representation. For example, shifting \"234\"\n// by 3 (equivalent to multiplying by 8) will produce \"1872\". Going from a\n// 3-length string to a 4-length string means that 1 new digit was added (and\n// existing digits may have changed).\n//\n// Shifting by i can add either N or N-1 new digits, depending on whether the\n// original positive integer compares >= or < to the i'th power of 5 (as 10\n// equals 2 * 5). Comparison is lexicographic, not numerical.\n//\n// For example, shifting by 4 (i.e. mul" +
-	"tiplying by 16) can add 1 or 2 new\n// digits, depending on a lexicographic comparison to (5 ** 4), i.e. \"625\":\n//  - (\"1\"      << 4) is \"16\",       which adds 1 new digit.\n//  - (\"5678\"   << 4) is \"90848\",    which adds 1 new digit.\n//  - (\"624\"    << 4) is \"9984\",     which adds 1 new digit.\n//  - (\"62498\"  << 4) is \"999968\",   which adds 1 new digit.\n//  - (\"625\"    << 4) is \"10000\",    which adds 2 new digits.\n//  - (\"625001\" << 4) is \"10000016\", which adds 2 new digits.\n//  - (\"7008\"   << 4) is \"112128\",   which adds 2 new digits.\n//  - (\"99\"     << 4) is \"1584\",     which adds 2 new digits.\n//\n// Thus, when i is 4, N is 2 and (5 ** i) is \"625\". This etc__hpd_left_shift\n// array encodes this as:\n//  - etc__hpd_left_shift[4] is 0x1006 = (2 << 11) | 0x0006.\n//  - etc__hpd_left_shift[5] is 0x1009 = (? << 11) | 0x0009.\n// where the ? isn't relevant for i == 4.\n//\n// The high 5 bits of etc__hpd_left_shift[i] is N, the higher of the two\n// possible number of new digits. The low 11 bits are an offset into the\n//" +
-	" etc__powers_of_5 array (of length 0x051C, so offsets fit in 11 bits). When i\n// is 4, its offset and the next one is 6 and 9, and etc__powers_of_5[6 .. 9]\n// is the string \"\\x06\\x02\\x05\", so the relevant power of 5 is \"625\".\n//\n// Thanks to Ken Thompson for the original idea.\nstatic const uint16_t wuffs_base__private_implementation__hpd_left_shift[65] = {\n    0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817,\n    0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067,\n    0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF,\n    0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0,\n    0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA,\n    0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC,\n    0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C,\n    0x051C, 0x051C,\n};\n\n// wuffs_base__private_implementation__powers_of_5 contains the powers of 5,\n// concatenated together: \"5\", \"" +
-	"25\", \"125\", \"625\", \"3125\", etc.\nstatic const uint8_t wuffs_base__private_implementation__powers_of_5[0x051C] = {\n    5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, 9,\n    0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, 1, 2,\n    5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, 0, 3, 5,\n    1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, 7, 8, 9, 0,\n    6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, 9, 7, 2, 6, 5,\n    6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1,\n    6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4,\n    1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7,\n    8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0,\n    2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, 4, 9, 0, 1, 1, 6, 1, 1, 9, 3,\n    8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1,\n    2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4," +
-	" 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6,\n    2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5,\n    7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0,\n    7, 7, 3, 9, 2, 5, 7, 8, 1, 2, 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6,\n    9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8,\n    1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7,\n    2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6,\n    1, 3, 2, 8, 1, 2, 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8,\n    0, 6, 6, 4, 0, 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9,\n    0, 3, 3, 2, 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2,\n    9, 5, 1, 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8,\n    5, 6, 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7,\n    2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5,\n    0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5," +
-	" 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, 3,\n    7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, 6, 2,\n    5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, 3, 7, 9,\n    8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, 0, 1, 4, 8,\n    6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, 9, 4, 3, 0, 4,\n    0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0,\n    8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5,\n    6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1,\n    2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5,\n    0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, 9, 0, 6, 2, 5, 1, 7, 7, 6, 3,\n    5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4,\n    5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3,\n    8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8,\n    5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9," +
-	" 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2,\n    5, 2, 2, 2, 0, 4, 4, 6, 0, 4, 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6,\n    3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2,\n    5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2,\n    5, 5, 5, 5, 1, 1, 1, 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5,\n    8, 3, 4, 0, 4, 5, 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5,\n    6, 2, 8, 9, 1, 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8,\n    1, 2, 5, 1, 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9,\n    5, 3, 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3,\n    9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6,\n    2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1,\n    8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, 1,\n    7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, 4, 4,\n    8, 1, 3, 9, 1, 9, 0, 6, 7, 3," +
-	" 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, 7, 3, 7,\n    9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, 9, 5, 3, 3,\n    6, 9, 1, 4, 0, 6, 2, 5,\n};\n\n// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits\n// returns the number of additional decimal digits when left-shifting by shift.\n//\n// See below for preconditions.\nstatic uint32_t  //\nwuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(\n    wuffs_base__private_implementation__high_prec_dec* h,\n    uint32_t shift) {\n  // Masking with 0x3F should be unnecessary (assuming the preconditions) but\n  // it's cheap and ensures that we don't overflow the\n  // wuffs_base__private_implementation__hpd_left_shift array.\n  shift &= 63;\n\n  uint32_t x_a = wuffs_base__private_implementation__hpd_left_shift[shift];\n  uint32_t x_b = wuffs_base__private_implementation__hpd_left_shift[shift + 1];\n  uint32_t num_new_digits = x_a >> 11;\n  uint32_t pow5_a = 0x7FF & x_a;\n  uint32_t pow5_b = 0x7FF & x_b;\n\n  const uint8_t* pow5 =\n    " +
-	"  &wuffs_base__private_implementation__powers_of_5[pow5_a];\n  uint32_t i = 0;\n  uint32_t n = pow5_b - pow5_a;\n  for (; i < n; i++) {\n    if (i >= h->num_digits) {\n      return num_new_digits - 1;\n    } else if (h->digits[i] == pow5[i]) {\n      continue;\n    } else if (h->digits[i] < pow5[i]) {\n      return num_new_digits - 1;\n    } else {\n      return num_new_digits;\n    }\n  }\n  return num_new_digits;\n}\n\n" +
+	"// --------\n\n// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits\n// returns the number of additional decimal digits when left-shifting by shift.\n//\n// See below for preconditions.\nstatic uint32_t  //\nwuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(\n    wuffs_base__private_implementation__high_prec_dec* h,\n    uint32_t shift) {\n  // Masking with 0x3F should be unnecessary (assuming the preconditions) but\n  // it's cheap and ensures that we don't overflow the\n  // wuffs_base__private_implementation__hpd_left_shift array.\n  shift &= 63;\n\n  uint32_t x_a = wuffs_base__private_implementation__hpd_left_shift[shift];\n  uint32_t x_b = wuffs_base__private_implementation__hpd_left_shift[shift + 1];\n  uint32_t num_new_digits = x_a >> 11;\n  uint32_t pow5_a = 0x7FF & x_a;\n  uint32_t pow5_b = 0x7FF & x_b;\n\n  const uint8_t* pow5 =\n      &wuffs_base__private_implementation__powers_of_5[pow5_a];\n  uint32_t i = 0;\n  uint32_t n = pow5_b - pow5_a;\n  for (; i < n; i++) {\n    if (i >" +
+	"= h->num_digits) {\n      return num_new_digits - 1;\n    } else if (h->digits[i] == pow5[i]) {\n      continue;\n    } else if (h->digits[i] < pow5[i]) {\n      return num_new_digits - 1;\n    } else {\n      return num_new_digits;\n    }\n  }\n  return num_new_digits;\n}\n\n" +
 	"" +
 	"// --------\n\n// wuffs_base__private_implementation__high_prec_dec__rounded_integer returns\n// the integral (non-fractional) part of h, provided that it is 18 or fewer\n// decimal digits. For 19 or more digits, it returns UINT64_MAX. Note that:\n//   - (1 << 53) is    9007199254740992, which has 16 decimal digits.\n//   - (1 << 56) is   72057594037927936, which has 17 decimal digits.\n//   - (1 << 59) is  576460752303423488, which has 18 decimal digits.\n//   - (1 << 63) is 9223372036854775808, which has 19 decimal digits.\n// and that IEEE 754 double precision has 52 mantissa bits.\n//\n// That integral part is rounded-to-even: rounding 7.5 or 8.5 both give 8.\n//\n// h's negative bit is ignored: rounding -8.6 returns 9.\n//\n// See below for preconditions.\nstatic uint64_t  //\nwuffs_base__private_implementation__high_prec_dec__rounded_integer(\n    wuffs_base__private_implementation__high_prec_dec* h) {\n  if ((h->num_digits == 0) || (h->decimal_point < 0)) {\n    return 0;\n  } else if (h->decimal_point > 18) {\n    return U" +
 	"INT64_MAX;\n  }\n\n  uint32_t dp = (uint32_t)(h->decimal_point);\n  uint64_t n = 0;\n  uint32_t i = 0;\n  for (; i < dp; i++) {\n    n = (10 * n) + ((i < h->num_digits) ? h->digits[i] : 0);\n  }\n\n  bool round_up = false;\n  if (dp < h->num_digits) {\n    round_up = h->digits[dp] >= 5;\n    if ((h->digits[dp] == 5) && (dp + 1 == h->num_digits)) {\n      // We are exactly halfway. If we're truncated, round up, otherwise round\n      // to even.\n      round_up = h->truncated ||  //\n                 ((dp > 0) && (1 & h->digits[dp - 1]));\n    }\n  }\n  if (round_up) {\n    n++;\n  }\n\n  return n;\n}\n\n// wuffs_base__private_implementation__high_prec_dec__small_xshift shifts h's\n// number (where 'x' is 'l' or 'r' for left or right) by a small shift value.\n//\n// Preconditions:\n//  - h is non-NULL.\n//  - h->decimal_point is \"not extreme\".\n//  - shift is non-zero.\n//  - shift is \"a small shift\".\n//\n// \"Not extreme\" means within\n// ±WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.\n//\n// \"A small shift\" means not more than\n/" +
@@ -68,6 +61,53 @@
 	"   upper_delta = +1;\n      } else if (hd != ud) {\n        // For example:\n        // h     = 12345???\n        // upper = 12346???\n        upper_delta = +0;\n      }\n    } else if (upper_delta == 0) {\n      if ((hd != 9) || (ud != 0)) {\n        // For example:\n        // h     = 1234598?\n        // upper = 1234600?\n        upper_delta = +1;\n      }\n    }\n\n    // We can round up if upper has a different digit than h and either upper\n    // is inclusive or upper is bigger than the result of rounding up.\n    bool can_round_up =\n        (upper_delta > 0) ||    //\n        ((upper_delta == 0) &&  //\n         (inclusive || ((ui + 1) < ((int32_t)(upper.num_digits)))));\n\n    // If we can round either way, round to nearest. If we can round only one\n    // way, do it. If we can't round, continue the loop.\n    if (can_round_down) {\n      if (can_round_up) {\n        wuffs_base__private_implementation__high_prec_dec__round_nearest(\n            h, hi + 1);\n        return;\n      } else {\n        wuffs_base__private_implementat" +
 	"ion__high_prec_dec__round_down(h,\n                                                                      hi + 1);\n        return;\n      }\n    } else {\n      if (can_round_up) {\n        wuffs_base__private_implementation__high_prec_dec__round_up(h, hi + 1);\n        return;\n      }\n    }\n  }\n}\n\n" +
 	"" +
+	"// --------\n\n// wuffs_base__private_implementation__parse_number_f64_eisel produces the IEEE\n// 754 double-precision value for an exact mantissa and base-10 exponent.\n//\n// On success, it returns a non-negative int64_t such that the low 63 bits hold\n// the 11-bit exponent and 52-bit mantissa.\n//\n// On failure, it returns a negative value.\n//\n// The algorithm is based on an original idea by Michael Eisel. See\n// https://lemire.me/blog/2020/03/10/fast-float-parsing-in-practice/\n//\n// Preconditions:\n//  - man is non-zero.\n//  - exp10 is in the range -326 ..= 310, the same range of the\n//    wuffs_base__private_implementation__powers_of_10 array.\nstatic int64_t  //\nwuffs_base__private_implementation__parse_number_f64_eisel(uint64_t man,\n                                                           int32_t exp10) {\n  // Look up the (possibly truncated) base-2 representation of (10 ** exp10).\n  // The look-up table was constructed so that it is already normalized: the\n  // table entry's mantissa's MSB (most significan" +
+	"t bit) is on.\n  const uint32_t* po10 =\n      &wuffs_base__private_implementation__powers_of_10[5 * (exp10 + 326)];\n\n  // Normalize the man argument. The (man != 0) precondition means that a\n  // non-zero bit exists.\n  uint32_t clz = wuffs_base__count_leading_zeroes_u64(man);\n  man <<= clz;\n\n  // Calculate the return value's base-2 exponent. We might tweak it by ±1\n  // later, but its initial value comes from the look-up table and clz.\n  uint64_t ret_exp2 = ((uint64_t)po10[4]) - ((uint64_t)clz);\n\n  // Multiply the two mantissas. Normalization means that both mantissas are at\n  // least (1<<63), so the 128-bit product must be at least (1<<126). The high\n  // 64 bits of the product, x.hi, must therefore be at least (1<<62).\n  //\n  // As a consequence, x.hi has either 0 or 1 leading zeroes. Shifting x.hi\n  // right by either 9 or 10 bits (depending on x.hi's MSB) will therefore\n  // leave the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on.\n  wuffs_base__multiply_u64__output x = wuffs_base__multipl" +
+	"y_u64(\n      man, ((uint64_t)po10[2]) | (((uint64_t)po10[3]) << 32));\n\n  // Before we shift right by at least 9 bits, recall that the look-up table\n  // entry was possibly truncated. We have so far only calculated a lower bound\n  // for the product (man * e), where e is (10 ** exp10). The upper bound would\n  // add a further (man * 1) to the 128-bit product, which overflows the lower\n  // 64-bit limb if ((x.lo + man) < man).\n  //\n  // If overflow occurs, that adds 1 to x.hi. Since we're about to shift right\n  // by at least 9 bits, that carried 1 can be ignored unless the higher 64-bit\n  // limb's low 9 bits are all on.\n  if (((x.hi & 0x1FF) == 0x1FF) && ((x.lo + man) < man)) {\n    // Refine our calculation of (man * e). Before, our approximation of e used\n    // a \"low resolution\" 64-bit mantissa. Now use a \"high resolution\" 128-bit\n    // mantissa. We've already calculated x = (man * bits_0_to_63_incl_of_e).\n    // Now calculate y = (man * bits_64_to_127_incl_of_e).\n    wuffs_base__multiply_u64__output y = " +
+	"wuffs_base__multiply_u64(\n        man, ((uint64_t)po10[0]) | (((uint64_t)po10[1]) << 32));\n\n    // Merge the 128-bit x and 128-bit y, which overlap by 64 bits, to\n    // calculate the 192-bit product of the 64-bit man by the 128-bit e.\n    // As we exit this if-block, we only care about the high 128 bits\n    // (merged_hi and merged_lo) of that 192-bit product.\n    uint64_t merged_hi = x.hi;\n    uint64_t merged_lo = x.lo + y.hi;\n    if (merged_lo < x.lo) {\n      merged_hi++;  // Carry the overflow bit.\n    }\n\n    // The \"high resolution\" approximation of e is still a lower bound. Once\n    // again, see if the upper bound is large enough to produce a different\n    // result. This time, if it does, give up instead of reaching for an even\n    // more precise approximation to e.\n    //\n    // This three-part check is similar to the two-part check that guarded the\n    // if block that we're now in, but it has an extra term for the middle 64\n    // bits (checking that adding 1 to merged_lo would overflow).\n    if (" +
+	"((merged_hi & 0x1FF) == 0x1FF) && ((merged_lo + 1) == 0) &&\n        (y.lo + man < man)) {\n      return -1;\n    }\n\n    // Replace the 128-bit x with merged.\n    x.hi = merged_hi;\n    x.lo = merged_lo;\n  }\n\n  // As mentioned above, shifting x.hi right by either 9 or 10 bits will leave\n  // the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on. If the\n  // MSB (before shifting) was on, adjust ret_exp2 for the larger shift.\n  //\n  // Having bit 53 on (and higher bits off) means that ret_mantissa is a 54-bit\n  // number.\n  uint64_t msb = x.hi >> 63;\n  uint64_t ret_mantissa = x.hi >> (msb + 9);\n  ret_exp2 -= 1 ^ msb;\n\n  // IEEE 754 rounds to-nearest with ties rounded to-even. Rounding to-even can\n  // be tricky. If we're half-way between two exactly representable numbers\n  // (x's low 73 bits are zero and the next 2 bits that matter are \"01\"), give\n  // up instead of trying to pick the winner.\n  //\n  // Technically, we could tighten the condition by changing \"73\" to \"73 or 74,\n  // depending on msb\", bu" +
+	"t a flat \"73\" is simpler.\n  if ((x.lo == 0) && ((x.hi & 0x1FF) == 0) && ((ret_mantissa & 3) == 1)) {\n    return -1;\n  }\n\n  // If we're not halfway then it's rounding to-nearest. Starting with a 54-bit\n  // number, carry the lowest bit (bit 0) up if it's on. Regardless of whether\n  // it was on or off, shifting right by one then produces a 53-bit number. If\n  // carrying up overflowed, shift again.\n  ret_mantissa += ret_mantissa & 1;\n  ret_mantissa >>= 1;\n  if ((ret_mantissa >> 53) > 0) {\n    ret_mantissa >>= 1;\n    ret_exp2++;\n  }\n\n  // Starting with a 53-bit number, IEEE 754 double-precision normal numbers\n  // have an implicit mantissa bit. Mask that away and keep the low 52 bits.\n  ret_mantissa &= 0x000FFFFFFFFFFFFF;\n\n  // IEEE 754 double-precision floating point has 11 exponent bits. All off (0)\n  // means subnormal numbers. All on (2047) means infinity or NaN.\n  if ((ret_exp2 <= 0) || (2047 <= ret_exp2)) {\n    return -1;\n  }\n\n  // Pack the bits and return.\n  return ((int64_t)(ret_mantissa | (ret_exp2 << " +
+	"52)));\n}\n\n" +
+	"" +
+	"// --------\n\nstatic wuffs_base__result_f64  //\nwuffs_base__parse_number_f64_special(wuffs_base__slice_u8 s,\n                                     const char* fallback_status_repr) {\n  do {\n    uint8_t* p = s.ptr;\n    uint8_t* q = s.ptr + s.len;\n\n    for (; (p < q) && (*p == '_'); p++) {\n    }\n    if (p >= q) {\n      goto fallback;\n    }\n\n    // Parse sign.\n    bool negative = false;\n    do {\n      if (*p == '+') {\n        p++;\n      } else if (*p == '-') {\n        negative = true;\n        p++;\n      } else {\n        break;\n      }\n      for (; (p < q) && (*p == '_'); p++) {\n      }\n    } while (0);\n    if (p >= q) {\n      goto fallback;\n    }\n\n    bool nan = false;\n    switch (p[0]) {\n      case 'I':\n      case 'i':\n        if (((q - p) < 3) ||                     //\n            ((p[1] != 'N') && (p[1] != 'n')) ||  //\n            ((p[2] != 'F') && (p[2] != 'f'))) {\n          goto fallback;\n        }\n        p += 3;\n\n        if ((p >= q) || (*p == '_')) {\n          break;\n        } else if (((q - p) < 5) ||    " +
+	"                 //\n                   ((p[0] != 'I') && (p[0] != 'i')) ||  //\n                   ((p[1] != 'N') && (p[1] != 'n')) ||  //\n                   ((p[2] != 'I') && (p[2] != 'i')) ||  //\n                   ((p[3] != 'T') && (p[3] != 't')) ||  //\n                   ((p[4] != 'Y') && (p[4] != 'y'))) {\n          goto fallback;\n        }\n        p += 5;\n\n        if ((p >= q) || (*p == '_')) {\n          break;\n        }\n        goto fallback;\n\n      case 'N':\n      case 'n':\n        if (((q - p) < 3) ||                     //\n            ((p[1] != 'A') && (p[1] != 'a')) ||  //\n            ((p[2] != 'N') && (p[2] != 'n'))) {\n          goto fallback;\n        }\n        p += 3;\n\n        if ((p >= q) || (*p == '_')) {\n          nan = true;\n          break;\n        }\n        goto fallback;\n\n      default:\n        goto fallback;\n    }\n\n    // Finish.\n    for (; (p < q) && (*p == '_'); p++) {\n    }\n    if (p != q) {\n      goto fallback;\n    }\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.va" +
+	"lue = wuffs_base__ieee_754_bit_representation__to_f64(\n        (nan ? 0x7FFFFFFFFFFFFFFF : 0x7FF0000000000000) |\n        (negative ? 0x8000000000000000 : 0));\n    return ret;\n  } while (0);\n\nfallback:\n  do {\n    wuffs_base__result_f64 ret;\n    ret.status.repr = fallback_status_repr;\n    ret.value = 0;\n    return ret;\n  } while (0);\n}\n\nWUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //\nwuffs_base__private_implementation__parse_number_f64__fallback(\n    wuffs_base__private_implementation__high_prec_dec* h) {\n  do {\n    // powers converts decimal powers of 10 to binary powers of 2. For example,\n    // (10000 >> 13) is 1. It stops before the elements exceed 60, also known\n    // as WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.\n    static const uint32_t num_powers = 19;\n    static const uint8_t powers[19] = {\n        0,  3,  6,  9,  13, 16, 19, 23, 26, 29,  //\n        33, 36, 39, 43, 46, 49, 53, 56, 59,      //\n    };\n\n    // Handle zero and obvious extremes. The largest and smallest positive\n    // f" +
+	"inite f64 values are approximately 1.8e+308 and 4.9e-324.\n    if ((h->num_digits == 0) || (h->decimal_point < -326)) {\n      goto zero;\n    } else if (h->decimal_point > 310) {\n      goto infinity;\n    }\n\n    // Try the fast Eisel algorithm again. Calculating the (man, exp10) pair\n    // from the high_prec_dec h is more correct but slower than the approach\n    // taken in wuffs_base__parse_number_f64. The latter is optimized for the\n    // common cases (e.g. assuming no underscores or a leading '+' sign) rather\n    // than the full set of cases allowed by the Wuffs API.\n    if (h->num_digits <= 19) {\n      uint64_t man = 0;\n      uint32_t i;\n      for (i = 0; i < h->num_digits; i++) {\n        man = (10 * man) + h->digits[i];\n      }\n      int32_t exp10 = h->decimal_point - ((int32_t)(h->num_digits));\n      if ((man != 0) && (-326 <= exp10) && (exp10 <= 310)) {\n        int64_t r = wuffs_base__private_implementation__parse_number_f64_eisel(\n            man, exp10);\n        if (r >= 0) {\n          wuffs_base__re" +
+	"sult_f64 ret;\n          ret.status.repr = NULL;\n          ret.value = wuffs_base__ieee_754_bit_representation__to_f64(\n              ((uint64_t)r) | (((uint64_t)(h->negative)) << 63));\n          return ret;\n        }\n      }\n    }\n\n    // Scale by powers of 2 until we're in the range [½ .. 1], which gives us\n    // our exponent (in base-2). First we shift right, possibly a little too\n    // far, ending with a value certainly below 1 and possibly below ½...\n    const int32_t f64_bias = -1023;\n    int32_t exp2 = 0;\n    while (h->decimal_point > 0) {\n      uint32_t n = (uint32_t)(+h->decimal_point);\n      uint32_t shift =\n          (n < num_powers)\n              ? powers[n]\n              : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;\n\n      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, shift);\n      if (h->decimal_point <\n          -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {\n        goto zero;\n      }\n      exp2 += (int32_t)shift;\n    }\n    // ...then we " +
+	"shift left, putting us in [½ .. 1].\n    while (h->decimal_point <= 0) {\n      uint32_t shift;\n      if (h->decimal_point == 0) {\n        if (h->digits[0] >= 5) {\n          break;\n        }\n        shift = (h->digits[0] <= 2) ? 2 : 1;\n      } else {\n        uint32_t n = (uint32_t)(-h->decimal_point);\n        shift = (n < num_powers)\n                    ? powers[n]\n                    : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;\n      }\n\n      wuffs_base__private_implementation__high_prec_dec__small_lshift(h, shift);\n      if (h->decimal_point >\n          +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {\n        goto infinity;\n      }\n      exp2 -= (int32_t)shift;\n    }\n\n    // We're in the range [½ .. 1] but f64 uses [1 .. 2].\n    exp2--;\n\n    // The minimum normal exponent is (f64_bias + 1).\n    while ((f64_bias + 1) > exp2) {\n      uint32_t n = (uint32_t)((f64_bias + 1) - exp2);\n      if (n > WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {\n        n = WUFFS_BASE__" +
+	"PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;\n      }\n      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, n);\n      exp2 += (int32_t)n;\n    }\n\n    // Check for overflow.\n    if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.\n      goto infinity;\n    }\n\n    // Extract 53 bits for the mantissa (in base-2).\n    wuffs_base__private_implementation__high_prec_dec__small_lshift(h, 53);\n    uint64_t man2 =\n        wuffs_base__private_implementation__high_prec_dec__rounded_integer(h);\n\n    // Rounding might have added one bit. If so, shift and re-check overflow.\n    if ((man2 >> 53) != 0) {\n      man2 >>= 1;\n      exp2++;\n      if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.\n        goto infinity;\n      }\n    }\n\n    // Handle subnormal numbers.\n    if ((man2 >> 52) == 0) {\n      exp2 = f64_bias;\n    }\n\n    // Pack the bits and return.\n    uint64_t exp2_bits =\n        (uint64_t)((exp2 - f64_bias) & 0x07FF);              // (1 << 11) - 1.\n    uint64_t bits = (man2 & 0x000FFFFFFFFFFFFF) |   " +
+	"         // (1 << 52) - 1.\n                    (exp2_bits << 52) |                      //\n                    (h->negative ? 0x8000000000000000 : 0);  // (1 << 63).\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n\nzero:\n  do {\n    uint64_t bits = h->negative ? 0x8000000000000000 : 0;\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n\ninfinity:\n  do {\n    uint64_t bits = h->negative ? 0xFFF0000000000000 : 0x7FF0000000000000;\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n}\n\nstatic inline bool  //\nwuffs_base__private_implementation__is_decimal_digit(uint8_t c) {\n  return ('0' <= c) && (c <= '9');\n}\n\nWUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //\nwuffs_base__parse_numb" +
+	"er_f64(wuffs_base__slice_u8 s, uint32_t options) {\n  // In practice, almost all \"dd.ddddE±xxx\" numbers can be represented\n  // losslessly by a uint64_t mantissa \"dddddd\" and an int32_t base-10\n  // exponent, adjusting \"xxx\" for the position (if present) of the decimal\n  // separator '.' or ','.\n  //\n  // This (u64 man, i32 exp10) data structure is superficially similar to the\n  // \"Do It Yourself Floating Point\" type from Loitsch (†), but the exponent\n  // here is base-10, not base-2.\n  //\n  // If s's number fits in a (man, exp10), parse that pair with the Eisel\n  // algorithm. If not, or if Eisel fails, parsing s with the fallback\n  // algorithm is slower but comprehensive.\n  //\n  // † \"Printing Floating-Point Numbers Quickly and Accurately with Integers\"\n  // (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf).\n  // Florian Loitsch is also the primary contributor to\n  // https://github.com/google/double-conversion\n  do {\n    // Calculating that (man, exp10) pair needs to stay within" +
+	" s's bounds.\n    // Provided that s isn't extremely long, work on a NUL-terminated copy of\n    // s's contents. The NUL byte isn't a valid part of \"±dd.ddddE±xxx\".\n    //\n    // As the pointer p walks the contents, it's faster to repeatedly check \"is\n    // *p a valid digit\" than \"is p within bounds and *p a valid digit\".\n    if (s.len >= 256) {\n      goto fallback;\n    }\n    uint8_t z[256];\n    memcpy(&z[0], s.ptr, s.len);\n    z[s.len] = 0;\n    const uint8_t* p = &z[0];\n\n    // Look for a leading minus sign. Technically, we could also look for an\n    // optional plus sign, but the \"script/process-json-numbers.c with -p\"\n    // benchmark is noticably slower if we do. It's optional and, in practice,\n    // usually absent. Let the fallback catch it.\n    bool negative = (*p == '-');\n    if (negative) {\n      p++;\n    }\n\n    // After walking \"dd.dddd\", comparing p later with p now will produce the\n    // number of \"d\"s and \".\"s.\n    const uint8_t* const start_of_digits_ptr = p;\n\n    // Walk the \"d\"s before a '." +
+	"', 'E', NUL byte, etc. If it starts with '0',\n    // it must be a single '0'. If it starts with a non-zero decimal digit, it\n    // can be a sequence of decimal digits.\n    //\n    // Update the man variable during the walk. It's OK if man overflows now.\n    // We'll detect that later.\n    uint64_t man;\n    if (*p == '0') {\n      man = 0;\n      p++;\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n    } else if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n      man = ((uint8_t)(*p - '0'));\n      p++;\n      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {\n        man = (10 * man) + ((uint8_t)(*p - '0'));\n      }\n    } else {\n      goto fallback;\n    }\n\n    // Walk the \"d\"s after the optional decimal separator ('.' or ','),\n    // updating the man and exp10 variables.\n    int32_t exp10 = 0;\n    if ((*p == '.') || (*p == ',')) {\n      p++;\n      const uint8_t* first_after_separator_ptr = p;\n      if (!wuffs_base__private_im" +
+	"plementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n      man = (10 * man) + ((uint8_t)(*p - '0'));\n      p++;\n      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {\n        man = (10 * man) + ((uint8_t)(*p - '0'));\n      }\n      exp10 = ((int32_t)(first_after_separator_ptr - p));\n    }\n\n    // Count the number of digits:\n    //  - for an input of \"314159\",  digit_count is 6.\n    //  - for an input of \"3.14159\", digit_count is 7.\n    //\n    // This is off-by-one if there is a decimal separator. That's OK for now.\n    // We'll correct for that later. The \"script/process-json-numbers.c with\n    // -p\" benchmark is noticably slower if we try to correct for that now.\n    uint32_t digit_count = (uint32_t)(p - start_of_digits_ptr);\n\n    // Update exp10 for the optional exponent, starting with 'E' or 'e'.\n    if ((*p | 0x20) == 'e') {\n      p++;\n      int32_t exp_sign = +1;\n      if (*p == '-') {\n        p++;\n        exp_sign = -1;\n      } else if (*p == '+') {\n        p++;\n  " +
+	"    }\n      if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n      int32_t exp_num = ((uint8_t)(*p - '0'));\n      p++;\n      // The rest of the exp_num walking has a peculiar control flow but, once\n      // again, the \"script/process-json-numbers.c with -p\" benchmark is\n      // sensitive to alternative formulations.\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n      }\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n      }\n      while (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        if (exp_num > 0x1000000) {\n          goto fallback;\n        }\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n      }\n      exp10 += exp_sign * exp_num;\n    }\n\n    // The Wuffs API is that the original slice has no trailing data. It also\n    // allows unde" +
+	"rscores, which we don't catch here but the fallback should.\n    if (p != &z[s.len]) {\n      goto fallback;\n    }\n\n    // Check that the uint64_t typed man variable has not overflowed, based on\n    // digit_count.\n    //\n    // For reference:\n    //   - (1 << 63) is  9223372036854775808, which has 19 decimal digits.\n    //   - (1 << 64) is 18446744073709551616, which has 20 decimal digits.\n    //   - 19 nines,  9999999999999999999, is  0x8AC7230489E7FFFF, which has 64\n    //     bits and 16 hexadecimal digits.\n    //   - 20 nines, 99999999999999999999, is 0x56BC75E2D630FFFFF, which has 67\n    //     bits and 17 hexadecimal digits.\n    if (digit_count > 19) {\n      // Even if we have more than 19 pseudo-digits, it's not yet definitely an\n      // overflow. Recall that digit_count might be off-by-one (too large) if\n      // there's a decimal separator. It will also over-report the number of\n      // meaningful digits if the input looks something like \"0.000dddExxx\".\n      //\n      // We adjust by the number of l" +
+	"eading '0's and '.'s and re-compare to 19.\n      // Once again, technically, we could skip ','s too, but that perturbs the\n      // \"script/process-json-numbers.c with -p\" benchmark.\n      const uint8_t* q = start_of_digits_ptr;\n      for (; (*q == '0') || (*q == '.'); q++) {\n      }\n      digit_count -= (uint32_t)(q - start_of_digits_ptr);\n      if (digit_count > 19) {\n        goto fallback;\n      }\n    }\n\n    // The wuffs_base__private_implementation__parse_number_f64_eisel\n    // preconditions include that exp10 is in the range -326 ..= 310.\n    if ((exp10 < -326) || (310 < exp10)) {\n      goto fallback;\n    }\n\n    // If man and exp10 are small enough, all three of (man), (10 ** exp10) and\n    // (man ** (10 ** exp10)) are exactly representable by a double. We don't\n    // need to run the Eisel algorithm.\n    if ((-22 <= exp10) && (exp10 <= 22) && ((man >> 53) == 0)) {\n      double d = (double)man;\n      if (exp10 >= 0) {\n        d *= wuffs_base__private_implementation__f64_powers_of_10[+exp10];\n      } el" +
+	"se {\n        d /= wuffs_base__private_implementation__f64_powers_of_10[-exp10];\n      }\n      wuffs_base__result_f64 ret;\n      ret.status.repr = NULL;\n      ret.value = negative ? -d : +d;\n      return ret;\n    }\n\n    // The wuffs_base__private_implementation__parse_number_f64_eisel\n    // preconditions include that man is non-zero. Parsing \"0\" should be caught\n    // by the \"If man and exp10 are small enough\" above, but \"0e99\" might not.\n    if (man == 0) {\n      goto fallback;\n    }\n\n    // Our man and exp10 are in range. Run the Eisel algorithm.\n    int64_t r =\n        wuffs_base__private_implementation__parse_number_f64_eisel(man, exp10);\n    if (r < 0) {\n      goto fallback;\n    }\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(\n        ((uint64_t)r) | (((uint64_t)negative) << 63));\n    return ret;\n  } while (0);\n\nfallback:\n  do {\n    wuffs_base__private_implementation__high_prec_dec h;\n    wuffs_base__status status =\n        wu" +
+	"ffs_base__private_implementation__high_prec_dec__parse(&h, s);\n    if (status.repr) {\n      return wuffs_base__parse_number_f64_special(s, status.repr);\n    }\n    return wuffs_base__private_implementation__parse_number_f64__fallback(&h);\n  } while (0);\n}\n\n" +
+	"" +
+	"// --------\n\nstatic inline size_t  //\nwuffs_base__private_implementation__render_inf(wuffs_base__slice_u8 dst,\n                                               bool neg,\n                                               uint32_t options) {\n  if (neg) {\n    if (dst.len < 4) {\n      return 0;\n    }\n    wuffs_base__store_u32le__no_bounds_check(dst.ptr, 0x666E492D);  // '-Inf'le.\n    return 4;\n  }\n\n  if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {\n    if (dst.len < 4) {\n      return 0;\n    }\n    wuffs_base__store_u32le__no_bounds_check(dst.ptr, 0x666E492B);  // '+Inf'le.\n    return 4;\n  }\n\n  if (dst.len < 3) {\n    return 0;\n  }\n  wuffs_base__store_u24le__no_bounds_check(dst.ptr, 0x666E49);  // 'Inf'le.\n  return 3;\n}\n\nstatic inline size_t  //\nwuffs_base__private_implementation__render_nan(wuffs_base__slice_u8 dst) {\n  if (dst.len < 3) {\n    return 0;\n  }\n  wuffs_base__store_u24le__no_bounds_check(dst.ptr, 0x4E614E);  // 'NaN'le.\n  return 3;\n}\n\nstatic size_t  //\nwuffs_base__private_implementation__high" +
+	"_prec_dec__render_exponent_absent(\n    wuffs_base__slice_u8 dst,\n    wuffs_base__private_implementation__high_prec_dec* h,\n    uint32_t precision,\n    uint32_t options) {\n  size_t n = (h->negative ||\n              (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN))\n                 ? 1\n                 : 0;\n  if (h->decimal_point <= 0) {\n    n += 1;\n  } else {\n    n += (size_t)(h->decimal_point);\n  }\n  if (precision > 0) {\n    n += precision + 1;  // +1 for the '.'.\n  }\n\n  // Don't modify dst if the formatted number won't fit.\n  if (n > dst.len) {\n    return 0;\n  }\n\n  // Align-left or align-right.\n  uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)\n                     ? &dst.ptr[dst.len - n]\n                     : &dst.ptr[0];\n\n  // Leading \"±\".\n  if (h->negative) {\n    *ptr++ = '-';\n  } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {\n    *ptr++ = '+';\n  }\n\n  // Integral digits.\n  if (h->decimal_point <= 0) {\n    *ptr++ = '0';\n  } else {\n    uint32_t m =\n" +
+	"        wuffs_base__u32__min(h->num_digits, (uint32_t)(h->decimal_point));\n    uint32_t i = 0;\n    for (; i < m; i++) {\n      *ptr++ = (uint8_t)('0' | h->digits[i]);\n    }\n    for (; i < (uint32_t)(h->decimal_point); i++) {\n      *ptr++ = '0';\n    }\n  }\n\n  // Separator and then fractional digits.\n  if (precision > 0) {\n    *ptr++ =\n        (options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)\n            ? ','\n            : '.';\n    uint32_t i = 0;\n    for (; i < precision; i++) {\n      uint32_t j = ((uint32_t)(h->decimal_point)) + i;\n      *ptr++ = (uint8_t)('0' | ((j < h->num_digits) ? h->digits[j] : 0));\n    }\n  }\n\n  return n;\n}\n\nstatic size_t  //\nwuffs_base__private_implementation__high_prec_dec__render_exponent_present(\n    wuffs_base__slice_u8 dst,\n    wuffs_base__private_implementation__high_prec_dec* h,\n    uint32_t precision,\n    uint32_t options) {\n  int32_t exp = 0;\n  if (h->num_digits > 0) {\n    exp = h->decimal_point - 1;\n  }\n  bool negative_exp = exp < 0;\n  if (negative_exp) {\n" +
+	"    exp = -exp;\n  }\n\n  size_t n = (h->negative ||\n              (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN))\n                 ? 4\n                 : 3;  // Mininum 3 bytes: first digit and then \"e±\".\n  if (precision > 0) {\n    n += precision + 1;  // +1 for the '.'.\n  }\n  n += (exp < 100) ? 2 : 3;\n\n  // Don't modify dst if the formatted number won't fit.\n  if (n > dst.len) {\n    return 0;\n  }\n\n  // Align-left or align-right.\n  uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)\n                     ? &dst.ptr[dst.len - n]\n                     : &dst.ptr[0];\n\n  // Leading \"±\".\n  if (h->negative) {\n    *ptr++ = '-';\n  } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {\n    *ptr++ = '+';\n  }\n\n  // Integral digit.\n  if (h->num_digits > 0) {\n    *ptr++ = (uint8_t)('0' | h->digits[0]);\n  } else {\n    *ptr++ = '0';\n  }\n\n  // Separator and then fractional digits.\n  if (precision > 0) {\n    *ptr++ =\n        (options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPA" +
+	"RATOR_IS_A_COMMA)\n            ? ','\n            : '.';\n    uint32_t i = 1;\n    uint32_t j = wuffs_base__u32__min(h->num_digits, precision + 1);\n    for (; i < j; i++) {\n      *ptr++ = (uint8_t)('0' | h->digits[i]);\n    }\n    for (; i <= precision; i++) {\n      *ptr++ = '0';\n    }\n  }\n\n  // Exponent: \"e±\" and then 2 or 3 digits.\n  *ptr++ = 'e';\n  *ptr++ = negative_exp ? '-' : '+';\n  if (exp < 10) {\n    *ptr++ = '0';\n    *ptr++ = (uint8_t)('0' | exp);\n  } else if (exp < 100) {\n    *ptr++ = (uint8_t)('0' | (exp / 10));\n    *ptr++ = (uint8_t)('0' | (exp % 10));\n  } else {\n    int32_t e = exp / 100;\n    exp -= e * 100;\n    *ptr++ = (uint8_t)('0' | e);\n    *ptr++ = (uint8_t)('0' | (exp / 10));\n    *ptr++ = (uint8_t)('0' | (exp % 10));\n  }\n\n  return n;\n}\n\nWUFFS_BASE__MAYBE_STATIC size_t  //\nwuffs_base__render_number_f64(wuffs_base__slice_u8 dst,\n                              double x,\n                              uint32_t precision,\n                              uint32_t options) {\n  // Decompose x (64 bits) into " +
+	"negativity (1 bit), base-2 exponent (11 bits\n  // with a -1023 bias) and mantissa (52 bits).\n  uint64_t bits = wuffs_base__ieee_754_bit_representation__from_f64(x);\n  bool neg = (bits >> 63) != 0;\n  int32_t exp2 = ((int32_t)(bits >> 52)) & 0x7FF;\n  uint64_t man = bits & 0x000FFFFFFFFFFFFFul;\n\n  // Apply the exponent bias and set the implicit top bit of the mantissa,\n  // unless x is subnormal. Also take care of Inf and NaN.\n  if (exp2 == 0x7FF) {\n    if (man != 0) {\n      return wuffs_base__private_implementation__render_nan(dst);\n    }\n    return wuffs_base__private_implementation__render_inf(dst, neg, options);\n  } else if (exp2 == 0) {\n    exp2 = -1022;\n  } else {\n    exp2 -= 1023;\n    man |= 0x0010000000000000ul;\n  }\n\n  // Ensure that precision isn't too large.\n  if (precision > 4095) {\n    precision = 4095;\n  }\n\n  // Convert from the (neg, exp2, man) tuple to an HPD.\n  wuffs_base__private_implementation__high_prec_dec h;\n  wuffs_base__private_implementation__high_prec_dec__assign(&h, man, neg);\n  if (h.n" +
+	"um_digits > 0) {\n    wuffs_base__private_implementation__high_prec_dec__lshift(\n        &h, exp2 - 52);  // 52 mantissa bits.\n  }\n\n  // Handle the \"%e\" and \"%f\" formats.\n  switch (options & (WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT |\n                     WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT)) {\n    case WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT:  // The \"%\"f\" format.\n      if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {\n        wuffs_base__private_implementation__high_prec_dec__round_just_enough(\n            &h, exp2, man);\n        int32_t p = ((int32_t)(h.num_digits)) - h.decimal_point;\n        precision = ((uint32_t)(wuffs_base__i32__max(0, p)));\n      } else {\n        wuffs_base__private_implementation__high_prec_dec__round_nearest(\n            &h, ((int32_t)precision) + h.decimal_point);\n      }\n      return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(\n          dst, &h, precision, options);\n\n    case WUFFS_BASE__RENDER_NUMBER_FXX__" +
+	"EXPONENT_PRESENT:  // The \"%e\" format.\n      if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {\n        wuffs_base__private_implementation__high_prec_dec__round_just_enough(\n            &h, exp2, man);\n        precision = (h.num_digits > 0) ? (h.num_digits - 1) : 0;\n      } else {\n        wuffs_base__private_implementation__high_prec_dec__round_nearest(\n            &h, ((int32_t)precision) + 1);\n      }\n      return wuffs_base__private_implementation__high_prec_dec__render_exponent_present(\n          dst, &h, precision, options);\n  }\n\n  // We have the \"%g\" format and so precision means the number of significant\n  // digits, not the number of digits after the decimal separator. Perform\n  // rounding and determine whether to use \"%e\" or \"%f\".\n  int32_t e_threshold = 0;\n  if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {\n    wuffs_base__private_implementation__high_prec_dec__round_just_enough(\n        &h, exp2, man);\n    precision = h.num_digits;\n    e_threshold = 6;\n  } el" +
+	"se {\n    if (precision == 0) {\n      precision = 1;\n    }\n    wuffs_base__private_implementation__high_prec_dec__round_nearest(\n        &h, ((int32_t)precision));\n    e_threshold = ((int32_t)precision);\n    int32_t nd = ((int32_t)(h.num_digits));\n    if ((e_threshold > nd) && (nd >= h.decimal_point)) {\n      e_threshold = nd;\n    }\n  }\n\n  // Use the \"%e\" format if the exponent is large.\n  int32_t e = h.decimal_point - 1;\n  if ((e < -4) || (e_threshold <= e)) {\n    uint32_t p = wuffs_base__u32__min(precision, h.num_digits);\n    return wuffs_base__private_implementation__high_prec_dec__render_exponent_present(\n        dst, &h, (p > 0) ? (p - 1) : 0, options);\n  }\n\n  // Use the \"%f\" format otherwise.\n  int32_t p = ((int32_t)precision);\n  if (p > h.decimal_point) {\n    p = ((int32_t)(h.num_digits));\n  }\n  precision = ((uint32_t)(wuffs_base__i32__max(0, p - h.decimal_point)));\n  return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(\n      dst, &h, precision, options);\n}\n" +
+	""
+
+const BaseF64ConvSubmoduleDataC = "" +
+	"// ---------------- IEEE 754 Floating Point\n\n// The etc__hpd_left_shift and etc__powers_of_5 tables were printed by\n// script/print-hpd-left-shift.go. That script has an optional -comments flag,\n// whose output is not copied here, which prints further detail.\n//\n// These tables are used in\n// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits.\n\n// wuffs_base__private_implementation__hpd_left_shift[i] encodes the number of\n// new digits created after multiplying a positive integer by (1 << i): the\n// additional length in the decimal representation. For example, shifting \"234\"\n// by 3 (equivalent to multiplying by 8) will produce \"1872\". Going from a\n// 3-length string to a 4-length string means that 1 new digit was added (and\n// existing digits may have changed).\n//\n// Shifting by i can add either N or N-1 new digits, depending on whether the\n// original positive integer compares >= or < to the i'th power of 5 (as 10\n// equals 2 * 5). Comparison is lexicographic, not numerical.\n//\n// For " +
+	"example, shifting by 4 (i.e. multiplying by 16) can add 1 or 2 new\n// digits, depending on a lexicographic comparison to (5 ** 4), i.e. \"625\":\n//  - (\"1\"      << 4) is \"16\",       which adds 1 new digit.\n//  - (\"5678\"   << 4) is \"90848\",    which adds 1 new digit.\n//  - (\"624\"    << 4) is \"9984\",     which adds 1 new digit.\n//  - (\"62498\"  << 4) is \"999968\",   which adds 1 new digit.\n//  - (\"625\"    << 4) is \"10000\",    which adds 2 new digits.\n//  - (\"625001\" << 4) is \"10000016\", which adds 2 new digits.\n//  - (\"7008\"   << 4) is \"112128\",   which adds 2 new digits.\n//  - (\"99\"     << 4) is \"1584\",     which adds 2 new digits.\n//\n// Thus, when i is 4, N is 2 and (5 ** i) is \"625\". This etc__hpd_left_shift\n// array encodes this as:\n//  - etc__hpd_left_shift[4] is 0x1006 = (2 << 11) | 0x0006.\n//  - etc__hpd_left_shift[5] is 0x1009 = (? << 11) | 0x0009.\n// where the ? isn't relevant for i == 4.\n//\n// The high 5 bits of etc__hpd_left_shift[i] is N, the higher of the two\n// possible number of new digits. The low 1" +
+	"1 bits are an offset into the\n// etc__powers_of_5 array (of length 0x051C, so offsets fit in 11 bits). When i\n// is 4, its offset and the next one is 6 and 9, and etc__powers_of_5[6 .. 9]\n// is the string \"\\x06\\x02\\x05\", so the relevant power of 5 is \"625\".\n//\n// Thanks to Ken Thompson for the original idea.\nstatic const uint16_t wuffs_base__private_implementation__hpd_left_shift[65] = {\n    0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817,\n    0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067,\n    0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF,\n    0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0,\n    0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA,\n    0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC,\n    0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C,\n    0x051C, 0x051C,\n};\n\n// wuffs_base__private_implementation__powers_of_5 contains the powers of 5,\n" +
+	"// concatenated together: \"5\", \"25\", \"125\", \"625\", \"3125\", etc.\nstatic const uint8_t wuffs_base__private_implementation__powers_of_5[0x051C] = {\n    5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, 9,\n    0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, 1, 2,\n    5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, 0, 3, 5,\n    1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, 7, 8, 9, 0,\n    6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, 9, 7, 2, 6, 5,\n    6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1,\n    6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4,\n    1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7,\n    8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0,\n    2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, 4, 9, 0, 1, 1, 6, 1, 1, 9, 3,\n    8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1,\n    2, 5, " +
+	"3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6,\n    2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5,\n    7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0,\n    7, 7, 3, 9, 2, 5, 7, 8, 1, 2, 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6,\n    9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8,\n    1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7,\n    2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6,\n    1, 3, 2, 8, 1, 2, 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8,\n    0, 6, 6, 4, 0, 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9,\n    0, 3, 3, 2, 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2,\n    9, 5, 1, 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8,\n    5, 6, 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7,\n    2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5,\n    0, " +
+	"8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, 3,\n    7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, 6, 2,\n    5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, 3, 7, 9,\n    8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, 0, 1, 4, 8,\n    6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, 9, 4, 3, 0, 4,\n    0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0,\n    8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5,\n    6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1,\n    2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5,\n    0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, 9, 0, 6, 2, 5, 1, 7, 7, 6, 3,\n    5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4,\n    5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3,\n    8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8,\n    " +
+	"5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2,\n    5, 2, 2, 2, 0, 4, 4, 6, 0, 4, 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6,\n    3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2,\n    5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2,\n    5, 5, 5, 5, 1, 1, 1, 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5,\n    8, 3, 4, 0, 4, 5, 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5,\n    6, 2, 8, 9, 1, 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8,\n    1, 2, 5, 1, 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9,\n    5, 3, 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3,\n    9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6,\n    2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1,\n    8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, 1,\n    7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, 4, 4,\n " +
+	"   8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, 7, 3, 7,\n    9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, 9, 5, 3, 3,\n    6, 9, 1, 4, 0, 6, 2, 5,\n};\n\n" +
+	"" +
 	"// --------\n\n// wuffs_base__private_implementation__powers_of_10 contains truncated\n// approximations to the powers of 10, ranging from 1e-326 to 1e+310 inclusive,\n// as 637 uint32_t quintuples (128-bit mantissa, 32-bit base-2 exponent biased\n// by 0x04BE (which is 1214)). The array size is 637 * 5 = 3185.\n//\n// The 1214 bias in this look-up table equals 1023 + 191. 1023 is the bias for\n// IEEE 754 double-precision floating point. 191 is ((3 * 64) - 1) and\n// wuffs_base__private_implementation__parse_number_f64_eisel works with\n// multiples-of-64-bit mantissas.\n//\n// For example, the third approximation, for 1e-324, consists of the uint32_t\n// quintuple (0x828675B9, 0x52064CAC, 0x5DCE35EA, 0xCF42894A, 0x000A). The\n// first four form a little-endian uint128_t value. The last one is an int32_t\n// value: -1140. Together, they represent the approximation to 1e-324:\n//   0xCF42894A_5DCE35EA_52064CAC_828675B9 * (2 ** (0x000A - 0x04BE))\n//\n// Similarly, 1e+4 is approximated by the uint64_t quintuple\n// (0x00000000, " +
 	"0x00000000, 0x00000000, 0x9C400000, 0x044C) which means:\n//   0x9C400000_00000000_00000000_00000000 * (2 ** (0x044C - 0x04BE))\n//\n// Similarly, 1e+68 is approximated by the uint64_t quintuple\n// (0x63EE4BDD, 0x4CA7AAA8, 0xD4C4FB27, 0xED63A231, 0x0520) which means:\n//   0xED63A231_D4C4FB27.4CA7AAA8_63EE4BDD * (2 ** (0x0520 - 0x04BE))\n//\n// This table was generated by by script/print-mpb-powers-of-10.go\nstatic const uint32_t wuffs_base__private_implementation__powers_of_10[3185] = {\n    0xF7604B57, 0x014BB630, 0xFE98746D, 0x84A57695, 0x0004,  // 1e-326\n    0x35385E2D, 0x419EA3BD, 0x7E3E9188, 0xA5CED43B, 0x0007,  // 1e-325\n    0x828675B9, 0x52064CAC, 0x5DCE35EA, 0xCF42894A, 0x000A,  // 1e-324\n    0xD1940993, 0x7343EFEB, 0x7AA0E1B2, 0x818995CE, 0x000E,  // 1e-323\n    0xC5F90BF8, 0x1014EBE6, 0x19491A1F, 0xA1EBFB42, 0x0011,  // 1e-322\n    0x77774EF6, 0xD41A26E0, 0x9F9B60A6, 0xCA66FA12, 0x0014,  // 1e-321\n    0x955522B4, 0x8920B098, 0x478238D0, 0xFD00B897, 0x0017,  // 1e-320\n    0x5D5535B0, 0x55B46E5F, 0x8CB16382, 0" +
 	"x9E20735E, 0x001B,  // 1e-319\n    0x34AA831D, 0xEB2189F7, 0x2FDDBC62, 0xC5A89036, 0x001E,  // 1e-318\n    0x01D523E4, 0xA5E9EC75, 0xBBD52B7B, 0xF712B443, 0x0021,  // 1e-317\n    0x2125366E, 0x47B233C9, 0x55653B2D, 0x9A6BB0AA, 0x0025,  // 1e-316\n    0x696E840A, 0x999EC0BB, 0xEABE89F8, 0xC1069CD4, 0x0028,  // 1e-315\n    0x43CA250D, 0xC00670EA, 0x256E2C76, 0xF148440A, 0x002B,  // 1e-314\n    0x6A5E5728, 0x38040692, 0x5764DBCA, 0x96CD2A86, 0x002F,  // 1e-313\n    0x04F5ECF2, 0xC6050837, 0xED3E12BC, 0xBC807527, 0x0032,  // 1e-312\n    0xC633682E, 0xF7864A44, 0xE88D976B, 0xEBA09271, 0x0035,  // 1e-311\n    0xFBE0211D, 0x7AB3EE6A, 0x31587EA3, 0x93445B87, 0x0039,  // 1e-310\n    0xBAD82964, 0x5960EA05, 0xFDAE9E4C, 0xB8157268, 0x003C,  // 1e-309\n    0x298E33BD, 0x6FB92487, 0x3D1A45DF, 0xE61ACF03, 0x003F,  // 1e-308\n    0x79F8E056, 0xA5D3B6D4, 0x06306BAB, 0x8FD0C162, 0x0043,  // 1e-307\n    0x9877186C, 0x8F48A489, 0x87BC8696, 0xB3C4F1BA, 0x0046,  // 1e-306\n    0xFE94DE87, 0x331ACDAB, 0x29ABA83C, 0xE0B62E29, 0x0049,  // 1e-305\n" +
@@ -113,43 +153,7 @@
 	"363804, 0x63E8A506, 0x9EC95D14, 0x07AF,  // 1e265\n    0x3EDCD0D5, 0xB143C605, 0x7CE2CE48, 0xC67BB459, 0x07B2,  // 1e266\n    0x8E94050A, 0xDD94B786, 0xDC1B81DA, 0xF81AA16F, 0x07B5,  // 1e267\n    0x191C8326, 0xCA7CF2B4, 0xE9913128, 0x9B10A4E5, 0x07B9,  // 1e268\n    0x1F63A3F0, 0xFD1C2F61, 0x63F57D72, 0xC1D4CE1F, 0x07BC,  // 1e269\n    0x673C8CEC, 0xBC633B39, 0x3CF2DCCF, 0xF24A01A7, 0x07BF,  // 1e270\n    0xE085D813, 0xD5BE0503, 0x8617CA01, 0x976E4108, 0x07C3,  // 1e271\n    0xD8A74E18, 0x4B2D8644, 0xA79DBC82, 0xBD49D14A, 0x07C6,  // 1e272\n    0x0ED1219E, 0xDDF8E7D6, 0x51852BA2, 0xEC9C459D, 0x07C9,  // 1e273\n    0xC942B503, 0xCABB90E5, 0x52F33B45, 0x93E1AB82, 0x07CD,  // 1e274\n    0x3B936243, 0x3D6A751F, 0xE7B00A17, 0xB8DA1662, 0x07D0,  // 1e275\n    0x0A783AD4, 0x0CC51267, 0xA19C0C9D, 0xE7109BFB, 0x07D3,  // 1e276\n    0x668B24C5, 0x27FB2B80, 0x450187E2, 0x906A617D, 0x07D7,  // 1e277\n    0x802DEDF6, 0xB1F9F660, 0x9641E9DA, 0xB484F9DC, 0x07DA,  // 1e278\n    0xA0396973, 0x5E7873F8, 0xBBD26451, 0xE1A63853, 0x07DD,  // " +
 	"1e279\n    0x6423E1E8, 0xDB0B487B, 0x55637EB2, 0x8D07E334, 0x07E1,  // 1e280\n    0x3D2CDA62, 0x91CE1A9A, 0x6ABC5E5F, 0xB049DC01, 0x07E4,  // 1e281\n    0xCC7810FB, 0x7641A140, 0xC56B75F7, 0xDC5C5301, 0x07E7,  // 1e282\n    0x7FCB0A9D, 0xA9E904C8, 0x1B6329BA, 0x89B9B3E1, 0x07EB,  // 1e283\n    0x9FBDCD44, 0x546345FA, 0x623BF429, 0xAC2820D9, 0x07EE,  // 1e284\n    0x47AD4095, 0xA97C1779, 0xBACAF133, 0xD732290F, 0x07F1,  // 1e285\n    0xCCCC485D, 0x49ED8EAB, 0xD4BED6C0, 0x867F59A9, 0x07F5,  // 1e286\n    0xBFFF5A74, 0x5C68F256, 0x49EE8C70, 0xA81F3014, 0x07F8,  // 1e287\n    0x6FFF3111, 0x73832EEC, 0x5C6A2F8C, 0xD226FC19, 0x07FB,  // 1e288\n    0xC5FF7EAB, 0xC831FD53, 0xD9C25DB7, 0x83585D8F, 0x07FF,  // 1e289\n    0xB77F5E55, 0xBA3E7CA8, 0xD032F525, 0xA42E74F3, 0x0802,  // 1e290\n    0xE55F35EB, 0x28CE1BD2, 0xC43FB26F, 0xCD3A1230, 0x0805,  // 1e291\n    0xCF5B81B3, 0x7980D163, 0x7AA7CF85, 0x80444B5E, 0x0809,  // 1e292\n    0xC332621F, 0xD7E105BC, 0x1951C366, 0xA0555E36, 0x080C,  // 1e293\n    0xF3FEFAA7, 0x8DD9472B, 0x9FA63440" +
 	", 0xC86AB5C3, 0x080F,  // 1e294\n    0xF0FEB951, 0xB14F98F6, 0x878FC150, 0xFA856334, 0x0812,  // 1e295\n    0x569F33D3, 0x6ED1BF9A, 0xD4B9D8D2, 0x9C935E00, 0x0816,  // 1e296\n    0xEC4700C8, 0x0A862F80, 0x09E84F07, 0xC3B83581, 0x0819,  // 1e297\n    0x2758C0FA, 0xCD27BB61, 0x4C6262C8, 0xF4A642E1, 0x081C,  // 1e298\n    0xB897789C, 0x8038D51C, 0xCFBD7DBD, 0x98E7E9CC, 0x0820,  // 1e299\n    0xE6BD56C3, 0xE0470A63, 0x03ACDD2C, 0xBF21E440, 0x0823,  // 1e300\n    0xE06CAC74, 0x1858CCFC, 0x04981478, 0xEEEA5D50, 0x0826,  // 1e301\n    0x0C43EBC8, 0x0F37801E, 0x02DF0CCB, 0x95527A52, 0x082A,  // 1e302\n    0x8F54E6BA, 0xD3056025, 0x8396CFFD, 0xBAA718E6, 0x082D,  // 1e303\n    0xF32A2069, 0x47C6B82E, 0x247C83FD, 0xE950DF20, 0x0830,  // 1e304\n    0x57FA5441, 0x4CDC331D, 0x16CDD27E, 0x91D28B74, 0x0834,  // 1e305\n    0xADF8E952, 0xE0133FE4, 0x1C81471D, 0xB6472E51, 0x0837,  // 1e306\n    0xD97723A6, 0x58180FDD, 0x63A198E5, 0xE3D8F9E5, 0x083A,  // 1e307\n    0xA7EA7648, 0x570F09EA, 0x5E44FF8F, 0x8E679C2F, 0x083E,  // 1e308\n    0x51E513" +
-	"DA, 0x2CD2CC65, 0x35D63F73, 0xB201833B, 0x0841,  // 1e309\n    0xA65E58D1, 0xF8077F7E, 0x034BCF4F, 0xDE81E40A, 0x0844,  // 1e310\n};\n\n// wuffs_base__private_implementation__f64_powers_of_10 holds powers of 10 that\n// can be exactly represented by a float64 (what C calls a double).\nstatic const double wuffs_base__private_implementation__f64_powers_of_10[23] = {\n    1e0,  1e1,  1e2,  1e3,  1e4,  1e5,  1e6,  1e7,  1e8,  1e9,  1e10, 1e11,\n    1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22,\n};\n\n" +
-	"" +
-	"// --------\n\n// wuffs_base__private_implementation__parse_number_f64_eisel produces the IEEE\n// 754 double-precision value for an exact mantissa and base-10 exponent.\n//\n// On success, it returns a non-negative int64_t such that the low 63 bits hold\n// the 11-bit exponent and 52-bit mantissa.\n//\n// On failure, it returns a negative value.\n//\n// The algorithm is based on an original idea by Michael Eisel. See\n// https://lemire.me/blog/2020/03/10/fast-float-parsing-in-practice/\n//\n// Preconditions:\n//  - man is non-zero.\n//  - exp10 is in the range -326 ..= 310, the same range of the\n//    wuffs_base__private_implementation__powers_of_10 array.\nstatic int64_t  //\nwuffs_base__private_implementation__parse_number_f64_eisel(uint64_t man,\n                                                           int32_t exp10) {\n  // Look up the (possibly truncated) base-2 representation of (10 ** exp10).\n  // The look-up table was constructed so that it is already normalized: the\n  // table entry's mantissa's MSB (most significan" +
-	"t bit) is on.\n  const uint32_t* po10 =\n      &wuffs_base__private_implementation__powers_of_10[5 * (exp10 + 326)];\n\n  // Normalize the man argument. The (man != 0) precondition means that a\n  // non-zero bit exists.\n  uint32_t clz = wuffs_base__count_leading_zeroes_u64(man);\n  man <<= clz;\n\n  // Calculate the return value's base-2 exponent. We might tweak it by ±1\n  // later, but its initial value comes from the look-up table and clz.\n  uint64_t ret_exp2 = ((uint64_t)po10[4]) - ((uint64_t)clz);\n\n  // Multiply the two mantissas. Normalization means that both mantissas are at\n  // least (1<<63), so the 128-bit product must be at least (1<<126). The high\n  // 64 bits of the product, x.hi, must therefore be at least (1<<62).\n  //\n  // As a consequence, x.hi has either 0 or 1 leading zeroes. Shifting x.hi\n  // right by either 9 or 10 bits (depending on x.hi's MSB) will therefore\n  // leave the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on.\n  wuffs_base__multiply_u64__output x = wuffs_base__multipl" +
-	"y_u64(\n      man, ((uint64_t)po10[2]) | (((uint64_t)po10[3]) << 32));\n\n  // Before we shift right by at least 9 bits, recall that the look-up table\n  // entry was possibly truncated. We have so far only calculated a lower bound\n  // for the product (man * e), where e is (10 ** exp10). The upper bound would\n  // add a further (man * 1) to the 128-bit product, which overflows the lower\n  // 64-bit limb if ((x.lo + man) < man).\n  //\n  // If overflow occurs, that adds 1 to x.hi. Since we're about to shift right\n  // by at least 9 bits, that carried 1 can be ignored unless the higher 64-bit\n  // limb's low 9 bits are all on.\n  if (((x.hi & 0x1FF) == 0x1FF) && ((x.lo + man) < man)) {\n    // Refine our calculation of (man * e). Before, our approximation of e used\n    // a \"low resolution\" 64-bit mantissa. Now use a \"high resolution\" 128-bit\n    // mantissa. We've already calculated x = (man * bits_0_to_63_incl_of_e).\n    // Now calculate y = (man * bits_64_to_127_incl_of_e).\n    wuffs_base__multiply_u64__output y = " +
-	"wuffs_base__multiply_u64(\n        man, ((uint64_t)po10[0]) | (((uint64_t)po10[1]) << 32));\n\n    // Merge the 128-bit x and 128-bit y, which overlap by 64 bits, to\n    // calculate the 192-bit product of the 64-bit man by the 128-bit e.\n    // As we exit this if-block, we only care about the high 128 bits\n    // (merged_hi and merged_lo) of that 192-bit product.\n    uint64_t merged_hi = x.hi;\n    uint64_t merged_lo = x.lo + y.hi;\n    if (merged_lo < x.lo) {\n      merged_hi++;  // Carry the overflow bit.\n    }\n\n    // The \"high resolution\" approximation of e is still a lower bound. Once\n    // again, see if the upper bound is large enough to produce a different\n    // result. This time, if it does, give up instead of reaching for an even\n    // more precise approximation to e.\n    //\n    // This three-part check is similar to the two-part check that guarded the\n    // if block that we're now in, but it has an extra term for the middle 64\n    // bits (checking that adding 1 to merged_lo would overflow).\n    if (" +
-	"((merged_hi & 0x1FF) == 0x1FF) && ((merged_lo + 1) == 0) &&\n        (y.lo + man < man)) {\n      return -1;\n    }\n\n    // Replace the 128-bit x with merged.\n    x.hi = merged_hi;\n    x.lo = merged_lo;\n  }\n\n  // As mentioned above, shifting x.hi right by either 9 or 10 bits will leave\n  // the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on. If the\n  // MSB (before shifting) was on, adjust ret_exp2 for the larger shift.\n  //\n  // Having bit 53 on (and higher bits off) means that ret_mantissa is a 54-bit\n  // number.\n  uint64_t msb = x.hi >> 63;\n  uint64_t ret_mantissa = x.hi >> (msb + 9);\n  ret_exp2 -= 1 ^ msb;\n\n  // IEEE 754 rounds to-nearest with ties rounded to-even. Rounding to-even can\n  // be tricky. If we're half-way between two exactly representable numbers\n  // (x's low 73 bits are zero and the next 2 bits that matter are \"01\"), give\n  // up instead of trying to pick the winner.\n  //\n  // Technically, we could tighten the condition by changing \"73\" to \"73 or 74,\n  // depending on msb\", bu" +
-	"t a flat \"73\" is simpler.\n  if ((x.lo == 0) && ((x.hi & 0x1FF) == 0) && ((ret_mantissa & 3) == 1)) {\n    return -1;\n  }\n\n  // If we're not halfway then it's rounding to-nearest. Starting with a 54-bit\n  // number, carry the lowest bit (bit 0) up if it's on. Regardless of whether\n  // it was on or off, shifting right by one then produces a 53-bit number. If\n  // carrying up overflowed, shift again.\n  ret_mantissa += ret_mantissa & 1;\n  ret_mantissa >>= 1;\n  if ((ret_mantissa >> 53) > 0) {\n    ret_mantissa >>= 1;\n    ret_exp2++;\n  }\n\n  // Starting with a 53-bit number, IEEE 754 double-precision normal numbers\n  // have an implicit mantissa bit. Mask that away and keep the low 52 bits.\n  ret_mantissa &= 0x000FFFFFFFFFFFFF;\n\n  // IEEE 754 double-precision floating point has 11 exponent bits. All off (0)\n  // means subnormal numbers. All on (2047) means infinity or NaN.\n  if ((ret_exp2 <= 0) || (2047 <= ret_exp2)) {\n    return -1;\n  }\n\n  // Pack the bits and return.\n  return ((int64_t)(ret_mantissa | (ret_exp2 << " +
-	"52)));\n}\n\n" +
-	"" +
-	"// --------\n\nstatic wuffs_base__result_f64  //\nwuffs_base__parse_number_f64_special(wuffs_base__slice_u8 s,\n                                     const char* fallback_status_repr) {\n  do {\n    uint8_t* p = s.ptr;\n    uint8_t* q = s.ptr + s.len;\n\n    for (; (p < q) && (*p == '_'); p++) {\n    }\n    if (p >= q) {\n      goto fallback;\n    }\n\n    // Parse sign.\n    bool negative = false;\n    do {\n      if (*p == '+') {\n        p++;\n      } else if (*p == '-') {\n        negative = true;\n        p++;\n      } else {\n        break;\n      }\n      for (; (p < q) && (*p == '_'); p++) {\n      }\n    } while (0);\n    if (p >= q) {\n      goto fallback;\n    }\n\n    bool nan = false;\n    switch (p[0]) {\n      case 'I':\n      case 'i':\n        if (((q - p) < 3) ||                     //\n            ((p[1] != 'N') && (p[1] != 'n')) ||  //\n            ((p[2] != 'F') && (p[2] != 'f'))) {\n          goto fallback;\n        }\n        p += 3;\n\n        if ((p >= q) || (*p == '_')) {\n          break;\n        } else if (((q - p) < 5) ||    " +
-	"                 //\n                   ((p[0] != 'I') && (p[0] != 'i')) ||  //\n                   ((p[1] != 'N') && (p[1] != 'n')) ||  //\n                   ((p[2] != 'I') && (p[2] != 'i')) ||  //\n                   ((p[3] != 'T') && (p[3] != 't')) ||  //\n                   ((p[4] != 'Y') && (p[4] != 'y'))) {\n          goto fallback;\n        }\n        p += 5;\n\n        if ((p >= q) || (*p == '_')) {\n          break;\n        }\n        goto fallback;\n\n      case 'N':\n      case 'n':\n        if (((q - p) < 3) ||                     //\n            ((p[1] != 'A') && (p[1] != 'a')) ||  //\n            ((p[2] != 'N') && (p[2] != 'n'))) {\n          goto fallback;\n        }\n        p += 3;\n\n        if ((p >= q) || (*p == '_')) {\n          nan = true;\n          break;\n        }\n        goto fallback;\n\n      default:\n        goto fallback;\n    }\n\n    // Finish.\n    for (; (p < q) && (*p == '_'); p++) {\n    }\n    if (p != q) {\n      goto fallback;\n    }\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.va" +
-	"lue = wuffs_base__ieee_754_bit_representation__to_f64(\n        (nan ? 0x7FFFFFFFFFFFFFFF : 0x7FF0000000000000) |\n        (negative ? 0x8000000000000000 : 0));\n    return ret;\n  } while (0);\n\nfallback:\n  do {\n    wuffs_base__result_f64 ret;\n    ret.status.repr = fallback_status_repr;\n    ret.value = 0;\n    return ret;\n  } while (0);\n}\n\nWUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //\nwuffs_base__private_implementation__parse_number_f64__fallback(\n    wuffs_base__private_implementation__high_prec_dec* h) {\n  do {\n    // powers converts decimal powers of 10 to binary powers of 2. For example,\n    // (10000 >> 13) is 1. It stops before the elements exceed 60, also known\n    // as WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.\n    static const uint32_t num_powers = 19;\n    static const uint8_t powers[19] = {\n        0,  3,  6,  9,  13, 16, 19, 23, 26, 29,  //\n        33, 36, 39, 43, 46, 49, 53, 56, 59,      //\n    };\n\n    // Handle zero and obvious extremes. The largest and smallest positive\n    // f" +
-	"inite f64 values are approximately 1.8e+308 and 4.9e-324.\n    if ((h->num_digits == 0) || (h->decimal_point < -326)) {\n      goto zero;\n    } else if (h->decimal_point > 310) {\n      goto infinity;\n    }\n\n    // Try the fast Eisel algorithm again. Calculating the (man, exp10) pair\n    // from the high_prec_dec h is more correct but slower than the approach\n    // taken in wuffs_base__parse_number_f64. The latter is optimized for the\n    // common cases (e.g. assuming no underscores or a leading '+' sign) rather\n    // than the full set of cases allowed by the Wuffs API.\n    if (h->num_digits <= 19) {\n      uint64_t man = 0;\n      uint32_t i;\n      for (i = 0; i < h->num_digits; i++) {\n        man = (10 * man) + h->digits[i];\n      }\n      int32_t exp10 = h->decimal_point - ((int32_t)(h->num_digits));\n      if ((man != 0) && (-326 <= exp10) && (exp10 <= 310)) {\n        int64_t r = wuffs_base__private_implementation__parse_number_f64_eisel(\n            man, exp10);\n        if (r >= 0) {\n          wuffs_base__re" +
-	"sult_f64 ret;\n          ret.status.repr = NULL;\n          ret.value = wuffs_base__ieee_754_bit_representation__to_f64(\n              ((uint64_t)r) | (((uint64_t)(h->negative)) << 63));\n          return ret;\n        }\n      }\n    }\n\n    // Scale by powers of 2 until we're in the range [½ .. 1], which gives us\n    // our exponent (in base-2). First we shift right, possibly a little too\n    // far, ending with a value certainly below 1 and possibly below ½...\n    const int32_t f64_bias = -1023;\n    int32_t exp2 = 0;\n    while (h->decimal_point > 0) {\n      uint32_t n = (uint32_t)(+h->decimal_point);\n      uint32_t shift =\n          (n < num_powers)\n              ? powers[n]\n              : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;\n\n      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, shift);\n      if (h->decimal_point <\n          -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {\n        goto zero;\n      }\n      exp2 += (int32_t)shift;\n    }\n    // ...then we " +
-	"shift left, putting us in [½ .. 1].\n    while (h->decimal_point <= 0) {\n      uint32_t shift;\n      if (h->decimal_point == 0) {\n        if (h->digits[0] >= 5) {\n          break;\n        }\n        shift = (h->digits[0] <= 2) ? 2 : 1;\n      } else {\n        uint32_t n = (uint32_t)(-h->decimal_point);\n        shift = (n < num_powers)\n                    ? powers[n]\n                    : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;\n      }\n\n      wuffs_base__private_implementation__high_prec_dec__small_lshift(h, shift);\n      if (h->decimal_point >\n          +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {\n        goto infinity;\n      }\n      exp2 -= (int32_t)shift;\n    }\n\n    // We're in the range [½ .. 1] but f64 uses [1 .. 2].\n    exp2--;\n\n    // The minimum normal exponent is (f64_bias + 1).\n    while ((f64_bias + 1) > exp2) {\n      uint32_t n = (uint32_t)((f64_bias + 1) - exp2);\n      if (n > WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {\n        n = WUFFS_BASE__" +
-	"PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;\n      }\n      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, n);\n      exp2 += (int32_t)n;\n    }\n\n    // Check for overflow.\n    if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.\n      goto infinity;\n    }\n\n    // Extract 53 bits for the mantissa (in base-2).\n    wuffs_base__private_implementation__high_prec_dec__small_lshift(h, 53);\n    uint64_t man2 =\n        wuffs_base__private_implementation__high_prec_dec__rounded_integer(h);\n\n    // Rounding might have added one bit. If so, shift and re-check overflow.\n    if ((man2 >> 53) != 0) {\n      man2 >>= 1;\n      exp2++;\n      if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.\n        goto infinity;\n      }\n    }\n\n    // Handle subnormal numbers.\n    if ((man2 >> 52) == 0) {\n      exp2 = f64_bias;\n    }\n\n    // Pack the bits and return.\n    uint64_t exp2_bits =\n        (uint64_t)((exp2 - f64_bias) & 0x07FF);              // (1 << 11) - 1.\n    uint64_t bits = (man2 & 0x000FFFFFFFFFFFFF) |   " +
-	"         // (1 << 52) - 1.\n                    (exp2_bits << 52) |                      //\n                    (h->negative ? 0x8000000000000000 : 0);  // (1 << 63).\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n\nzero:\n  do {\n    uint64_t bits = h->negative ? 0x8000000000000000 : 0;\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n\ninfinity:\n  do {\n    uint64_t bits = h->negative ? 0xFFF0000000000000 : 0x7FF0000000000000;\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n}\n\nstatic inline bool  //\nwuffs_base__private_implementation__is_decimal_digit(uint8_t c) {\n  return ('0' <= c) && (c <= '9');\n}\n\nWUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //\nwuffs_base__parse_numb" +
-	"er_f64(wuffs_base__slice_u8 s, uint32_t options) {\n  // In practice, almost all \"dd.ddddE±xxx\" numbers can be represented\n  // losslessly by a uint64_t mantissa \"dddddd\" and an int32_t base-10\n  // exponent, adjusting \"xxx\" for the position (if present) of the decimal\n  // separator '.' or ','.\n  //\n  // This (u64 man, i32 exp10) data structure is superficially similar to the\n  // \"Do It Yourself Floating Point\" type from Loitsch (†), but the exponent\n  // here is base-10, not base-2.\n  //\n  // If s's number fits in a (man, exp10), parse that pair with the Eisel\n  // algorithm. If not, or if Eisel fails, parsing s with the fallback\n  // algorithm is slower but comprehensive.\n  //\n  // † \"Printing Floating-Point Numbers Quickly and Accurately with Integers\"\n  // (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf).\n  // Florian Loitsch is also the primary contributor to\n  // https://github.com/google/double-conversion\n  do {\n    // Calculating that (man, exp10) pair needs to stay within" +
-	" s's bounds.\n    // Provided that s isn't extremely long, work on a NUL-terminated copy of\n    // s's contents. The NUL byte isn't a valid part of \"±dd.ddddE±xxx\".\n    //\n    // As the pointer p walks the contents, it's faster to repeatedly check \"is\n    // *p a valid digit\" than \"is p within bounds and *p a valid digit\".\n    if (s.len >= 256) {\n      goto fallback;\n    }\n    uint8_t z[256];\n    memcpy(&z[0], s.ptr, s.len);\n    z[s.len] = 0;\n    const uint8_t* p = &z[0];\n\n    // Look for a leading minus sign. Technically, we could also look for an\n    // optional plus sign, but the \"script/process-json-numbers.c with -p\"\n    // benchmark is noticably slower if we do. It's optional and, in practice,\n    // usually absent. Let the fallback catch it.\n    bool negative = (*p == '-');\n    if (negative) {\n      p++;\n    }\n\n    // After walking \"dd.dddd\", comparing p later with p now will produce the\n    // number of \"d\"s and \".\"s.\n    const uint8_t* const start_of_digits_ptr = p;\n\n    // Walk the \"d\"s before a '." +
-	"', 'E', NUL byte, etc. If it starts with '0',\n    // it must be a single '0'. If it starts with a non-zero decimal digit, it\n    // can be a sequence of decimal digits.\n    //\n    // Update the man variable during the walk. It's OK if man overflows now.\n    // We'll detect that later.\n    uint64_t man;\n    if (*p == '0') {\n      man = 0;\n      p++;\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n    } else if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n      man = ((uint8_t)(*p - '0'));\n      p++;\n      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {\n        man = (10 * man) + ((uint8_t)(*p - '0'));\n      }\n    } else {\n      goto fallback;\n    }\n\n    // Walk the \"d\"s after the optional decimal separator ('.' or ','),\n    // updating the man and exp10 variables.\n    int32_t exp10 = 0;\n    if ((*p == '.') || (*p == ',')) {\n      p++;\n      const uint8_t* first_after_separator_ptr = p;\n      if (!wuffs_base__private_im" +
-	"plementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n      man = (10 * man) + ((uint8_t)(*p - '0'));\n      p++;\n      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {\n        man = (10 * man) + ((uint8_t)(*p - '0'));\n      }\n      exp10 = ((int32_t)(first_after_separator_ptr - p));\n    }\n\n    // Count the number of digits:\n    //  - for an input of \"314159\",  digit_count is 6.\n    //  - for an input of \"3.14159\", digit_count is 7.\n    //\n    // This is off-by-one if there is a decimal separator. That's OK for now.\n    // We'll correct for that later. The \"script/process-json-numbers.c with\n    // -p\" benchmark is noticably slower if we try to correct for that now.\n    uint32_t digit_count = (uint32_t)(p - start_of_digits_ptr);\n\n    // Update exp10 for the optional exponent, starting with 'E' or 'e'.\n    if ((*p | 0x20) == 'e') {\n      p++;\n      int32_t exp_sign = +1;\n      if (*p == '-') {\n        p++;\n        exp_sign = -1;\n      } else if (*p == '+') {\n        p++;\n  " +
-	"    }\n      if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n      int32_t exp_num = ((uint8_t)(*p - '0'));\n      p++;\n      // The rest of the exp_num walking has a peculiar control flow but, once\n      // again, the \"script/process-json-numbers.c with -p\" benchmark is\n      // sensitive to alternative formulations.\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n      }\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n      }\n      while (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        if (exp_num > 0x1000000) {\n          goto fallback;\n        }\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n      }\n      exp10 += exp_sign * exp_num;\n    }\n\n    // The Wuffs API is that the original slice has no trailing data. It also\n    // allows unde" +
-	"rscores, which we don't catch here but the fallback should.\n    if (p != &z[s.len]) {\n      goto fallback;\n    }\n\n    // Check that the uint64_t typed man variable has not overflowed, based on\n    // digit_count.\n    //\n    // For reference:\n    //   - (1 << 63) is  9223372036854775808, which has 19 decimal digits.\n    //   - (1 << 64) is 18446744073709551616, which has 20 decimal digits.\n    //   - 19 nines,  9999999999999999999, is  0x8AC7230489E7FFFF, which has 64\n    //     bits and 16 hexadecimal digits.\n    //   - 20 nines, 99999999999999999999, is 0x56BC75E2D630FFFFF, which has 67\n    //     bits and 17 hexadecimal digits.\n    if (digit_count > 19) {\n      // Even if we have more than 19 pseudo-digits, it's not yet definitely an\n      // overflow. Recall that digit_count might be off-by-one (too large) if\n      // there's a decimal separator. It will also over-report the number of\n      // meaningful digits if the input looks something like \"0.000dddExxx\".\n      //\n      // We adjust by the number of l" +
-	"eading '0's and '.'s and re-compare to 19.\n      // Once again, technically, we could skip ','s too, but that perturbs the\n      // \"script/process-json-numbers.c with -p\" benchmark.\n      const uint8_t* q = start_of_digits_ptr;\n      for (; (*q == '0') || (*q == '.'); q++) {\n      }\n      digit_count -= (uint32_t)(q - start_of_digits_ptr);\n      if (digit_count > 19) {\n        goto fallback;\n      }\n    }\n\n    // The wuffs_base__private_implementation__parse_number_f64_eisel\n    // preconditions include that exp10 is in the range -326 ..= 310.\n    if ((exp10 < -326) || (310 < exp10)) {\n      goto fallback;\n    }\n\n    // If man and exp10 are small enough, all three of (man), (10 ** exp10) and\n    // (man ** (10 ** exp10)) are exactly representable by a double. We don't\n    // need to run the Eisel algorithm.\n    if ((-22 <= exp10) && (exp10 <= 22) && ((man >> 53) == 0)) {\n      double d = (double)man;\n      if (exp10 >= 0) {\n        d *= wuffs_base__private_implementation__f64_powers_of_10[+exp10];\n      } el" +
-	"se {\n        d /= wuffs_base__private_implementation__f64_powers_of_10[-exp10];\n      }\n      wuffs_base__result_f64 ret;\n      ret.status.repr = NULL;\n      ret.value = negative ? -d : +d;\n      return ret;\n    }\n\n    // The wuffs_base__private_implementation__parse_number_f64_eisel\n    // preconditions include that man is non-zero. Parsing \"0\" should be caught\n    // by the \"If man and exp10 are small enough\" above, but \"0e99\" might not.\n    if (man == 0) {\n      goto fallback;\n    }\n\n    // Our man and exp10 are in range. Run the Eisel algorithm.\n    int64_t r =\n        wuffs_base__private_implementation__parse_number_f64_eisel(man, exp10);\n    if (r < 0) {\n      goto fallback;\n    }\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(\n        ((uint64_t)r) | (((uint64_t)negative) << 63));\n    return ret;\n  } while (0);\n\nfallback:\n  do {\n    wuffs_base__private_implementation__high_prec_dec h;\n    wuffs_base__status status =\n        wu" +
-	"ffs_base__private_implementation__high_prec_dec__parse(&h, s);\n    if (status.repr) {\n      return wuffs_base__parse_number_f64_special(s, status.repr);\n    }\n    return wuffs_base__private_implementation__parse_number_f64__fallback(&h);\n  } while (0);\n}\n\n" +
-	"" +
-	"// --------\n\nstatic inline size_t  //\nwuffs_base__private_implementation__render_inf(wuffs_base__slice_u8 dst,\n                                               bool neg,\n                                               uint32_t options) {\n  if (neg) {\n    if (dst.len < 4) {\n      return 0;\n    }\n    wuffs_base__store_u32le__no_bounds_check(dst.ptr, 0x666E492D);  // '-Inf'le.\n    return 4;\n  }\n\n  if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {\n    if (dst.len < 4) {\n      return 0;\n    }\n    wuffs_base__store_u32le__no_bounds_check(dst.ptr, 0x666E492B);  // '+Inf'le.\n    return 4;\n  }\n\n  if (dst.len < 3) {\n    return 0;\n  }\n  wuffs_base__store_u24le__no_bounds_check(dst.ptr, 0x666E49);  // 'Inf'le.\n  return 3;\n}\n\nstatic inline size_t  //\nwuffs_base__private_implementation__render_nan(wuffs_base__slice_u8 dst) {\n  if (dst.len < 3) {\n    return 0;\n  }\n  wuffs_base__store_u24le__no_bounds_check(dst.ptr, 0x4E614E);  // 'NaN'le.\n  return 3;\n}\n\nstatic size_t  //\nwuffs_base__private_implementation__high" +
-	"_prec_dec__render_exponent_absent(\n    wuffs_base__slice_u8 dst,\n    wuffs_base__private_implementation__high_prec_dec* h,\n    uint32_t precision,\n    uint32_t options) {\n  size_t n = (h->negative ||\n              (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN))\n                 ? 1\n                 : 0;\n  if (h->decimal_point <= 0) {\n    n += 1;\n  } else {\n    n += (size_t)(h->decimal_point);\n  }\n  if (precision > 0) {\n    n += precision + 1;  // +1 for the '.'.\n  }\n\n  // Don't modify dst if the formatted number won't fit.\n  if (n > dst.len) {\n    return 0;\n  }\n\n  // Align-left or align-right.\n  uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)\n                     ? &dst.ptr[dst.len - n]\n                     : &dst.ptr[0];\n\n  // Leading \"±\".\n  if (h->negative) {\n    *ptr++ = '-';\n  } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {\n    *ptr++ = '+';\n  }\n\n  // Integral digits.\n  if (h->decimal_point <= 0) {\n    *ptr++ = '0';\n  } else {\n    uint32_t m =\n" +
-	"        wuffs_base__u32__min(h->num_digits, (uint32_t)(h->decimal_point));\n    uint32_t i = 0;\n    for (; i < m; i++) {\n      *ptr++ = (uint8_t)('0' | h->digits[i]);\n    }\n    for (; i < (uint32_t)(h->decimal_point); i++) {\n      *ptr++ = '0';\n    }\n  }\n\n  // Separator and then fractional digits.\n  if (precision > 0) {\n    *ptr++ =\n        (options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)\n            ? ','\n            : '.';\n    uint32_t i = 0;\n    for (; i < precision; i++) {\n      uint32_t j = ((uint32_t)(h->decimal_point)) + i;\n      *ptr++ = (uint8_t)('0' | ((j < h->num_digits) ? h->digits[j] : 0));\n    }\n  }\n\n  return n;\n}\n\nstatic size_t  //\nwuffs_base__private_implementation__high_prec_dec__render_exponent_present(\n    wuffs_base__slice_u8 dst,\n    wuffs_base__private_implementation__high_prec_dec* h,\n    uint32_t precision,\n    uint32_t options) {\n  int32_t exp = 0;\n  if (h->num_digits > 0) {\n    exp = h->decimal_point - 1;\n  }\n  bool negative_exp = exp < 0;\n  if (negative_exp) {\n" +
-	"    exp = -exp;\n  }\n\n  size_t n = (h->negative ||\n              (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN))\n                 ? 4\n                 : 3;  // Mininum 3 bytes: first digit and then \"e±\".\n  if (precision > 0) {\n    n += precision + 1;  // +1 for the '.'.\n  }\n  n += (exp < 100) ? 2 : 3;\n\n  // Don't modify dst if the formatted number won't fit.\n  if (n > dst.len) {\n    return 0;\n  }\n\n  // Align-left or align-right.\n  uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)\n                     ? &dst.ptr[dst.len - n]\n                     : &dst.ptr[0];\n\n  // Leading \"±\".\n  if (h->negative) {\n    *ptr++ = '-';\n  } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {\n    *ptr++ = '+';\n  }\n\n  // Integral digit.\n  if (h->num_digits > 0) {\n    *ptr++ = (uint8_t)('0' | h->digits[0]);\n  } else {\n    *ptr++ = '0';\n  }\n\n  // Separator and then fractional digits.\n  if (precision > 0) {\n    *ptr++ =\n        (options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPA" +
-	"RATOR_IS_A_COMMA)\n            ? ','\n            : '.';\n    uint32_t i = 1;\n    uint32_t j = wuffs_base__u32__min(h->num_digits, precision + 1);\n    for (; i < j; i++) {\n      *ptr++ = (uint8_t)('0' | h->digits[i]);\n    }\n    for (; i <= precision; i++) {\n      *ptr++ = '0';\n    }\n  }\n\n  // Exponent: \"e±\" and then 2 or 3 digits.\n  *ptr++ = 'e';\n  *ptr++ = negative_exp ? '-' : '+';\n  if (exp < 10) {\n    *ptr++ = '0';\n    *ptr++ = (uint8_t)('0' | exp);\n  } else if (exp < 100) {\n    *ptr++ = (uint8_t)('0' | (exp / 10));\n    *ptr++ = (uint8_t)('0' | (exp % 10));\n  } else {\n    int32_t e = exp / 100;\n    exp -= e * 100;\n    *ptr++ = (uint8_t)('0' | e);\n    *ptr++ = (uint8_t)('0' | (exp / 10));\n    *ptr++ = (uint8_t)('0' | (exp % 10));\n  }\n\n  return n;\n}\n\nWUFFS_BASE__MAYBE_STATIC size_t  //\nwuffs_base__render_number_f64(wuffs_base__slice_u8 dst,\n                              double x,\n                              uint32_t precision,\n                              uint32_t options) {\n  // Decompose x (64 bits) into " +
-	"negativity (1 bit), base-2 exponent (11 bits\n  // with a -1023 bias) and mantissa (52 bits).\n  uint64_t bits = wuffs_base__ieee_754_bit_representation__from_f64(x);\n  bool neg = (bits >> 63) != 0;\n  int32_t exp2 = ((int32_t)(bits >> 52)) & 0x7FF;\n  uint64_t man = bits & 0x000FFFFFFFFFFFFFul;\n\n  // Apply the exponent bias and set the implicit top bit of the mantissa,\n  // unless x is subnormal. Also take care of Inf and NaN.\n  if (exp2 == 0x7FF) {\n    if (man != 0) {\n      return wuffs_base__private_implementation__render_nan(dst);\n    }\n    return wuffs_base__private_implementation__render_inf(dst, neg, options);\n  } else if (exp2 == 0) {\n    exp2 = -1022;\n  } else {\n    exp2 -= 1023;\n    man |= 0x0010000000000000ul;\n  }\n\n  // Ensure that precision isn't too large.\n  if (precision > 4095) {\n    precision = 4095;\n  }\n\n  // Convert from the (neg, exp2, man) tuple to an HPD.\n  wuffs_base__private_implementation__high_prec_dec h;\n  wuffs_base__private_implementation__high_prec_dec__assign(&h, man, neg);\n  if (h.n" +
-	"um_digits > 0) {\n    wuffs_base__private_implementation__high_prec_dec__lshift(\n        &h, exp2 - 52);  // 52 mantissa bits.\n  }\n\n  // Handle the \"%e\" and \"%f\" formats.\n  switch (options & (WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT |\n                     WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT)) {\n    case WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT:  // The \"%\"f\" format.\n      if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {\n        wuffs_base__private_implementation__high_prec_dec__round_just_enough(\n            &h, exp2, man);\n        int32_t p = ((int32_t)(h.num_digits)) - h.decimal_point;\n        precision = ((uint32_t)(wuffs_base__i32__max(0, p)));\n      } else {\n        wuffs_base__private_implementation__high_prec_dec__round_nearest(\n            &h, ((int32_t)precision) + h.decimal_point);\n      }\n      return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(\n          dst, &h, precision, options);\n\n    case WUFFS_BASE__RENDER_NUMBER_FXX__" +
-	"EXPONENT_PRESENT:  // The \"%e\" format.\n      if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {\n        wuffs_base__private_implementation__high_prec_dec__round_just_enough(\n            &h, exp2, man);\n        precision = (h.num_digits > 0) ? (h.num_digits - 1) : 0;\n      } else {\n        wuffs_base__private_implementation__high_prec_dec__round_nearest(\n            &h, ((int32_t)precision) + 1);\n      }\n      return wuffs_base__private_implementation__high_prec_dec__render_exponent_present(\n          dst, &h, precision, options);\n  }\n\n  // We have the \"%g\" format and so precision means the number of significant\n  // digits, not the number of digits after the decimal separator. Perform\n  // rounding and determine whether to use \"%e\" or \"%f\".\n  int32_t e_threshold = 0;\n  if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {\n    wuffs_base__private_implementation__high_prec_dec__round_just_enough(\n        &h, exp2, man);\n    precision = h.num_digits;\n    e_threshold = 6;\n  } el" +
-	"se {\n    if (precision == 0) {\n      precision = 1;\n    }\n    wuffs_base__private_implementation__high_prec_dec__round_nearest(\n        &h, ((int32_t)precision));\n    e_threshold = ((int32_t)precision);\n    int32_t nd = ((int32_t)(h.num_digits));\n    if ((e_threshold > nd) && (nd >= h.decimal_point)) {\n      e_threshold = nd;\n    }\n  }\n\n  // Use the \"%e\" format if the exponent is large.\n  int32_t e = h.decimal_point - 1;\n  if ((e < -4) || (e_threshold <= e)) {\n    uint32_t p = wuffs_base__u32__min(precision, h.num_digits);\n    return wuffs_base__private_implementation__high_prec_dec__render_exponent_present(\n        dst, &h, (p > 0) ? (p - 1) : 0, options);\n  }\n\n  // Use the \"%f\" format otherwise.\n  int32_t p = ((int32_t)precision);\n  if (p > h.decimal_point) {\n    p = ((int32_t)(h.num_digits));\n  }\n  precision = ((uint32_t)(wuffs_base__i32__max(0, p - h.decimal_point)));\n  return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(\n      dst, &h, precision, options);\n}\n" +
+	"DA, 0x2CD2CC65, 0x35D63F73, 0xB201833B, 0x0841,  // 1e309\n    0xA65E58D1, 0xF8077F7E, 0x034BCF4F, 0xDE81E40A, 0x0844,  // 1e310\n};\n\n// wuffs_base__private_implementation__f64_powers_of_10 holds powers of 10 that\n// can be exactly represented by a float64 (what C calls a double).\nstatic const double wuffs_base__private_implementation__f64_powers_of_10[23] = {\n    1e0,  1e1,  1e2,  1e3,  1e4,  1e5,  1e6,  1e7,  1e8,  1e9,  1e10, 1e11,\n    1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22,\n};\n" +
 	""
 
 const BaseI64ConvSubmoduleC = "" +
diff --git a/internal/cgen/data/gen.go b/internal/cgen/data/gen.go
index 5463149..34fb705 100644
--- a/internal/cgen/data/gen.go
+++ b/internal/cgen/data/gen.go
@@ -75,7 +75,8 @@
 	}{
 		{"../base/all-impl.c", "BaseAllImplC"},
 
-		{"../base/f64conv-submodule.c", "BaseF64ConvSubmoduleC"},
+		{"../base/f64conv-submodule-code.c", "BaseF64ConvSubmoduleCodeC"},
+		{"../base/f64conv-submodule-data.c", "BaseF64ConvSubmoduleDataC"},
 		{"../base/i64conv-submodule.c", "BaseI64ConvSubmoduleC"},
 		{"../base/pixconv-submodule.c", "BasePixConvSubmoduleC"},
 		{"../base/utf8-submodule.c", "BaseUTF8SubmoduleC"},
diff --git a/release/c/wuffs-unsupported-snapshot.c b/release/c/wuffs-unsupported-snapshot.c
index 7313597..7c75d22 100644
--- a/release/c/wuffs-unsupported-snapshot.c
+++ b/release/c/wuffs-unsupported-snapshot.c
@@ -9018,317 +9018,6 @@
 
 // ---------------- IEEE 754 Floating Point
 
-#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE 2047
-#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION 800
-
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL is the largest N
-// such that ((10 << N) < (1 << 64)).
-#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL 60
-
-// wuffs_base__private_implementation__high_prec_dec (abbreviated as HPD) is a
-// fixed precision floating point decimal number, augmented with ±infinity
-// values, but it cannot represent NaN (Not a Number).
-//
-// "High precision" means that the mantissa holds 800 decimal digits. 800 is
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION.
-//
-// An HPD isn't for general purpose arithmetic, only for conversions to and
-// from IEEE 754 double-precision floating point, where the largest and
-// smallest positive, finite values are approximately 1.8e+308 and 4.9e-324.
-// HPD exponents above +2047 mean infinity, below -2047 mean zero. The ±2047
-// bounds are further away from zero than ±(324 + 800), where 800 and 2047 is
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION and
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
-//
-// digits[.. num_digits] are the number's digits in big-endian order. The
-// uint8_t values are in the range [0 ..= 9], not ['0' ..= '9'], where e.g. '7'
-// is the ASCII value 0x37.
-//
-// decimal_point is the index (within digits) of the decimal point. It may be
-// negative or be larger than num_digits, in which case the explicit digits are
-// padded with implicit zeroes.
-//
-// For example, if num_digits is 3 and digits is "\x07\x08\x09":
-//   - A decimal_point of -2 means ".00789"
-//   - A decimal_point of -1 means ".0789"
-//   - A decimal_point of +0 means ".789"
-//   - A decimal_point of +1 means "7.89"
-//   - A decimal_point of +2 means "78.9"
-//   - A decimal_point of +3 means "789."
-//   - A decimal_point of +4 means "7890."
-//   - A decimal_point of +5 means "78900."
-//
-// As above, a decimal_point higher than +2047 means that the overall value is
-// infinity, lower than -2047 means zero.
-//
-// negative is a sign bit. An HPD can distinguish positive and negative zero.
-//
-// truncated is whether there are more than
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION digits, and at
-// least one of those extra digits are non-zero. The existence of long-tail
-// digits can affect rounding.
-//
-// The "all fields are zero" value is valid, and represents the number +0.
-typedef struct {
-  uint32_t num_digits;
-  int32_t decimal_point;
-  bool negative;
-  bool truncated;
-  uint8_t digits[WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION];
-} wuffs_base__private_implementation__high_prec_dec;
-
-// wuffs_base__private_implementation__high_prec_dec__trim trims trailing
-// zeroes from the h->digits[.. h->num_digits] slice. They have no benefit,
-// since we explicitly track h->decimal_point.
-//
-// Preconditions:
-//  - h is non-NULL.
-static inline void  //
-wuffs_base__private_implementation__high_prec_dec__trim(
-    wuffs_base__private_implementation__high_prec_dec* h) {
-  while ((h->num_digits > 0) && (h->digits[h->num_digits - 1] == 0)) {
-    h->num_digits--;
-  }
-}
-
-// wuffs_base__private_implementation__high_prec_dec__assign sets h to
-// represent the number x.
-//
-// Preconditions:
-//  - h is non-NULL.
-static void  //
-wuffs_base__private_implementation__high_prec_dec__assign(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    uint64_t x,
-    bool negative) {
-  uint32_t n = 0;
-
-  // Set h->digits.
-  if (x > 0) {
-    // Calculate the digits, working right-to-left. After we determine n (how
-    // many digits there are), copy from buf to h->digits.
-    //
-    // UINT64_MAX, 18446744073709551615, is 20 digits long. It can be faster to
-    // copy a constant number of bytes than a variable number (20 instead of
-    // n). Make buf large enough (and start writing to it from the middle) so
-    // that can we always copy 20 bytes: the slice buf[(20-n) .. (40-n)].
-    uint8_t buf[40] = {0};
-    uint8_t* ptr = &buf[20];
-    do {
-      uint64_t remaining = x / 10;
-      x -= remaining * 10;
-      ptr--;
-      *ptr = (uint8_t)x;
-      n++;
-      x = remaining;
-    } while (x > 0);
-    memcpy(h->digits, ptr, 20);
-  }
-
-  // Set h's other fields.
-  h->num_digits = n;
-  h->decimal_point = (int32_t)n;
-  h->negative = negative;
-  h->truncated = false;
-  wuffs_base__private_implementation__high_prec_dec__trim(h);
-}
-
-static wuffs_base__status  //
-wuffs_base__private_implementation__high_prec_dec__parse(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    wuffs_base__slice_u8 s) {
-  if (!h) {
-    return wuffs_base__make_status(wuffs_base__error__bad_receiver);
-  }
-  h->num_digits = 0;
-  h->decimal_point = 0;
-  h->negative = false;
-  h->truncated = false;
-
-  uint8_t* p = s.ptr;
-  uint8_t* q = s.ptr + s.len;
-
-  for (;; p++) {
-    if (p >= q) {
-      return wuffs_base__make_status(wuffs_base__error__bad_argument);
-    } else if (*p != '_') {
-      break;
-    }
-  }
-
-  // Parse sign.
-  do {
-    if (*p == '+') {
-      p++;
-    } else if (*p == '-') {
-      h->negative = true;
-      p++;
-    } else {
-      break;
-    }
-    for (;; p++) {
-      if (p >= q) {
-        return wuffs_base__make_status(wuffs_base__error__bad_argument);
-      } else if (*p != '_') {
-        break;
-      }
-    }
-  } while (0);
-
-  // Parse digits, up to (and including) a '.', 'E' or 'e'. Examples for each
-  // limb in this if-else chain:
-  //  - "0.789"
-  //  - "1002.789"
-  //  - ".789"
-  //  - Other (invalid input).
-  uint32_t nd = 0;
-  int32_t dp = 0;
-  bool no_digits_before_separator = false;
-  if ('0' == *p) {
-    p++;
-    for (;; p++) {
-      if (p >= q) {
-        goto after_all;
-      } else if ((*p == '.') || (*p == ',')) {
-        p++;
-        goto after_sep;
-      } else if ((*p == 'E') || (*p == 'e')) {
-        p++;
-        goto after_exp;
-      } else if (*p != '_') {
-        return wuffs_base__make_status(wuffs_base__error__bad_argument);
-      }
-    }
-
-  } else if (('0' < *p) && (*p <= '9')) {
-    h->digits[nd++] = (uint8_t)(*p - '0');
-    dp = (int32_t)nd;
-    p++;
-    for (;; p++) {
-      if (p >= q) {
-        goto after_all;
-      } else if (('0' <= *p) && (*p <= '9')) {
-        if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-          h->digits[nd++] = (uint8_t)(*p - '0');
-          dp = (int32_t)nd;
-        } else if ('0' != *p) {
-          // Long-tail non-zeroes set the truncated bit.
-          h->truncated = true;
-        }
-      } else if ((*p == '.') || (*p == ',')) {
-        p++;
-        goto after_sep;
-      } else if ((*p == 'E') || (*p == 'e')) {
-        p++;
-        goto after_exp;
-      } else if (*p != '_') {
-        return wuffs_base__make_status(wuffs_base__error__bad_argument);
-      }
-    }
-
-  } else if ((*p == '.') || (*p == ',')) {
-    p++;
-    no_digits_before_separator = true;
-
-  } else {
-    return wuffs_base__make_status(wuffs_base__error__bad_argument);
-  }
-
-after_sep:
-  for (;; p++) {
-    if (p >= q) {
-      goto after_all;
-    } else if ('0' == *p) {
-      if (nd == 0) {
-        // Track leading zeroes implicitly.
-        dp--;
-      } else if (nd <
-                 WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-        h->digits[nd++] = (uint8_t)(*p - '0');
-      }
-    } else if (('0' < *p) && (*p <= '9')) {
-      if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-        h->digits[nd++] = (uint8_t)(*p - '0');
-      } else {
-        // Long-tail non-zeroes set the truncated bit.
-        h->truncated = true;
-      }
-    } else if ((*p == 'E') || (*p == 'e')) {
-      p++;
-      goto after_exp;
-    } else if (*p != '_') {
-      return wuffs_base__make_status(wuffs_base__error__bad_argument);
-    }
-  }
-
-after_exp:
-  do {
-    for (;; p++) {
-      if (p >= q) {
-        return wuffs_base__make_status(wuffs_base__error__bad_argument);
-      } else if (*p != '_') {
-        break;
-      }
-    }
-
-    int32_t exp_sign = +1;
-    if (*p == '+') {
-      p++;
-    } else if (*p == '-') {
-      exp_sign = -1;
-      p++;
-    }
-
-    int32_t exp = 0;
-    const int32_t exp_large =
-        WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE +
-        WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION;
-    bool saw_exp_digits = false;
-    for (; p < q; p++) {
-      if (*p == '_') {
-        // No-op.
-      } else if (('0' <= *p) && (*p <= '9')) {
-        saw_exp_digits = true;
-        if (exp < exp_large) {
-          exp = (10 * exp) + ((int32_t)(*p - '0'));
-        }
-      } else {
-        break;
-      }
-    }
-    if (!saw_exp_digits) {
-      return wuffs_base__make_status(wuffs_base__error__bad_argument);
-    }
-    dp += exp_sign * exp;
-  } while (0);
-
-after_all:
-  if (p != q) {
-    return wuffs_base__make_status(wuffs_base__error__bad_argument);
-  }
-  h->num_digits = nd;
-  if (nd == 0) {
-    if (no_digits_before_separator) {
-      return wuffs_base__make_status(wuffs_base__error__bad_argument);
-    }
-    h->decimal_point = 0;
-  } else if (dp <
-             -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
-    h->decimal_point =
-        -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE - 1;
-  } else if (dp >
-             +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
-    h->decimal_point =
-        +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE + 1;
-  } else {
-    h->decimal_point = dp;
-  }
-  wuffs_base__private_implementation__high_prec_dec__trim(h);
-  return wuffs_base__make_status(NULL);
-}
-
-// --------
-
 // The etc__hpd_left_shift and etc__powers_of_5 tables were printed by
 // script/print-hpd-left-shift.go. That script has an optional -comments flag,
 // whose output is not copied here, which prints further detail.
@@ -9440,477 +9129,6 @@
     6, 9, 1, 4, 0, 6, 2, 5,
 };
 
-// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits
-// returns the number of additional decimal digits when left-shifting by shift.
-//
-// See below for preconditions.
-static uint32_t  //
-wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    uint32_t shift) {
-  // Masking with 0x3F should be unnecessary (assuming the preconditions) but
-  // it's cheap and ensures that we don't overflow the
-  // wuffs_base__private_implementation__hpd_left_shift array.
-  shift &= 63;
-
-  uint32_t x_a = wuffs_base__private_implementation__hpd_left_shift[shift];
-  uint32_t x_b = wuffs_base__private_implementation__hpd_left_shift[shift + 1];
-  uint32_t num_new_digits = x_a >> 11;
-  uint32_t pow5_a = 0x7FF & x_a;
-  uint32_t pow5_b = 0x7FF & x_b;
-
-  const uint8_t* pow5 =
-      &wuffs_base__private_implementation__powers_of_5[pow5_a];
-  uint32_t i = 0;
-  uint32_t n = pow5_b - pow5_a;
-  for (; i < n; i++) {
-    if (i >= h->num_digits) {
-      return num_new_digits - 1;
-    } else if (h->digits[i] == pow5[i]) {
-      continue;
-    } else if (h->digits[i] < pow5[i]) {
-      return num_new_digits - 1;
-    } else {
-      return num_new_digits;
-    }
-  }
-  return num_new_digits;
-}
-
-// --------
-
-// wuffs_base__private_implementation__high_prec_dec__rounded_integer returns
-// the integral (non-fractional) part of h, provided that it is 18 or fewer
-// decimal digits. For 19 or more digits, it returns UINT64_MAX. Note that:
-//   - (1 << 53) is    9007199254740992, which has 16 decimal digits.
-//   - (1 << 56) is   72057594037927936, which has 17 decimal digits.
-//   - (1 << 59) is  576460752303423488, which has 18 decimal digits.
-//   - (1 << 63) is 9223372036854775808, which has 19 decimal digits.
-// and that IEEE 754 double precision has 52 mantissa bits.
-//
-// That integral part is rounded-to-even: rounding 7.5 or 8.5 both give 8.
-//
-// h's negative bit is ignored: rounding -8.6 returns 9.
-//
-// See below for preconditions.
-static uint64_t  //
-wuffs_base__private_implementation__high_prec_dec__rounded_integer(
-    wuffs_base__private_implementation__high_prec_dec* h) {
-  if ((h->num_digits == 0) || (h->decimal_point < 0)) {
-    return 0;
-  } else if (h->decimal_point > 18) {
-    return UINT64_MAX;
-  }
-
-  uint32_t dp = (uint32_t)(h->decimal_point);
-  uint64_t n = 0;
-  uint32_t i = 0;
-  for (; i < dp; i++) {
-    n = (10 * n) + ((i < h->num_digits) ? h->digits[i] : 0);
-  }
-
-  bool round_up = false;
-  if (dp < h->num_digits) {
-    round_up = h->digits[dp] >= 5;
-    if ((h->digits[dp] == 5) && (dp + 1 == h->num_digits)) {
-      // We are exactly halfway. If we're truncated, round up, otherwise round
-      // to even.
-      round_up = h->truncated ||  //
-                 ((dp > 0) && (1 & h->digits[dp - 1]));
-    }
-  }
-  if (round_up) {
-    n++;
-  }
-
-  return n;
-}
-
-// wuffs_base__private_implementation__high_prec_dec__small_xshift shifts h's
-// number (where 'x' is 'l' or 'r' for left or right) by a small shift value.
-//
-// Preconditions:
-//  - h is non-NULL.
-//  - h->decimal_point is "not extreme".
-//  - shift is non-zero.
-//  - shift is "a small shift".
-//
-// "Not extreme" means within
-// ±WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
-//
-// "A small shift" means not more than
-// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.
-//
-// wuffs_base__private_implementation__high_prec_dec__rounded_integer and
-// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits
-// have the same preconditions.
-//
-// wuffs_base__private_implementation__high_prec_dec__lshift keeps the first
-// two preconditions but not the last two. Its shift argument is signed and
-// does not need to be "small": zero is a no-op, positive means left shift and
-// negative means right shift.
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__small_lshift(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    uint32_t shift) {
-  if (h->num_digits == 0) {
-    return;
-  }
-  uint32_t num_new_digits =
-      wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(
-          h, shift);
-  uint32_t rx = h->num_digits - 1;                   // Read  index.
-  uint32_t wx = h->num_digits - 1 + num_new_digits;  // Write index.
-  uint64_t n = 0;
-
-  // Repeat: pick up a digit, put down a digit, right to left.
-  while (((int32_t)rx) >= 0) {
-    n += ((uint64_t)(h->digits[rx])) << shift;
-    uint64_t quo = n / 10;
-    uint64_t rem = n - (10 * quo);
-    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-      h->digits[wx] = (uint8_t)rem;
-    } else if (rem > 0) {
-      h->truncated = true;
-    }
-    n = quo;
-    wx--;
-    rx--;
-  }
-
-  // Put down leading digits, right to left.
-  while (n > 0) {
-    uint64_t quo = n / 10;
-    uint64_t rem = n - (10 * quo);
-    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-      h->digits[wx] = (uint8_t)rem;
-    } else if (rem > 0) {
-      h->truncated = true;
-    }
-    n = quo;
-    wx--;
-  }
-
-  // Finish.
-  h->num_digits += num_new_digits;
-  if (h->num_digits >
-      WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-    h->num_digits = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION;
-  }
-  h->decimal_point += (int32_t)num_new_digits;
-  wuffs_base__private_implementation__high_prec_dec__trim(h);
-}
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__small_rshift(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    uint32_t shift) {
-  uint32_t rx = 0;  // Read  index.
-  uint32_t wx = 0;  // Write index.
-  uint64_t n = 0;
-
-  // Pick up enough leading digits to cover the first shift.
-  while ((n >> shift) == 0) {
-    if (rx < h->num_digits) {
-      // Read a digit.
-      n = (10 * n) + h->digits[rx++];
-    } else if (n == 0) {
-      // h's number used to be zero and remains zero.
-      return;
-    } else {
-      // Read sufficient implicit trailing zeroes.
-      while ((n >> shift) == 0) {
-        n = 10 * n;
-        rx++;
-      }
-      break;
-    }
-  }
-  h->decimal_point -= ((int32_t)(rx - 1));
-  if (h->decimal_point <
-      -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
-    // After the shift, h's number is effectively zero.
-    h->num_digits = 0;
-    h->decimal_point = 0;
-    h->negative = false;
-    h->truncated = false;
-    return;
-  }
-
-  // Repeat: pick up a digit, put down a digit, left to right.
-  uint64_t mask = (((uint64_t)(1)) << shift) - 1;
-  while (rx < h->num_digits) {
-    uint8_t new_digit = ((uint8_t)(n >> shift));
-    n = (10 * (n & mask)) + h->digits[rx++];
-    h->digits[wx++] = new_digit;
-  }
-
-  // Put down trailing digits, left to right.
-  while (n > 0) {
-    uint8_t new_digit = ((uint8_t)(n >> shift));
-    n = 10 * (n & mask);
-    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
-      h->digits[wx++] = new_digit;
-    } else if (new_digit > 0) {
-      h->truncated = true;
-    }
-  }
-
-  // Finish.
-  h->num_digits = wx;
-  wuffs_base__private_implementation__high_prec_dec__trim(h);
-}
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__lshift(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    int32_t shift) {
-  if (shift > 0) {
-    while (shift > +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
-      wuffs_base__private_implementation__high_prec_dec__small_lshift(
-          h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL);
-      shift -= WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
-    }
-    wuffs_base__private_implementation__high_prec_dec__small_lshift(
-        h, ((uint32_t)(+shift)));
-  } else if (shift < 0) {
-    while (shift < -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
-      wuffs_base__private_implementation__high_prec_dec__small_rshift(
-          h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL);
-      shift += WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
-    }
-    wuffs_base__private_implementation__high_prec_dec__small_rshift(
-        h, ((uint32_t)(-shift)));
-  }
-}
-
-// --------
-
-// wuffs_base__private_implementation__high_prec_dec__round_etc rounds h's
-// number. For those functions that take an n argument, rounding produces at
-// most n digits (which is not necessarily at most n decimal places). Negative
-// n values are ignored, as well as any n greater than or equal to h's number
-// of digits. The etc__round_just_enough function implicitly chooses an n to
-// implement WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION.
-//
-// Preconditions:
-//  - h is non-NULL.
-//  - h->decimal_point is "not extreme".
-//
-// "Not extreme" means within
-// ±WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__round_down(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    int32_t n) {
-  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
-    return;
-  }
-  h->num_digits = (uint32_t)(n);
-  wuffs_base__private_implementation__high_prec_dec__trim(h);
-}
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__round_up(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    int32_t n) {
-  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
-    return;
-  }
-
-  for (n--; n >= 0; n--) {
-    if (h->digits[n] < 9) {
-      h->digits[n]++;
-      h->num_digits = (uint32_t)(n + 1);
-      return;
-    }
-  }
-
-  // The number is all 9s. Change to a single 1 and adjust the decimal point.
-  h->digits[0] = 1;
-  h->num_digits = 1;
-  h->decimal_point++;
-}
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__round_nearest(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    int32_t n) {
-  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
-    return;
-  }
-  bool up = h->digits[n] >= 5;
-  if ((h->digits[n] == 5) && ((n + 1) == ((int32_t)(h->num_digits)))) {
-    up = h->truncated ||  //
-         ((n > 0) && ((h->digits[n - 1] & 1) != 0));
-  }
-
-  if (up) {
-    wuffs_base__private_implementation__high_prec_dec__round_up(h, n);
-  } else {
-    wuffs_base__private_implementation__high_prec_dec__round_down(h, n);
-  }
-}
-
-static void  //
-wuffs_base__private_implementation__high_prec_dec__round_just_enough(
-    wuffs_base__private_implementation__high_prec_dec* h,
-    int32_t exp2,
-    uint64_t mantissa) {
-  // The magic numbers 52 and 53 in this function are because IEEE 754 double
-  // precision has 52 mantissa bits.
-  //
-  // Let f be the floating point number represented by exp2 and mantissa (and
-  // also the number in h): the number (mantissa * (2 ** (exp2 - 52))).
-  //
-  // If f is zero or a small integer, we can return early.
-  if ((mantissa == 0) ||
-      ((exp2 < 53) && (h->decimal_point >= ((int32_t)(h->num_digits))))) {
-    return;
-  }
-
-  // The smallest normal f has an exp2 of -1022 and a mantissa of (1 << 52).
-  // Subnormal numbers have the same exp2 but a smaller mantissa.
-  static const int32_t min_incl_normal_exp2 = -1022;
-  static const uint64_t min_incl_normal_mantissa = 0x0010000000000000ul;
-
-  // Compute lower and upper bounds such that any number between them (possibly
-  // inclusive) will round to f. First, the lower bound. Our number f is:
-  //   ((mantissa + 0)         * (2 ** (  exp2 - 52)))
-  //
-  // The next lowest floating point number is:
-  //   ((mantissa - 1)         * (2 ** (  exp2 - 52)))
-  // unless (mantissa - 1) drops the (1 << 52) bit and exp2 is not the
-  // min_incl_normal_exp2. Either way, call it:
-  //   ((l_mantissa)           * (2 ** (l_exp2 - 52)))
-  //
-  // The lower bound is halfway between them (noting that 52 became 53):
-  //   (((2 * l_mantissa) + 1) * (2 ** (l_exp2 - 53)))
-  int32_t l_exp2 = exp2;
-  uint64_t l_mantissa = mantissa - 1;
-  if ((exp2 > min_incl_normal_exp2) && (mantissa <= min_incl_normal_mantissa)) {
-    l_exp2 = exp2 - 1;
-    l_mantissa = (2 * mantissa) - 1;
-  }
-  wuffs_base__private_implementation__high_prec_dec lower;
-  wuffs_base__private_implementation__high_prec_dec__assign(
-      &lower, (2 * l_mantissa) + 1, false);
-  wuffs_base__private_implementation__high_prec_dec__lshift(&lower,
-                                                            l_exp2 - 53);
-
-  // Next, the upper bound. Our number f is:
-  //   ((mantissa + 0)       * (2 ** (exp2 - 52)))
-  //
-  // The next highest floating point number is:
-  //   ((mantissa + 1)       * (2 ** (exp2 - 52)))
-  //
-  // The upper bound is halfway between them (noting that 52 became 53):
-  //   (((2 * mantissa) + 1) * (2 ** (exp2 - 53)))
-  wuffs_base__private_implementation__high_prec_dec upper;
-  wuffs_base__private_implementation__high_prec_dec__assign(
-      &upper, (2 * mantissa) + 1, false);
-  wuffs_base__private_implementation__high_prec_dec__lshift(&upper, exp2 - 53);
-
-  // The lower and upper bounds are possible outputs only if the original
-  // mantissa is even, so that IEEE round-to-even would round to the original
-  // mantissa and not its neighbors.
-  bool inclusive = (mantissa & 1) == 0;
-
-  // As we walk the digits, we want to know whether rounding up would fall
-  // within the upper bound. This is tracked by upper_delta:
-  //  - When -1, the digits of h and upper are the same so far.
-  //  - When +0, we saw a difference of 1 between h and upper on a previous
-  //    digit and subsequently only 9s for h and 0s for upper. Thus, rounding
-  //    up may fall outside of the bound if !inclusive.
-  //  - When +1, the difference is greater than 1 and we know that rounding up
-  //    falls within the bound.
-  //
-  // This is a state machine with three states. The numerical value for each
-  // state (-1, +0 or +1) isn't important, other than their order.
-  int upper_delta = -1;
-
-  // We can now figure out the shortest number of digits required. Walk the
-  // digits until h has distinguished itself from lower or upper.
-  //
-  // The zi and zd variables are indexes and digits, for z in l (lower), h (the
-  // number) and u (upper).
-  //
-  // The lower, h and upper numbers may have their decimal points at different
-  // places. In this case, upper is the longest, so we iterate ui starting from
-  // 0 and iterate li and hi starting from either 0 or -1.
-  int32_t ui = 0;
-  for (;; ui++) {
-    // Calculate hd, the middle number's digit.
-    int32_t hi = ui - upper.decimal_point + h->decimal_point;
-    if (hi >= ((int32_t)(h->num_digits))) {
-      break;
-    }
-    uint8_t hd = (((uint32_t)hi) < h->num_digits) ? h->digits[hi] : 0;
-
-    // Calculate ld, the lower bound's digit.
-    int32_t li = ui - upper.decimal_point + lower.decimal_point;
-    uint8_t ld = (((uint32_t)li) < lower.num_digits) ? lower.digits[li] : 0;
-
-    // We can round down (truncate) if lower has a different digit than h or if
-    // lower is inclusive and is exactly the result of rounding down (i.e. we
-    // have reached the final digit of lower).
-    bool can_round_down =
-        (ld != hd) ||  //
-        (inclusive && ((li + 1) == ((int32_t)(lower.num_digits))));
-
-    // Calculate ud, the upper bound's digit, and update upper_delta.
-    uint8_t ud = (((uint32_t)ui) < upper.num_digits) ? upper.digits[ui] : 0;
-    if (upper_delta < 0) {
-      if ((hd + 1) < ud) {
-        // For example:
-        // h     = 12345???
-        // upper = 12347???
-        upper_delta = +1;
-      } else if (hd != ud) {
-        // For example:
-        // h     = 12345???
-        // upper = 12346???
-        upper_delta = +0;
-      }
-    } else if (upper_delta == 0) {
-      if ((hd != 9) || (ud != 0)) {
-        // For example:
-        // h     = 1234598?
-        // upper = 1234600?
-        upper_delta = +1;
-      }
-    }
-
-    // We can round up if upper has a different digit than h and either upper
-    // is inclusive or upper is bigger than the result of rounding up.
-    bool can_round_up =
-        (upper_delta > 0) ||    //
-        ((upper_delta == 0) &&  //
-         (inclusive || ((ui + 1) < ((int32_t)(upper.num_digits)))));
-
-    // If we can round either way, round to nearest. If we can round only one
-    // way, do it. If we can't round, continue the loop.
-    if (can_round_down) {
-      if (can_round_up) {
-        wuffs_base__private_implementation__high_prec_dec__round_nearest(
-            h, hi + 1);
-        return;
-      } else {
-        wuffs_base__private_implementation__high_prec_dec__round_down(h,
-                                                                      hi + 1);
-        return;
-      }
-    } else {
-      if (can_round_up) {
-        wuffs_base__private_implementation__high_prec_dec__round_up(h, hi + 1);
-        return;
-      }
-    }
-  }
-}
-
 // --------
 
 // wuffs_base__private_implementation__powers_of_10 contains truncated
@@ -10585,6 +9803,790 @@
     1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22,
 };
 
+// ---------------- IEEE 754 Floating Point
+
+#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE 2047
+#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION 800
+
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL is the largest N
+// such that ((10 << N) < (1 << 64)).
+#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL 60
+
+// wuffs_base__private_implementation__high_prec_dec (abbreviated as HPD) is a
+// fixed precision floating point decimal number, augmented with ±infinity
+// values, but it cannot represent NaN (Not a Number).
+//
+// "High precision" means that the mantissa holds 800 decimal digits. 800 is
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION.
+//
+// An HPD isn't for general purpose arithmetic, only for conversions to and
+// from IEEE 754 double-precision floating point, where the largest and
+// smallest positive, finite values are approximately 1.8e+308 and 4.9e-324.
+// HPD exponents above +2047 mean infinity, below -2047 mean zero. The ±2047
+// bounds are further away from zero than ±(324 + 800), where 800 and 2047 is
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION and
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
+//
+// digits[.. num_digits] are the number's digits in big-endian order. The
+// uint8_t values are in the range [0 ..= 9], not ['0' ..= '9'], where e.g. '7'
+// is the ASCII value 0x37.
+//
+// decimal_point is the index (within digits) of the decimal point. It may be
+// negative or be larger than num_digits, in which case the explicit digits are
+// padded with implicit zeroes.
+//
+// For example, if num_digits is 3 and digits is "\x07\x08\x09":
+//   - A decimal_point of -2 means ".00789"
+//   - A decimal_point of -1 means ".0789"
+//   - A decimal_point of +0 means ".789"
+//   - A decimal_point of +1 means "7.89"
+//   - A decimal_point of +2 means "78.9"
+//   - A decimal_point of +3 means "789."
+//   - A decimal_point of +4 means "7890."
+//   - A decimal_point of +5 means "78900."
+//
+// As above, a decimal_point higher than +2047 means that the overall value is
+// infinity, lower than -2047 means zero.
+//
+// negative is a sign bit. An HPD can distinguish positive and negative zero.
+//
+// truncated is whether there are more than
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION digits, and at
+// least one of those extra digits are non-zero. The existence of long-tail
+// digits can affect rounding.
+//
+// The "all fields are zero" value is valid, and represents the number +0.
+typedef struct {
+  uint32_t num_digits;
+  int32_t decimal_point;
+  bool negative;
+  bool truncated;
+  uint8_t digits[WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION];
+} wuffs_base__private_implementation__high_prec_dec;
+
+// wuffs_base__private_implementation__high_prec_dec__trim trims trailing
+// zeroes from the h->digits[.. h->num_digits] slice. They have no benefit,
+// since we explicitly track h->decimal_point.
+//
+// Preconditions:
+//  - h is non-NULL.
+static inline void  //
+wuffs_base__private_implementation__high_prec_dec__trim(
+    wuffs_base__private_implementation__high_prec_dec* h) {
+  while ((h->num_digits > 0) && (h->digits[h->num_digits - 1] == 0)) {
+    h->num_digits--;
+  }
+}
+
+// wuffs_base__private_implementation__high_prec_dec__assign sets h to
+// represent the number x.
+//
+// Preconditions:
+//  - h is non-NULL.
+static void  //
+wuffs_base__private_implementation__high_prec_dec__assign(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint64_t x,
+    bool negative) {
+  uint32_t n = 0;
+
+  // Set h->digits.
+  if (x > 0) {
+    // Calculate the digits, working right-to-left. After we determine n (how
+    // many digits there are), copy from buf to h->digits.
+    //
+    // UINT64_MAX, 18446744073709551615, is 20 digits long. It can be faster to
+    // copy a constant number of bytes than a variable number (20 instead of
+    // n). Make buf large enough (and start writing to it from the middle) so
+    // that can we always copy 20 bytes: the slice buf[(20-n) .. (40-n)].
+    uint8_t buf[40] = {0};
+    uint8_t* ptr = &buf[20];
+    do {
+      uint64_t remaining = x / 10;
+      x -= remaining * 10;
+      ptr--;
+      *ptr = (uint8_t)x;
+      n++;
+      x = remaining;
+    } while (x > 0);
+    memcpy(h->digits, ptr, 20);
+  }
+
+  // Set h's other fields.
+  h->num_digits = n;
+  h->decimal_point = (int32_t)n;
+  h->negative = negative;
+  h->truncated = false;
+  wuffs_base__private_implementation__high_prec_dec__trim(h);
+}
+
+static wuffs_base__status  //
+wuffs_base__private_implementation__high_prec_dec__parse(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    wuffs_base__slice_u8 s) {
+  if (!h) {
+    return wuffs_base__make_status(wuffs_base__error__bad_receiver);
+  }
+  h->num_digits = 0;
+  h->decimal_point = 0;
+  h->negative = false;
+  h->truncated = false;
+
+  uint8_t* p = s.ptr;
+  uint8_t* q = s.ptr + s.len;
+
+  for (;; p++) {
+    if (p >= q) {
+      return wuffs_base__make_status(wuffs_base__error__bad_argument);
+    } else if (*p != '_') {
+      break;
+    }
+  }
+
+  // Parse sign.
+  do {
+    if (*p == '+') {
+      p++;
+    } else if (*p == '-') {
+      h->negative = true;
+      p++;
+    } else {
+      break;
+    }
+    for (;; p++) {
+      if (p >= q) {
+        return wuffs_base__make_status(wuffs_base__error__bad_argument);
+      } else if (*p != '_') {
+        break;
+      }
+    }
+  } while (0);
+
+  // Parse digits, up to (and including) a '.', 'E' or 'e'. Examples for each
+  // limb in this if-else chain:
+  //  - "0.789"
+  //  - "1002.789"
+  //  - ".789"
+  //  - Other (invalid input).
+  uint32_t nd = 0;
+  int32_t dp = 0;
+  bool no_digits_before_separator = false;
+  if ('0' == *p) {
+    p++;
+    for (;; p++) {
+      if (p >= q) {
+        goto after_all;
+      } else if ((*p == '.') || (*p == ',')) {
+        p++;
+        goto after_sep;
+      } else if ((*p == 'E') || (*p == 'e')) {
+        p++;
+        goto after_exp;
+      } else if (*p != '_') {
+        return wuffs_base__make_status(wuffs_base__error__bad_argument);
+      }
+    }
+
+  } else if (('0' < *p) && (*p <= '9')) {
+    h->digits[nd++] = (uint8_t)(*p - '0');
+    dp = (int32_t)nd;
+    p++;
+    for (;; p++) {
+      if (p >= q) {
+        goto after_all;
+      } else if (('0' <= *p) && (*p <= '9')) {
+        if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+          h->digits[nd++] = (uint8_t)(*p - '0');
+          dp = (int32_t)nd;
+        } else if ('0' != *p) {
+          // Long-tail non-zeroes set the truncated bit.
+          h->truncated = true;
+        }
+      } else if ((*p == '.') || (*p == ',')) {
+        p++;
+        goto after_sep;
+      } else if ((*p == 'E') || (*p == 'e')) {
+        p++;
+        goto after_exp;
+      } else if (*p != '_') {
+        return wuffs_base__make_status(wuffs_base__error__bad_argument);
+      }
+    }
+
+  } else if ((*p == '.') || (*p == ',')) {
+    p++;
+    no_digits_before_separator = true;
+
+  } else {
+    return wuffs_base__make_status(wuffs_base__error__bad_argument);
+  }
+
+after_sep:
+  for (;; p++) {
+    if (p >= q) {
+      goto after_all;
+    } else if ('0' == *p) {
+      if (nd == 0) {
+        // Track leading zeroes implicitly.
+        dp--;
+      } else if (nd <
+                 WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+        h->digits[nd++] = (uint8_t)(*p - '0');
+      }
+    } else if (('0' < *p) && (*p <= '9')) {
+      if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+        h->digits[nd++] = (uint8_t)(*p - '0');
+      } else {
+        // Long-tail non-zeroes set the truncated bit.
+        h->truncated = true;
+      }
+    } else if ((*p == 'E') || (*p == 'e')) {
+      p++;
+      goto after_exp;
+    } else if (*p != '_') {
+      return wuffs_base__make_status(wuffs_base__error__bad_argument);
+    }
+  }
+
+after_exp:
+  do {
+    for (;; p++) {
+      if (p >= q) {
+        return wuffs_base__make_status(wuffs_base__error__bad_argument);
+      } else if (*p != '_') {
+        break;
+      }
+    }
+
+    int32_t exp_sign = +1;
+    if (*p == '+') {
+      p++;
+    } else if (*p == '-') {
+      exp_sign = -1;
+      p++;
+    }
+
+    int32_t exp = 0;
+    const int32_t exp_large =
+        WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE +
+        WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION;
+    bool saw_exp_digits = false;
+    for (; p < q; p++) {
+      if (*p == '_') {
+        // No-op.
+      } else if (('0' <= *p) && (*p <= '9')) {
+        saw_exp_digits = true;
+        if (exp < exp_large) {
+          exp = (10 * exp) + ((int32_t)(*p - '0'));
+        }
+      } else {
+        break;
+      }
+    }
+    if (!saw_exp_digits) {
+      return wuffs_base__make_status(wuffs_base__error__bad_argument);
+    }
+    dp += exp_sign * exp;
+  } while (0);
+
+after_all:
+  if (p != q) {
+    return wuffs_base__make_status(wuffs_base__error__bad_argument);
+  }
+  h->num_digits = nd;
+  if (nd == 0) {
+    if (no_digits_before_separator) {
+      return wuffs_base__make_status(wuffs_base__error__bad_argument);
+    }
+    h->decimal_point = 0;
+  } else if (dp <
+             -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
+    h->decimal_point =
+        -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE - 1;
+  } else if (dp >
+             +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
+    h->decimal_point =
+        +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE + 1;
+  } else {
+    h->decimal_point = dp;
+  }
+  wuffs_base__private_implementation__high_prec_dec__trim(h);
+  return wuffs_base__make_status(NULL);
+}
+
+// --------
+
+// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits
+// returns the number of additional decimal digits when left-shifting by shift.
+//
+// See below for preconditions.
+static uint32_t  //
+wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint32_t shift) {
+  // Masking with 0x3F should be unnecessary (assuming the preconditions) but
+  // it's cheap and ensures that we don't overflow the
+  // wuffs_base__private_implementation__hpd_left_shift array.
+  shift &= 63;
+
+  uint32_t x_a = wuffs_base__private_implementation__hpd_left_shift[shift];
+  uint32_t x_b = wuffs_base__private_implementation__hpd_left_shift[shift + 1];
+  uint32_t num_new_digits = x_a >> 11;
+  uint32_t pow5_a = 0x7FF & x_a;
+  uint32_t pow5_b = 0x7FF & x_b;
+
+  const uint8_t* pow5 =
+      &wuffs_base__private_implementation__powers_of_5[pow5_a];
+  uint32_t i = 0;
+  uint32_t n = pow5_b - pow5_a;
+  for (; i < n; i++) {
+    if (i >= h->num_digits) {
+      return num_new_digits - 1;
+    } else if (h->digits[i] == pow5[i]) {
+      continue;
+    } else if (h->digits[i] < pow5[i]) {
+      return num_new_digits - 1;
+    } else {
+      return num_new_digits;
+    }
+  }
+  return num_new_digits;
+}
+
+// --------
+
+// wuffs_base__private_implementation__high_prec_dec__rounded_integer returns
+// the integral (non-fractional) part of h, provided that it is 18 or fewer
+// decimal digits. For 19 or more digits, it returns UINT64_MAX. Note that:
+//   - (1 << 53) is    9007199254740992, which has 16 decimal digits.
+//   - (1 << 56) is   72057594037927936, which has 17 decimal digits.
+//   - (1 << 59) is  576460752303423488, which has 18 decimal digits.
+//   - (1 << 63) is 9223372036854775808, which has 19 decimal digits.
+// and that IEEE 754 double precision has 52 mantissa bits.
+//
+// That integral part is rounded-to-even: rounding 7.5 or 8.5 both give 8.
+//
+// h's negative bit is ignored: rounding -8.6 returns 9.
+//
+// See below for preconditions.
+static uint64_t  //
+wuffs_base__private_implementation__high_prec_dec__rounded_integer(
+    wuffs_base__private_implementation__high_prec_dec* h) {
+  if ((h->num_digits == 0) || (h->decimal_point < 0)) {
+    return 0;
+  } else if (h->decimal_point > 18) {
+    return UINT64_MAX;
+  }
+
+  uint32_t dp = (uint32_t)(h->decimal_point);
+  uint64_t n = 0;
+  uint32_t i = 0;
+  for (; i < dp; i++) {
+    n = (10 * n) + ((i < h->num_digits) ? h->digits[i] : 0);
+  }
+
+  bool round_up = false;
+  if (dp < h->num_digits) {
+    round_up = h->digits[dp] >= 5;
+    if ((h->digits[dp] == 5) && (dp + 1 == h->num_digits)) {
+      // We are exactly halfway. If we're truncated, round up, otherwise round
+      // to even.
+      round_up = h->truncated ||  //
+                 ((dp > 0) && (1 & h->digits[dp - 1]));
+    }
+  }
+  if (round_up) {
+    n++;
+  }
+
+  return n;
+}
+
+// wuffs_base__private_implementation__high_prec_dec__small_xshift shifts h's
+// number (where 'x' is 'l' or 'r' for left or right) by a small shift value.
+//
+// Preconditions:
+//  - h is non-NULL.
+//  - h->decimal_point is "not extreme".
+//  - shift is non-zero.
+//  - shift is "a small shift".
+//
+// "Not extreme" means within
+// ±WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
+//
+// "A small shift" means not more than
+// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.
+//
+// wuffs_base__private_implementation__high_prec_dec__rounded_integer and
+// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits
+// have the same preconditions.
+//
+// wuffs_base__private_implementation__high_prec_dec__lshift keeps the first
+// two preconditions but not the last two. Its shift argument is signed and
+// does not need to be "small": zero is a no-op, positive means left shift and
+// negative means right shift.
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__small_lshift(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint32_t shift) {
+  if (h->num_digits == 0) {
+    return;
+  }
+  uint32_t num_new_digits =
+      wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(
+          h, shift);
+  uint32_t rx = h->num_digits - 1;                   // Read  index.
+  uint32_t wx = h->num_digits - 1 + num_new_digits;  // Write index.
+  uint64_t n = 0;
+
+  // Repeat: pick up a digit, put down a digit, right to left.
+  while (((int32_t)rx) >= 0) {
+    n += ((uint64_t)(h->digits[rx])) << shift;
+    uint64_t quo = n / 10;
+    uint64_t rem = n - (10 * quo);
+    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+      h->digits[wx] = (uint8_t)rem;
+    } else if (rem > 0) {
+      h->truncated = true;
+    }
+    n = quo;
+    wx--;
+    rx--;
+  }
+
+  // Put down leading digits, right to left.
+  while (n > 0) {
+    uint64_t quo = n / 10;
+    uint64_t rem = n - (10 * quo);
+    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+      h->digits[wx] = (uint8_t)rem;
+    } else if (rem > 0) {
+      h->truncated = true;
+    }
+    n = quo;
+    wx--;
+  }
+
+  // Finish.
+  h->num_digits += num_new_digits;
+  if (h->num_digits >
+      WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+    h->num_digits = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION;
+  }
+  h->decimal_point += (int32_t)num_new_digits;
+  wuffs_base__private_implementation__high_prec_dec__trim(h);
+}
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__small_rshift(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint32_t shift) {
+  uint32_t rx = 0;  // Read  index.
+  uint32_t wx = 0;  // Write index.
+  uint64_t n = 0;
+
+  // Pick up enough leading digits to cover the first shift.
+  while ((n >> shift) == 0) {
+    if (rx < h->num_digits) {
+      // Read a digit.
+      n = (10 * n) + h->digits[rx++];
+    } else if (n == 0) {
+      // h's number used to be zero and remains zero.
+      return;
+    } else {
+      // Read sufficient implicit trailing zeroes.
+      while ((n >> shift) == 0) {
+        n = 10 * n;
+        rx++;
+      }
+      break;
+    }
+  }
+  h->decimal_point -= ((int32_t)(rx - 1));
+  if (h->decimal_point <
+      -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
+    // After the shift, h's number is effectively zero.
+    h->num_digits = 0;
+    h->decimal_point = 0;
+    h->negative = false;
+    h->truncated = false;
+    return;
+  }
+
+  // Repeat: pick up a digit, put down a digit, left to right.
+  uint64_t mask = (((uint64_t)(1)) << shift) - 1;
+  while (rx < h->num_digits) {
+    uint8_t new_digit = ((uint8_t)(n >> shift));
+    n = (10 * (n & mask)) + h->digits[rx++];
+    h->digits[wx++] = new_digit;
+  }
+
+  // Put down trailing digits, left to right.
+  while (n > 0) {
+    uint8_t new_digit = ((uint8_t)(n >> shift));
+    n = 10 * (n & mask);
+    if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
+      h->digits[wx++] = new_digit;
+    } else if (new_digit > 0) {
+      h->truncated = true;
+    }
+  }
+
+  // Finish.
+  h->num_digits = wx;
+  wuffs_base__private_implementation__high_prec_dec__trim(h);
+}
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__lshift(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    int32_t shift) {
+  if (shift > 0) {
+    while (shift > +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
+      wuffs_base__private_implementation__high_prec_dec__small_lshift(
+          h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL);
+      shift -= WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
+    }
+    wuffs_base__private_implementation__high_prec_dec__small_lshift(
+        h, ((uint32_t)(+shift)));
+  } else if (shift < 0) {
+    while (shift < -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
+      wuffs_base__private_implementation__high_prec_dec__small_rshift(
+          h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL);
+      shift += WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
+    }
+    wuffs_base__private_implementation__high_prec_dec__small_rshift(
+        h, ((uint32_t)(-shift)));
+  }
+}
+
+// --------
+
+// wuffs_base__private_implementation__high_prec_dec__round_etc rounds h's
+// number. For those functions that take an n argument, rounding produces at
+// most n digits (which is not necessarily at most n decimal places). Negative
+// n values are ignored, as well as any n greater than or equal to h's number
+// of digits. The etc__round_just_enough function implicitly chooses an n to
+// implement WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION.
+//
+// Preconditions:
+//  - h is non-NULL.
+//  - h->decimal_point is "not extreme".
+//
+// "Not extreme" means within
+// ±WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__round_down(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    int32_t n) {
+  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
+    return;
+  }
+  h->num_digits = (uint32_t)(n);
+  wuffs_base__private_implementation__high_prec_dec__trim(h);
+}
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__round_up(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    int32_t n) {
+  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
+    return;
+  }
+
+  for (n--; n >= 0; n--) {
+    if (h->digits[n] < 9) {
+      h->digits[n]++;
+      h->num_digits = (uint32_t)(n + 1);
+      return;
+    }
+  }
+
+  // The number is all 9s. Change to a single 1 and adjust the decimal point.
+  h->digits[0] = 1;
+  h->num_digits = 1;
+  h->decimal_point++;
+}
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__round_nearest(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    int32_t n) {
+  if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
+    return;
+  }
+  bool up = h->digits[n] >= 5;
+  if ((h->digits[n] == 5) && ((n + 1) == ((int32_t)(h->num_digits)))) {
+    up = h->truncated ||  //
+         ((n > 0) && ((h->digits[n - 1] & 1) != 0));
+  }
+
+  if (up) {
+    wuffs_base__private_implementation__high_prec_dec__round_up(h, n);
+  } else {
+    wuffs_base__private_implementation__high_prec_dec__round_down(h, n);
+  }
+}
+
+static void  //
+wuffs_base__private_implementation__high_prec_dec__round_just_enough(
+    wuffs_base__private_implementation__high_prec_dec* h,
+    int32_t exp2,
+    uint64_t mantissa) {
+  // The magic numbers 52 and 53 in this function are because IEEE 754 double
+  // precision has 52 mantissa bits.
+  //
+  // Let f be the floating point number represented by exp2 and mantissa (and
+  // also the number in h): the number (mantissa * (2 ** (exp2 - 52))).
+  //
+  // If f is zero or a small integer, we can return early.
+  if ((mantissa == 0) ||
+      ((exp2 < 53) && (h->decimal_point >= ((int32_t)(h->num_digits))))) {
+    return;
+  }
+
+  // The smallest normal f has an exp2 of -1022 and a mantissa of (1 << 52).
+  // Subnormal numbers have the same exp2 but a smaller mantissa.
+  static const int32_t min_incl_normal_exp2 = -1022;
+  static const uint64_t min_incl_normal_mantissa = 0x0010000000000000ul;
+
+  // Compute lower and upper bounds such that any number between them (possibly
+  // inclusive) will round to f. First, the lower bound. Our number f is:
+  //   ((mantissa + 0)         * (2 ** (  exp2 - 52)))
+  //
+  // The next lowest floating point number is:
+  //   ((mantissa - 1)         * (2 ** (  exp2 - 52)))
+  // unless (mantissa - 1) drops the (1 << 52) bit and exp2 is not the
+  // min_incl_normal_exp2. Either way, call it:
+  //   ((l_mantissa)           * (2 ** (l_exp2 - 52)))
+  //
+  // The lower bound is halfway between them (noting that 52 became 53):
+  //   (((2 * l_mantissa) + 1) * (2 ** (l_exp2 - 53)))
+  int32_t l_exp2 = exp2;
+  uint64_t l_mantissa = mantissa - 1;
+  if ((exp2 > min_incl_normal_exp2) && (mantissa <= min_incl_normal_mantissa)) {
+    l_exp2 = exp2 - 1;
+    l_mantissa = (2 * mantissa) - 1;
+  }
+  wuffs_base__private_implementation__high_prec_dec lower;
+  wuffs_base__private_implementation__high_prec_dec__assign(
+      &lower, (2 * l_mantissa) + 1, false);
+  wuffs_base__private_implementation__high_prec_dec__lshift(&lower,
+                                                            l_exp2 - 53);
+
+  // Next, the upper bound. Our number f is:
+  //   ((mantissa + 0)       * (2 ** (exp2 - 52)))
+  //
+  // The next highest floating point number is:
+  //   ((mantissa + 1)       * (2 ** (exp2 - 52)))
+  //
+  // The upper bound is halfway between them (noting that 52 became 53):
+  //   (((2 * mantissa) + 1) * (2 ** (exp2 - 53)))
+  wuffs_base__private_implementation__high_prec_dec upper;
+  wuffs_base__private_implementation__high_prec_dec__assign(
+      &upper, (2 * mantissa) + 1, false);
+  wuffs_base__private_implementation__high_prec_dec__lshift(&upper, exp2 - 53);
+
+  // The lower and upper bounds are possible outputs only if the original
+  // mantissa is even, so that IEEE round-to-even would round to the original
+  // mantissa and not its neighbors.
+  bool inclusive = (mantissa & 1) == 0;
+
+  // As we walk the digits, we want to know whether rounding up would fall
+  // within the upper bound. This is tracked by upper_delta:
+  //  - When -1, the digits of h and upper are the same so far.
+  //  - When +0, we saw a difference of 1 between h and upper on a previous
+  //    digit and subsequently only 9s for h and 0s for upper. Thus, rounding
+  //    up may fall outside of the bound if !inclusive.
+  //  - When +1, the difference is greater than 1 and we know that rounding up
+  //    falls within the bound.
+  //
+  // This is a state machine with three states. The numerical value for each
+  // state (-1, +0 or +1) isn't important, other than their order.
+  int upper_delta = -1;
+
+  // We can now figure out the shortest number of digits required. Walk the
+  // digits until h has distinguished itself from lower or upper.
+  //
+  // The zi and zd variables are indexes and digits, for z in l (lower), h (the
+  // number) and u (upper).
+  //
+  // The lower, h and upper numbers may have their decimal points at different
+  // places. In this case, upper is the longest, so we iterate ui starting from
+  // 0 and iterate li and hi starting from either 0 or -1.
+  int32_t ui = 0;
+  for (;; ui++) {
+    // Calculate hd, the middle number's digit.
+    int32_t hi = ui - upper.decimal_point + h->decimal_point;
+    if (hi >= ((int32_t)(h->num_digits))) {
+      break;
+    }
+    uint8_t hd = (((uint32_t)hi) < h->num_digits) ? h->digits[hi] : 0;
+
+    // Calculate ld, the lower bound's digit.
+    int32_t li = ui - upper.decimal_point + lower.decimal_point;
+    uint8_t ld = (((uint32_t)li) < lower.num_digits) ? lower.digits[li] : 0;
+
+    // We can round down (truncate) if lower has a different digit than h or if
+    // lower is inclusive and is exactly the result of rounding down (i.e. we
+    // have reached the final digit of lower).
+    bool can_round_down =
+        (ld != hd) ||  //
+        (inclusive && ((li + 1) == ((int32_t)(lower.num_digits))));
+
+    // Calculate ud, the upper bound's digit, and update upper_delta.
+    uint8_t ud = (((uint32_t)ui) < upper.num_digits) ? upper.digits[ui] : 0;
+    if (upper_delta < 0) {
+      if ((hd + 1) < ud) {
+        // For example:
+        // h     = 12345???
+        // upper = 12347???
+        upper_delta = +1;
+      } else if (hd != ud) {
+        // For example:
+        // h     = 12345???
+        // upper = 12346???
+        upper_delta = +0;
+      }
+    } else if (upper_delta == 0) {
+      if ((hd != 9) || (ud != 0)) {
+        // For example:
+        // h     = 1234598?
+        // upper = 1234600?
+        upper_delta = +1;
+      }
+    }
+
+    // We can round up if upper has a different digit than h and either upper
+    // is inclusive or upper is bigger than the result of rounding up.
+    bool can_round_up =
+        (upper_delta > 0) ||    //
+        ((upper_delta == 0) &&  //
+         (inclusive || ((ui + 1) < ((int32_t)(upper.num_digits)))));
+
+    // If we can round either way, round to nearest. If we can round only one
+    // way, do it. If we can't round, continue the loop.
+    if (can_round_down) {
+      if (can_round_up) {
+        wuffs_base__private_implementation__high_prec_dec__round_nearest(
+            h, hi + 1);
+        return;
+      } else {
+        wuffs_base__private_implementation__high_prec_dec__round_down(h,
+                                                                      hi + 1);
+        return;
+      }
+    } else {
+      if (can_round_up) {
+        wuffs_base__private_implementation__high_prec_dec__round_up(h, hi + 1);
+        return;
+      }
+    }
+  }
+}
+
 // --------
 
 // wuffs_base__private_implementation__parse_number_f64_eisel produces the IEEE