| /* Copyright 2015 Google Inc. All Rights Reserved. |
| |
| Distributed under MIT license. |
| See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| */ |
| |
| /* Function for fast encoding of an input fragment, independently from the input |
| history. This function uses two-pass processing: in the first pass we save |
| the found backward matches and literal bytes into a buffer, and in the |
| second pass we emit them into the bit stream using prefix codes built based |
| on the actual command and literal byte histograms. */ |
| |
| #include "./compress_fragment_two_pass.h" |
| |
| #include <string.h> /* memcmp, memcpy, memset */ |
| |
| #include "../common/constants.h" |
| #include <brotli/types.h> |
| #include "./bit_cost.h" |
| #include "./brotli_bit_stream.h" |
| #include "./entropy_encode.h" |
| #include "./fast_log.h" |
| #include "./find_match_length.h" |
| #include "./memory.h" |
| #include "./port.h" |
| #include "./write_bits.h" |
| |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| extern "C" { |
| #endif |
| |
| #define MAX_DISTANCE (long)BROTLI_MAX_BACKWARD_LIMIT(18) |
| |
| /* kHashMul32 multiplier has these properties: |
| * The multiplier must be odd. Otherwise we may lose the highest bit. |
| * No long streaks of ones or zeros. |
| * There is no effort to ensure that it is a prime, the oddity is enough |
| for this use. |
| * The number has been tuned heuristically against compression benchmarks. */ |
| static const uint32_t kHashMul32 = 0x1e35a7bd; |
| |
| static BROTLI_INLINE uint32_t Hash(const uint8_t* p, size_t shift) { |
| const uint64_t h = (BROTLI_UNALIGNED_LOAD64(p) << 16) * kHashMul32; |
| return (uint32_t)(h >> shift); |
| } |
| |
| static BROTLI_INLINE uint32_t HashBytesAtOffset( |
| uint64_t v, int offset, size_t shift) { |
| assert(offset >= 0); |
| assert(offset <= 2); |
| { |
| const uint64_t h = ((v >> (8 * offset)) << 16) * kHashMul32; |
| return (uint32_t)(h >> shift); |
| } |
| } |
| |
| static BROTLI_INLINE BROTLI_BOOL IsMatch(const uint8_t* p1, const uint8_t* p2) { |
| return TO_BROTLI_BOOL( |
| BROTLI_UNALIGNED_LOAD32(p1) == BROTLI_UNALIGNED_LOAD32(p2) && |
| p1[4] == p2[4] && |
| p1[5] == p2[5]); |
| } |
| |
| /* Builds a command and distance prefix code (each 64 symbols) into "depth" and |
| "bits" based on "histogram" and stores it into the bit stream. */ |
| static void BuildAndStoreCommandPrefixCode( |
| const uint32_t histogram[128], |
| uint8_t depth[128], uint16_t bits[128], |
| size_t* storage_ix, uint8_t* storage) { |
| /* Tree size for building a tree over 64 symbols is 2 * 64 + 1. */ |
| HuffmanTree tree[129]; |
| uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS] = { 0 }; |
| uint16_t cmd_bits[64]; |
| BrotliCreateHuffmanTree(histogram, 64, 15, tree, depth); |
| BrotliCreateHuffmanTree(&histogram[64], 64, 14, tree, &depth[64]); |
| /* We have to jump through a few hoops here in order to compute |
| the command bits because the symbols are in a different order than in |
| the full alphabet. This looks complicated, but having the symbols |
| in this order in the command bits saves a few branches in the Emit* |
| functions. */ |
| memcpy(cmd_depth, depth + 24, 24); |
| memcpy(cmd_depth + 24, depth, 8); |
| memcpy(cmd_depth + 32, depth + 48, 8); |
| memcpy(cmd_depth + 40, depth + 8, 8); |
| memcpy(cmd_depth + 48, depth + 56, 8); |
| memcpy(cmd_depth + 56, depth + 16, 8); |
| BrotliConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits); |
| memcpy(bits, cmd_bits + 24, 16); |
| memcpy(bits + 8, cmd_bits + 40, 16); |
| memcpy(bits + 16, cmd_bits + 56, 16); |
| memcpy(bits + 24, cmd_bits, 48); |
| memcpy(bits + 48, cmd_bits + 32, 16); |
| memcpy(bits + 56, cmd_bits + 48, 16); |
| BrotliConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]); |
| { |
| /* Create the bit length array for the full command alphabet. */ |
| size_t i; |
| memset(cmd_depth, 0, 64); /* only 64 first values were used */ |
| memcpy(cmd_depth, depth + 24, 8); |
| memcpy(cmd_depth + 64, depth + 32, 8); |
| memcpy(cmd_depth + 128, depth + 40, 8); |
| memcpy(cmd_depth + 192, depth + 48, 8); |
| memcpy(cmd_depth + 384, depth + 56, 8); |
| for (i = 0; i < 8; ++i) { |
| cmd_depth[128 + 8 * i] = depth[i]; |
| cmd_depth[256 + 8 * i] = depth[8 + i]; |
| cmd_depth[448 + 8 * i] = depth[16 + i]; |
| } |
| BrotliStoreHuffmanTree( |
| cmd_depth, BROTLI_NUM_COMMAND_SYMBOLS, tree, storage_ix, storage); |
| } |
| BrotliStoreHuffmanTree(&depth[64], 64, tree, storage_ix, storage); |
| } |
| |
| static BROTLI_INLINE void EmitInsertLen( |
| uint32_t insertlen, uint32_t** commands) { |
| if (insertlen < 6) { |
| **commands = insertlen; |
| } else if (insertlen < 130) { |
| const uint32_t tail = insertlen - 2; |
| const uint32_t nbits = Log2FloorNonZero(tail) - 1u; |
| const uint32_t prefix = tail >> nbits; |
| const uint32_t inscode = (nbits << 1) + prefix + 2; |
| const uint32_t extra = tail - (prefix << nbits); |
| **commands = inscode | (extra << 8); |
| } else if (insertlen < 2114) { |
| const uint32_t tail = insertlen - 66; |
| const uint32_t nbits = Log2FloorNonZero(tail); |
| const uint32_t code = nbits + 10; |
| const uint32_t extra = tail - (1u << nbits); |
| **commands = code | (extra << 8); |
| } else if (insertlen < 6210) { |
| const uint32_t extra = insertlen - 2114; |
| **commands = 21 | (extra << 8); |
| } else if (insertlen < 22594) { |
| const uint32_t extra = insertlen - 6210; |
| **commands = 22 | (extra << 8); |
| } else { |
| const uint32_t extra = insertlen - 22594; |
| **commands = 23 | (extra << 8); |
| } |
| ++(*commands); |
| } |
| |
| static BROTLI_INLINE void EmitCopyLen(size_t copylen, uint32_t** commands) { |
| if (copylen < 10) { |
| **commands = (uint32_t)(copylen + 38); |
| } else if (copylen < 134) { |
| const size_t tail = copylen - 6; |
| const size_t nbits = Log2FloorNonZero(tail) - 1; |
| const size_t prefix = tail >> nbits; |
| const size_t code = (nbits << 1) + prefix + 44; |
| const size_t extra = tail - (prefix << nbits); |
| **commands = (uint32_t)(code | (extra << 8)); |
| } else if (copylen < 2118) { |
| const size_t tail = copylen - 70; |
| const size_t nbits = Log2FloorNonZero(tail); |
| const size_t code = nbits + 52; |
| const size_t extra = tail - ((size_t)1 << nbits); |
| **commands = (uint32_t)(code | (extra << 8)); |
| } else { |
| const size_t extra = copylen - 2118; |
| **commands = (uint32_t)(63 | (extra << 8)); |
| } |
| ++(*commands); |
| } |
| |
| static BROTLI_INLINE void EmitCopyLenLastDistance( |
| size_t copylen, uint32_t** commands) { |
| if (copylen < 12) { |
| **commands = (uint32_t)(copylen + 20); |
| ++(*commands); |
| } else if (copylen < 72) { |
| const size_t tail = copylen - 8; |
| const size_t nbits = Log2FloorNonZero(tail) - 1; |
| const size_t prefix = tail >> nbits; |
| const size_t code = (nbits << 1) + prefix + 28; |
| const size_t extra = tail - (prefix << nbits); |
| **commands = (uint32_t)(code | (extra << 8)); |
| ++(*commands); |
| } else if (copylen < 136) { |
| const size_t tail = copylen - 8; |
| const size_t code = (tail >> 5) + 54; |
| const size_t extra = tail & 31; |
| **commands = (uint32_t)(code | (extra << 8)); |
| ++(*commands); |
| **commands = 64; |
| ++(*commands); |
| } else if (copylen < 2120) { |
| const size_t tail = copylen - 72; |
| const size_t nbits = Log2FloorNonZero(tail); |
| const size_t code = nbits + 52; |
| const size_t extra = tail - ((size_t)1 << nbits); |
| **commands = (uint32_t)(code | (extra << 8)); |
| ++(*commands); |
| **commands = 64; |
| ++(*commands); |
| } else { |
| const size_t extra = copylen - 2120; |
| **commands = (uint32_t)(63 | (extra << 8)); |
| ++(*commands); |
| **commands = 64; |
| ++(*commands); |
| } |
| } |
| |
| static BROTLI_INLINE void EmitDistance(uint32_t distance, uint32_t** commands) { |
| uint32_t d = distance + 3; |
| uint32_t nbits = Log2FloorNonZero(d) - 1; |
| const uint32_t prefix = (d >> nbits) & 1; |
| const uint32_t offset = (2 + prefix) << nbits; |
| const uint32_t distcode = 2 * (nbits - 1) + prefix + 80; |
| uint32_t extra = d - offset; |
| **commands = distcode | (extra << 8); |
| ++(*commands); |
| } |
| |
| /* REQUIRES: len <= 1 << 24. */ |
| static void BrotliStoreMetaBlockHeader( |
| size_t len, BROTLI_BOOL is_uncompressed, size_t* storage_ix, |
| uint8_t* storage) { |
| size_t nibbles = 6; |
| /* ISLAST */ |
| BrotliWriteBits(1, 0, storage_ix, storage); |
| if (len <= (1U << 16)) { |
| nibbles = 4; |
| } else if (len <= (1U << 20)) { |
| nibbles = 5; |
| } |
| BrotliWriteBits(2, nibbles - 4, storage_ix, storage); |
| BrotliWriteBits(nibbles * 4, len - 1, storage_ix, storage); |
| /* ISUNCOMPRESSED */ |
| BrotliWriteBits(1, (uint64_t)is_uncompressed, storage_ix, storage); |
| } |
| |
| static BROTLI_INLINE void CreateCommands(const uint8_t* input, |
| size_t block_size, size_t input_size, const uint8_t* base_ip, int* table, |
| size_t table_bits, uint8_t** literals, uint32_t** commands) { |
| /* "ip" is the input pointer. */ |
| const uint8_t* ip = input; |
| const size_t shift = 64u - table_bits; |
| const uint8_t* ip_end = input + block_size; |
| /* "next_emit" is a pointer to the first byte that is not covered by a |
| previous copy. Bytes between "next_emit" and the start of the next copy or |
| the end of the input will be emitted as literal bytes. */ |
| const uint8_t* next_emit = input; |
| |
| int last_distance = -1; |
| const size_t kInputMarginBytes = BROTLI_WINDOW_GAP; |
| const size_t kMinMatchLen = 6; |
| |
| if (BROTLI_PREDICT_TRUE(block_size >= kInputMarginBytes)) { |
| /* For the last block, we need to keep a 16 bytes margin so that we can be |
| sure that all distances are at most window size - 16. |
| For all other blocks, we only need to keep a margin of 5 bytes so that |
| we don't go over the block size with a copy. */ |
| const size_t len_limit = BROTLI_MIN(size_t, block_size - kMinMatchLen, |
| input_size - kInputMarginBytes); |
| const uint8_t* ip_limit = input + len_limit; |
| |
| uint32_t next_hash; |
| for (next_hash = Hash(++ip, shift); ; ) { |
| /* Step 1: Scan forward in the input looking for a 6-byte-long match. |
| If we get close to exhausting the input then goto emit_remainder. |
| |
| Heuristic match skipping: If 32 bytes are scanned with no matches |
| found, start looking only at every other byte. If 32 more bytes are |
| scanned, look at every third byte, etc.. When a match is found, |
| immediately go back to looking at every byte. This is a small loss |
| (~5% performance, ~0.1% density) for compressible data due to more |
| bookkeeping, but for non-compressible data (such as JPEG) it's a huge |
| win since the compressor quickly "realizes" the data is incompressible |
| and doesn't bother looking for matches everywhere. |
| |
| The "skip" variable keeps track of how many bytes there are since the |
| last match; dividing it by 32 (ie. right-shifting by five) gives the |
| number of bytes to move ahead for each iteration. */ |
| uint32_t skip = 32; |
| |
| const uint8_t* next_ip = ip; |
| const uint8_t* candidate; |
| |
| assert(next_emit < ip); |
| trawl: |
| do { |
| uint32_t hash = next_hash; |
| uint32_t bytes_between_hash_lookups = skip++ >> 5; |
| ip = next_ip; |
| assert(hash == Hash(ip, shift)); |
| next_ip = ip + bytes_between_hash_lookups; |
| if (BROTLI_PREDICT_FALSE(next_ip > ip_limit)) { |
| goto emit_remainder; |
| } |
| next_hash = Hash(next_ip, shift); |
| candidate = ip - last_distance; |
| if (IsMatch(ip, candidate)) { |
| if (BROTLI_PREDICT_TRUE(candidate < ip)) { |
| table[hash] = (int)(ip - base_ip); |
| break; |
| } |
| } |
| candidate = base_ip + table[hash]; |
| assert(candidate >= base_ip); |
| assert(candidate < ip); |
| |
| table[hash] = (int)(ip - base_ip); |
| } while (BROTLI_PREDICT_TRUE(!IsMatch(ip, candidate))); |
| |
| /* Check copy distance. If candidate is not feasible, continue search. |
| Checking is done outside of hot loop to reduce overhead. */ |
| if (ip - candidate > MAX_DISTANCE) goto trawl; |
| |
| /* Step 2: Emit the found match together with the literal bytes from |
| "next_emit", and then see if we can find a next match immediately |
| afterwards. Repeat until we find no match for the input |
| without emitting some literal bytes. */ |
| |
| { |
| /* We have a 6-byte match at ip, and we need to emit bytes in |
| [next_emit, ip). */ |
| const uint8_t* base = ip; |
| size_t matched = 6 + FindMatchLengthWithLimit( |
| candidate + 6, ip + 6, (size_t)(ip_end - ip) - 6); |
| int distance = (int)(base - candidate); /* > 0 */ |
| int insert = (int)(base - next_emit); |
| ip += matched; |
| assert(0 == memcmp(base, candidate, matched)); |
| EmitInsertLen((uint32_t)insert, commands); |
| memcpy(*literals, next_emit, (size_t)insert); |
| *literals += insert; |
| if (distance == last_distance) { |
| **commands = 64; |
| ++(*commands); |
| } else { |
| EmitDistance((uint32_t)distance, commands); |
| last_distance = distance; |
| } |
| EmitCopyLenLastDistance(matched, commands); |
| |
| next_emit = ip; |
| if (BROTLI_PREDICT_FALSE(ip >= ip_limit)) { |
| goto emit_remainder; |
| } |
| { |
| /* We could immediately start working at ip now, but to improve |
| compression we first update "table" with the hashes of some |
| positions within the last copy. */ |
| uint64_t input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5); |
| uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); |
| uint32_t cur_hash; |
| table[prev_hash] = (int)(ip - base_ip - 5); |
| prev_hash = HashBytesAtOffset(input_bytes, 1, shift); |
| table[prev_hash] = (int)(ip - base_ip - 4); |
| prev_hash = HashBytesAtOffset(input_bytes, 2, shift); |
| table[prev_hash] = (int)(ip - base_ip - 3); |
| input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2); |
| cur_hash = HashBytesAtOffset(input_bytes, 2, shift); |
| prev_hash = HashBytesAtOffset(input_bytes, 0, shift); |
| table[prev_hash] = (int)(ip - base_ip - 2); |
| prev_hash = HashBytesAtOffset(input_bytes, 1, shift); |
| table[prev_hash] = (int)(ip - base_ip - 1); |
| |
| candidate = base_ip + table[cur_hash]; |
| table[cur_hash] = (int)(ip - base_ip); |
| } |
| } |
| |
| while (ip - candidate <= MAX_DISTANCE && IsMatch(ip, candidate)) { |
| /* We have a 6-byte match at ip, and no need to emit any |
| literal bytes prior to ip. */ |
| const uint8_t* base = ip; |
| size_t matched = 6 + FindMatchLengthWithLimit( |
| candidate + 6, ip + 6, (size_t)(ip_end - ip) - 6); |
| ip += matched; |
| last_distance = (int)(base - candidate); /* > 0 */ |
| assert(0 == memcmp(base, candidate, matched)); |
| EmitCopyLen(matched, commands); |
| EmitDistance((uint32_t)last_distance, commands); |
| |
| next_emit = ip; |
| if (BROTLI_PREDICT_FALSE(ip >= ip_limit)) { |
| goto emit_remainder; |
| } |
| { |
| /* We could immediately start working at ip now, but to improve |
| compression we first update "table" with the hashes of some |
| positions within the last copy. */ |
| uint64_t input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5); |
| uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); |
| uint32_t cur_hash; |
| table[prev_hash] = (int)(ip - base_ip - 5); |
| prev_hash = HashBytesAtOffset(input_bytes, 1, shift); |
| table[prev_hash] = (int)(ip - base_ip - 4); |
| prev_hash = HashBytesAtOffset(input_bytes, 2, shift); |
| table[prev_hash] = (int)(ip - base_ip - 3); |
| input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2); |
| cur_hash = HashBytesAtOffset(input_bytes, 2, shift); |
| prev_hash = HashBytesAtOffset(input_bytes, 0, shift); |
| table[prev_hash] = (int)(ip - base_ip - 2); |
| prev_hash = HashBytesAtOffset(input_bytes, 1, shift); |
| table[prev_hash] = (int)(ip - base_ip - 1); |
| |
| candidate = base_ip + table[cur_hash]; |
| table[cur_hash] = (int)(ip - base_ip); |
| } |
| } |
| |
| next_hash = Hash(++ip, shift); |
| } |
| } |
| |
| emit_remainder: |
| assert(next_emit <= ip_end); |
| /* Emit the remaining bytes as literals. */ |
| if (next_emit < ip_end) { |
| const uint32_t insert = (uint32_t)(ip_end - next_emit); |
| EmitInsertLen(insert, commands); |
| memcpy(*literals, next_emit, insert); |
| *literals += insert; |
| } |
| } |
| |
| static void StoreCommands(MemoryManager* m, |
| const uint8_t* literals, const size_t num_literals, |
| const uint32_t* commands, const size_t num_commands, |
| size_t* storage_ix, uint8_t* storage) { |
| static const uint32_t kNumExtraBits[128] = { |
| 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 12, 14, 24, |
| 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, |
| 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 24, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, |
| 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, |
| 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, |
| }; |
| static const uint32_t kInsertOffset[24] = { |
| 0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 18, 26, 34, 50, 66, 98, 130, 194, 322, 578, |
| 1090, 2114, 6210, 22594, |
| }; |
| |
| uint8_t lit_depths[256]; |
| uint16_t lit_bits[256]; |
| uint32_t lit_histo[256] = { 0 }; |
| uint8_t cmd_depths[128] = { 0 }; |
| uint16_t cmd_bits[128] = { 0 }; |
| uint32_t cmd_histo[128] = { 0 }; |
| size_t i; |
| for (i = 0; i < num_literals; ++i) { |
| ++lit_histo[literals[i]]; |
| } |
| BrotliBuildAndStoreHuffmanTreeFast(m, lit_histo, num_literals, |
| /* max_bits = */ 8, |
| lit_depths, lit_bits, |
| storage_ix, storage); |
| if (BROTLI_IS_OOM(m)) return; |
| |
| for (i = 0; i < num_commands; ++i) { |
| const uint32_t code = commands[i] & 0xFF; |
| assert(code < 128); |
| ++cmd_histo[code]; |
| } |
| cmd_histo[1] += 1; |
| cmd_histo[2] += 1; |
| cmd_histo[64] += 1; |
| cmd_histo[84] += 1; |
| BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depths, cmd_bits, |
| storage_ix, storage); |
| |
| for (i = 0; i < num_commands; ++i) { |
| const uint32_t cmd = commands[i]; |
| const uint32_t code = cmd & 0xFF; |
| const uint32_t extra = cmd >> 8; |
| assert(code < 128); |
| BrotliWriteBits(cmd_depths[code], cmd_bits[code], storage_ix, storage); |
| BrotliWriteBits(kNumExtraBits[code], extra, storage_ix, storage); |
| if (code < 24) { |
| const uint32_t insert = kInsertOffset[code] + extra; |
| uint32_t j; |
| for (j = 0; j < insert; ++j) { |
| const uint8_t lit = *literals; |
| BrotliWriteBits(lit_depths[lit], lit_bits[lit], storage_ix, storage); |
| ++literals; |
| } |
| } |
| } |
| } |
| |
| /* Acceptable loss for uncompressible speedup is 2% */ |
| #define MIN_RATIO 0.98 |
| #define SAMPLE_RATE 43 |
| |
| static BROTLI_BOOL ShouldCompress( |
| const uint8_t* input, size_t input_size, size_t num_literals) { |
| double corpus_size = (double)input_size; |
| if (num_literals < MIN_RATIO * corpus_size) { |
| return BROTLI_TRUE; |
| } else { |
| uint32_t literal_histo[256] = { 0 }; |
| const double max_total_bit_cost = corpus_size * 8 * MIN_RATIO / SAMPLE_RATE; |
| size_t i; |
| for (i = 0; i < input_size; i += SAMPLE_RATE) { |
| ++literal_histo[input[i]]; |
| } |
| return TO_BROTLI_BOOL(BitsEntropy(literal_histo, 256) < max_total_bit_cost); |
| } |
| } |
| |
| static void RewindBitPosition(const size_t new_storage_ix, |
| size_t* storage_ix, uint8_t* storage) { |
| const size_t bitpos = new_storage_ix & 7; |
| const size_t mask = (1u << bitpos) - 1; |
| storage[new_storage_ix >> 3] &= (uint8_t)mask; |
| *storage_ix = new_storage_ix; |
| } |
| |
| static void EmitUncompressedMetaBlock(const uint8_t* input, size_t input_size, |
| size_t* storage_ix, uint8_t* storage) { |
| BrotliStoreMetaBlockHeader(input_size, 1, storage_ix, storage); |
| *storage_ix = (*storage_ix + 7u) & ~7u; |
| memcpy(&storage[*storage_ix >> 3], input, input_size); |
| *storage_ix += input_size << 3; |
| storage[*storage_ix >> 3] = 0; |
| } |
| |
| static BROTLI_INLINE void BrotliCompressFragmentTwoPassImpl( |
| MemoryManager* m, const uint8_t* input, size_t input_size, |
| BROTLI_BOOL is_last, uint32_t* command_buf, uint8_t* literal_buf, |
| int* table, size_t table_bits, size_t* storage_ix, uint8_t* storage) { |
| /* Save the start of the first block for position and distance computations. |
| */ |
| const uint8_t* base_ip = input; |
| BROTLI_UNUSED(is_last); |
| |
| while (input_size > 0) { |
| size_t block_size = |
| BROTLI_MIN(size_t, input_size, kCompressFragmentTwoPassBlockSize); |
| uint32_t* commands = command_buf; |
| uint8_t* literals = literal_buf; |
| size_t num_literals; |
| CreateCommands(input, block_size, input_size, base_ip, table, table_bits, |
| &literals, &commands); |
| num_literals = (size_t)(literals - literal_buf); |
| if (ShouldCompress(input, block_size, num_literals)) { |
| const size_t num_commands = (size_t)(commands - command_buf); |
| BrotliStoreMetaBlockHeader(block_size, 0, storage_ix, storage); |
| /* No block splits, no contexts. */ |
| BrotliWriteBits(13, 0, storage_ix, storage); |
| StoreCommands(m, literal_buf, num_literals, command_buf, num_commands, |
| storage_ix, storage); |
| if (BROTLI_IS_OOM(m)) return; |
| } else { |
| /* Since we did not find many backward references and the entropy of |
| the data is close to 8 bits, we can simply emit an uncompressed block. |
| This makes compression speed of uncompressible data about 3x faster. */ |
| EmitUncompressedMetaBlock(input, block_size, storage_ix, storage); |
| } |
| input += block_size; |
| input_size -= block_size; |
| } |
| } |
| |
| #define FOR_TABLE_BITS_(X) \ |
| X(8) X(9) X(10) X(11) X(12) X(13) X(14) X(15) X(16) X(17) |
| |
| #define BAKE_METHOD_PARAM_(B) \ |
| static BROTLI_NOINLINE void BrotliCompressFragmentTwoPassImpl ## B( \ |
| MemoryManager* m, const uint8_t* input, size_t input_size, \ |
| BROTLI_BOOL is_last, uint32_t* command_buf, uint8_t* literal_buf, \ |
| int* table, size_t* storage_ix, uint8_t* storage) { \ |
| BrotliCompressFragmentTwoPassImpl(m, input, input_size, is_last, command_buf,\ |
| literal_buf, table, B, storage_ix, storage); \ |
| } |
| FOR_TABLE_BITS_(BAKE_METHOD_PARAM_) |
| #undef BAKE_METHOD_PARAM_ |
| |
| void BrotliCompressFragmentTwoPass( |
| MemoryManager* m, const uint8_t* input, size_t input_size, |
| BROTLI_BOOL is_last, uint32_t* command_buf, uint8_t* literal_buf, |
| int* table, size_t table_size, size_t* storage_ix, uint8_t* storage) { |
| const size_t initial_storage_ix = *storage_ix; |
| const size_t table_bits = Log2FloorNonZero(table_size); |
| switch (table_bits) { |
| #define CASE_(B) \ |
| case B: \ |
| BrotliCompressFragmentTwoPassImpl ## B( \ |
| m, input, input_size, is_last, command_buf, \ |
| literal_buf, table, storage_ix, storage); \ |
| break; |
| FOR_TABLE_BITS_(CASE_) |
| #undef CASE_ |
| default: assert(0); break; |
| } |
| |
| /* If output is larger than single uncompressed block, rewrite it. */ |
| if (*storage_ix - initial_storage_ix > 31 + (input_size << 3)) { |
| RewindBitPosition(initial_storage_ix, storage_ix, storage); |
| EmitUncompressedMetaBlock(input, input_size, storage_ix, storage); |
| } |
| |
| if (is_last) { |
| BrotliWriteBits(1, 1, storage_ix, storage); /* islast */ |
| BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */ |
| *storage_ix = (*storage_ix + 7u) & ~7u; |
| } |
| } |
| |
| #undef FOR_TABLE_BITS_ |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| } /* extern "C" */ |
| #endif |