| /* Copyright 2014 Google Inc. All Rights Reserved. |
| |
| Distributed under MIT license. |
| See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| */ |
| |
| /* Brotli bit stream functions to support the low level format. There are no |
| compression algorithms here, just the right ordering of bits to match the |
| specs. */ |
| |
| #include "./brotli_bit_stream.h" |
| |
| #include <string.h> /* memcpy, memset */ |
| |
| #include "../common/constants.h" |
| #include <brotli/types.h> |
| #include "./context.h" |
| #include "./entropy_encode.h" |
| #include "./entropy_encode_static.h" |
| #include "./fast_log.h" |
| #include "./memory.h" |
| #include "./port.h" |
| #include "./write_bits.h" |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| extern "C" { |
| #endif |
| |
| #define MAX_HUFFMAN_TREE_SIZE (2 * BROTLI_NUM_COMMAND_SYMBOLS + 1) |
| /* The size of Huffman dictionary for distances assuming that NPOSTFIX = 0 and |
| NDIRECT = 0. */ |
| #define SIMPLE_DISTANCE_ALPHABET_SIZE (BROTLI_NUM_DISTANCE_SHORT_CODES + \ |
| (2 * BROTLI_MAX_DISTANCE_BITS)) |
| /* SIMPLE_DISTANCE_ALPHABET_SIZE == 64 */ |
| #define SIMPLE_DISTANCE_ALPHABET_BITS 6 |
| |
| /* Represents the range of values belonging to a prefix code: |
| [offset, offset + 2^nbits) */ |
| typedef struct PrefixCodeRange { |
| uint32_t offset; |
| uint32_t nbits; |
| } PrefixCodeRange; |
| |
| static const PrefixCodeRange |
| kBlockLengthPrefixCode[BROTLI_NUM_BLOCK_LEN_SYMBOLS] = { |
| { 1, 2}, { 5, 2}, { 9, 2}, {13, 2}, {17, 3}, { 25, 3}, { 33, 3}, |
| {41, 3}, {49, 4}, {65, 4}, {81, 4}, {97, 4}, {113, 5}, {145, 5}, |
| {177, 5}, { 209, 5}, { 241, 6}, { 305, 6}, { 369, 7}, { 497, 8}, |
| {753, 9}, {1265, 10}, {2289, 11}, {4337, 12}, {8433, 13}, {16625, 24} |
| }; |
| |
| static BROTLI_INLINE uint32_t BlockLengthPrefixCode(uint32_t len) { |
| uint32_t code = (len >= 177) ? (len >= 753 ? 20 : 14) : (len >= 41 ? 7 : 0); |
| while (code < (BROTLI_NUM_BLOCK_LEN_SYMBOLS - 1) && |
| len >= kBlockLengthPrefixCode[code + 1].offset) ++code; |
| return code; |
| } |
| |
| static BROTLI_INLINE void GetBlockLengthPrefixCode(uint32_t len, size_t* code, |
| uint32_t* n_extra, uint32_t* extra) { |
| *code = BlockLengthPrefixCode(len); |
| *n_extra = kBlockLengthPrefixCode[*code].nbits; |
| *extra = len - kBlockLengthPrefixCode[*code].offset; |
| } |
| |
| typedef struct BlockTypeCodeCalculator { |
| size_t last_type; |
| size_t second_last_type; |
| } BlockTypeCodeCalculator; |
| |
| static void InitBlockTypeCodeCalculator(BlockTypeCodeCalculator* self) { |
| self->last_type = 1; |
| self->second_last_type = 0; |
| } |
| |
| static BROTLI_INLINE size_t NextBlockTypeCode( |
| BlockTypeCodeCalculator* calculator, uint8_t type) { |
| size_t type_code = (type == calculator->last_type + 1) ? 1u : |
| (type == calculator->second_last_type) ? 0u : type + 2u; |
| calculator->second_last_type = calculator->last_type; |
| calculator->last_type = type; |
| return type_code; |
| } |
| |
| /* |nibblesbits| represents the 2 bits to encode MNIBBLES (0-3) |
| REQUIRES: length > 0 |
| REQUIRES: length <= (1 << 24) */ |
| static void BrotliEncodeMlen(size_t length, uint64_t* bits, |
| size_t* numbits, uint64_t* nibblesbits) { |
| size_t lg = (length == 1) ? 1 : Log2FloorNonZero((uint32_t)(length - 1)) + 1; |
| size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4; |
| assert(length > 0); |
| assert(length <= (1 << 24)); |
| assert(lg <= 24); |
| *nibblesbits = mnibbles - 4; |
| *numbits = mnibbles * 4; |
| *bits = length - 1; |
| } |
| |
| static BROTLI_INLINE void StoreCommandExtra( |
| const Command* cmd, size_t* storage_ix, uint8_t* storage) { |
| uint32_t copylen_code = CommandCopyLenCode(cmd); |
| uint16_t inscode = GetInsertLengthCode(cmd->insert_len_); |
| uint16_t copycode = GetCopyLengthCode(copylen_code); |
| uint32_t insnumextra = GetInsertExtra(inscode); |
| uint64_t insextraval = cmd->insert_len_ - GetInsertBase(inscode); |
| uint64_t copyextraval = copylen_code - GetCopyBase(copycode); |
| uint64_t bits = (copyextraval << insnumextra) | insextraval; |
| BrotliWriteBits( |
| insnumextra + GetCopyExtra(copycode), bits, storage_ix, storage); |
| } |
| |
| /* Data structure that stores almost everything that is needed to encode each |
| block switch command. */ |
| typedef struct BlockSplitCode { |
| BlockTypeCodeCalculator type_code_calculator; |
| uint8_t type_depths[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; |
| uint16_t type_bits[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; |
| uint8_t length_depths[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; |
| uint16_t length_bits[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; |
| } BlockSplitCode; |
| |
| /* Stores a number between 0 and 255. */ |
| static void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) { |
| if (n == 0) { |
| BrotliWriteBits(1, 0, storage_ix, storage); |
| } else { |
| size_t nbits = Log2FloorNonZero(n); |
| BrotliWriteBits(1, 1, storage_ix, storage); |
| BrotliWriteBits(3, nbits, storage_ix, storage); |
| BrotliWriteBits(nbits, n - ((size_t)1 << nbits), storage_ix, storage); |
| } |
| } |
| |
| /* Stores the compressed meta-block header. |
| REQUIRES: length > 0 |
| REQUIRES: length <= (1 << 24) */ |
| static void StoreCompressedMetaBlockHeader(BROTLI_BOOL is_final_block, |
| size_t length, |
| size_t* storage_ix, |
| uint8_t* storage) { |
| uint64_t lenbits; |
| size_t nlenbits; |
| uint64_t nibblesbits; |
| |
| /* Write ISLAST bit. */ |
| BrotliWriteBits(1, (uint64_t)is_final_block, storage_ix, storage); |
| /* Write ISEMPTY bit. */ |
| if (is_final_block) { |
| BrotliWriteBits(1, 0, storage_ix, storage); |
| } |
| |
| BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits); |
| BrotliWriteBits(2, nibblesbits, storage_ix, storage); |
| BrotliWriteBits(nlenbits, lenbits, storage_ix, storage); |
| |
| if (!is_final_block) { |
| /* Write ISUNCOMPRESSED bit. */ |
| BrotliWriteBits(1, 0, storage_ix, storage); |
| } |
| } |
| |
| /* Stores the uncompressed meta-block header. |
| REQUIRES: length > 0 |
| REQUIRES: length <= (1 << 24) */ |
| static void BrotliStoreUncompressedMetaBlockHeader(size_t length, |
| size_t* storage_ix, |
| uint8_t* storage) { |
| uint64_t lenbits; |
| size_t nlenbits; |
| uint64_t nibblesbits; |
| |
| /* Write ISLAST bit. |
| Uncompressed block cannot be the last one, so set to 0. */ |
| BrotliWriteBits(1, 0, storage_ix, storage); |
| BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits); |
| BrotliWriteBits(2, nibblesbits, storage_ix, storage); |
| BrotliWriteBits(nlenbits, lenbits, storage_ix, storage); |
| /* Write ISUNCOMPRESSED bit. */ |
| BrotliWriteBits(1, 1, storage_ix, storage); |
| } |
| |
| static void BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask( |
| const int num_codes, const uint8_t* code_length_bitdepth, |
| size_t* storage_ix, uint8_t* storage) { |
| static const uint8_t kStorageOrder[BROTLI_CODE_LENGTH_CODES] = { |
| 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| }; |
| /* The bit lengths of the Huffman code over the code length alphabet |
| are compressed with the following static Huffman code: |
| Symbol Code |
| ------ ---- |
| 0 00 |
| 1 1110 |
| 2 110 |
| 3 01 |
| 4 10 |
| 5 1111 */ |
| static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = { |
| 0, 7, 3, 2, 1, 15 |
| }; |
| static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = { |
| 2, 4, 3, 2, 2, 4 |
| }; |
| |
| size_t skip_some = 0; /* skips none. */ |
| |
| /* Throw away trailing zeros: */ |
| size_t codes_to_store = BROTLI_CODE_LENGTH_CODES; |
| if (num_codes > 1) { |
| for (; codes_to_store > 0; --codes_to_store) { |
| if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { |
| break; |
| } |
| } |
| } |
| if (code_length_bitdepth[kStorageOrder[0]] == 0 && |
| code_length_bitdepth[kStorageOrder[1]] == 0) { |
| skip_some = 2; /* skips two. */ |
| if (code_length_bitdepth[kStorageOrder[2]] == 0) { |
| skip_some = 3; /* skips three. */ |
| } |
| } |
| BrotliWriteBits(2, skip_some, storage_ix, storage); |
| { |
| size_t i; |
| for (i = skip_some; i < codes_to_store; ++i) { |
| size_t l = code_length_bitdepth[kStorageOrder[i]]; |
| BrotliWriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l], |
| kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage); |
| } |
| } |
| } |
| |
| static void BrotliStoreHuffmanTreeToBitMask( |
| const size_t huffman_tree_size, const uint8_t* huffman_tree, |
| const uint8_t* huffman_tree_extra_bits, const uint8_t* code_length_bitdepth, |
| const uint16_t* code_length_bitdepth_symbols, |
| size_t* BROTLI_RESTRICT storage_ix, uint8_t* BROTLI_RESTRICT storage) { |
| size_t i; |
| for (i = 0; i < huffman_tree_size; ++i) { |
| size_t ix = huffman_tree[i]; |
| BrotliWriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix], |
| storage_ix, storage); |
| /* Extra bits */ |
| switch (ix) { |
| case BROTLI_REPEAT_PREVIOUS_CODE_LENGTH: |
| BrotliWriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage); |
| break; |
| case BROTLI_REPEAT_ZERO_CODE_LENGTH: |
| BrotliWriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage); |
| break; |
| } |
| } |
| } |
| |
| static void StoreSimpleHuffmanTree(const uint8_t* depths, |
| size_t symbols[4], |
| size_t num_symbols, |
| size_t max_bits, |
| size_t *storage_ix, uint8_t *storage) { |
| /* value of 1 indicates a simple Huffman code */ |
| BrotliWriteBits(2, 1, storage_ix, storage); |
| BrotliWriteBits(2, num_symbols - 1, storage_ix, storage); /* NSYM - 1 */ |
| |
| { |
| /* Sort */ |
| size_t i; |
| for (i = 0; i < num_symbols; i++) { |
| size_t j; |
| for (j = i + 1; j < num_symbols; j++) { |
| if (depths[symbols[j]] < depths[symbols[i]]) { |
| BROTLI_SWAP(size_t, symbols, j, i); |
| } |
| } |
| } |
| } |
| |
| if (num_symbols == 2) { |
| BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| } else if (num_symbols == 3) { |
| BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
| } else { |
| BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[3], storage_ix, storage); |
| /* tree-select */ |
| BrotliWriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); |
| } |
| } |
| |
| /* num = alphabet size |
| depths = symbol depths */ |
| void BrotliStoreHuffmanTree(const uint8_t* depths, size_t num, |
| HuffmanTree* tree, |
| size_t *storage_ix, uint8_t *storage) { |
| /* Write the Huffman tree into the brotli-representation. |
| The command alphabet is the largest, so this allocation will fit all |
| alphabets. */ |
| uint8_t huffman_tree[BROTLI_NUM_COMMAND_SYMBOLS]; |
| uint8_t huffman_tree_extra_bits[BROTLI_NUM_COMMAND_SYMBOLS]; |
| size_t huffman_tree_size = 0; |
| uint8_t code_length_bitdepth[BROTLI_CODE_LENGTH_CODES] = { 0 }; |
| uint16_t code_length_bitdepth_symbols[BROTLI_CODE_LENGTH_CODES]; |
| uint32_t huffman_tree_histogram[BROTLI_CODE_LENGTH_CODES] = { 0 }; |
| size_t i; |
| int num_codes = 0; |
| size_t code = 0; |
| |
| assert(num <= BROTLI_NUM_COMMAND_SYMBOLS); |
| |
| BrotliWriteHuffmanTree(depths, num, &huffman_tree_size, huffman_tree, |
| huffman_tree_extra_bits); |
| |
| /* Calculate the statistics of the Huffman tree in brotli-representation. */ |
| for (i = 0; i < huffman_tree_size; ++i) { |
| ++huffman_tree_histogram[huffman_tree[i]]; |
| } |
| |
| for (i = 0; i < BROTLI_CODE_LENGTH_CODES; ++i) { |
| if (huffman_tree_histogram[i]) { |
| if (num_codes == 0) { |
| code = i; |
| num_codes = 1; |
| } else if (num_codes == 1) { |
| num_codes = 2; |
| break; |
| } |
| } |
| } |
| |
| /* Calculate another Huffman tree to use for compressing both the |
| earlier Huffman tree with. */ |
| BrotliCreateHuffmanTree(huffman_tree_histogram, BROTLI_CODE_LENGTH_CODES, |
| 5, tree, code_length_bitdepth); |
| BrotliConvertBitDepthsToSymbols(code_length_bitdepth, |
| BROTLI_CODE_LENGTH_CODES, |
| code_length_bitdepth_symbols); |
| |
| /* Now, we have all the data, let's start storing it */ |
| BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth, |
| storage_ix, storage); |
| |
| if (num_codes == 1) { |
| code_length_bitdepth[code] = 0; |
| } |
| |
| /* Store the real Huffman tree now. */ |
| BrotliStoreHuffmanTreeToBitMask(huffman_tree_size, |
| huffman_tree, |
| huffman_tree_extra_bits, |
| code_length_bitdepth, |
| code_length_bitdepth_symbols, |
| storage_ix, storage); |
| } |
| |
| /* Builds a Huffman tree from histogram[0:length] into depth[0:length] and |
| bits[0:length] and stores the encoded tree to the bit stream. */ |
| static void BuildAndStoreHuffmanTree(const uint32_t *histogram, |
| const size_t length, |
| HuffmanTree* tree, |
| uint8_t* depth, |
| uint16_t* bits, |
| size_t* storage_ix, |
| uint8_t* storage) { |
| size_t count = 0; |
| size_t s4[4] = { 0 }; |
| size_t i; |
| size_t max_bits = 0; |
| for (i = 0; i < length; i++) { |
| if (histogram[i]) { |
| if (count < 4) { |
| s4[count] = i; |
| } else if (count > 4) { |
| break; |
| } |
| count++; |
| } |
| } |
| |
| { |
| size_t max_bits_counter = length - 1; |
| while (max_bits_counter) { |
| max_bits_counter >>= 1; |
| ++max_bits; |
| } |
| } |
| |
| if (count <= 1) { |
| BrotliWriteBits(4, 1, storage_ix, storage); |
| BrotliWriteBits(max_bits, s4[0], storage_ix, storage); |
| depth[s4[0]] = 0; |
| bits[s4[0]] = 0; |
| return; |
| } |
| |
| memset(depth, 0, length * sizeof(depth[0])); |
| BrotliCreateHuffmanTree(histogram, length, 15, tree, depth); |
| BrotliConvertBitDepthsToSymbols(depth, length, bits); |
| |
| if (count <= 4) { |
| StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage); |
| } else { |
| BrotliStoreHuffmanTree(depth, length, tree, storage_ix, storage); |
| } |
| } |
| |
| static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree( |
| const HuffmanTree* v0, const HuffmanTree* v1) { |
| return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_); |
| } |
| |
| void BrotliBuildAndStoreHuffmanTreeFast(MemoryManager* m, |
| const uint32_t* histogram, |
| const size_t histogram_total, |
| const size_t max_bits, |
| uint8_t* depth, uint16_t* bits, |
| size_t* storage_ix, |
| uint8_t* storage) { |
| size_t count = 0; |
| size_t symbols[4] = { 0 }; |
| size_t length = 0; |
| size_t total = histogram_total; |
| while (total != 0) { |
| if (histogram[length]) { |
| if (count < 4) { |
| symbols[count] = length; |
| } |
| ++count; |
| total -= histogram[length]; |
| } |
| ++length; |
| } |
| |
| if (count <= 1) { |
| BrotliWriteBits(4, 1, storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| depth[symbols[0]] = 0; |
| bits[symbols[0]] = 0; |
| return; |
| } |
| |
| memset(depth, 0, length * sizeof(depth[0])); |
| { |
| const size_t max_tree_size = 2 * length + 1; |
| HuffmanTree* tree = BROTLI_ALLOC(m, HuffmanTree, max_tree_size); |
| uint32_t count_limit; |
| if (BROTLI_IS_OOM(m)) return; |
| for (count_limit = 1; ; count_limit *= 2) { |
| HuffmanTree* node = tree; |
| size_t l; |
| for (l = length; l != 0;) { |
| --l; |
| if (histogram[l]) { |
| if (BROTLI_PREDICT_TRUE(histogram[l] >= count_limit)) { |
| InitHuffmanTree(node, histogram[l], -1, (int16_t)l); |
| } else { |
| InitHuffmanTree(node, count_limit, -1, (int16_t)l); |
| } |
| ++node; |
| } |
| } |
| { |
| const int n = (int)(node - tree); |
| HuffmanTree sentinel; |
| int i = 0; /* Points to the next leaf node. */ |
| int j = n + 1; /* Points to the next non-leaf node. */ |
| int k; |
| |
| SortHuffmanTreeItems(tree, (size_t)n, SortHuffmanTree); |
| /* The nodes are: |
| [0, n): the sorted leaf nodes that we start with. |
| [n]: we add a sentinel here. |
| [n + 1, 2n): new parent nodes are added here, starting from |
| (n+1). These are naturally in ascending order. |
| [2n]: we add a sentinel at the end as well. |
| There will be (2n+1) elements at the end. */ |
| InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1); |
| *node++ = sentinel; |
| *node++ = sentinel; |
| |
| for (k = n - 1; k > 0; --k) { |
| int left, right; |
| if (tree[i].total_count_ <= tree[j].total_count_) { |
| left = i; |
| ++i; |
| } else { |
| left = j; |
| ++j; |
| } |
| if (tree[i].total_count_ <= tree[j].total_count_) { |
| right = i; |
| ++i; |
| } else { |
| right = j; |
| ++j; |
| } |
| /* The sentinel node becomes the parent node. */ |
| node[-1].total_count_ = |
| tree[left].total_count_ + tree[right].total_count_; |
| node[-1].index_left_ = (int16_t)left; |
| node[-1].index_right_or_value_ = (int16_t)right; |
| /* Add back the last sentinel node. */ |
| *node++ = sentinel; |
| } |
| if (BrotliSetDepth(2 * n - 1, tree, depth, 14)) { |
| /* We need to pack the Huffman tree in 14 bits. If this was not |
| successful, add fake entities to the lowest values and retry. */ |
| break; |
| } |
| } |
| } |
| BROTLI_FREE(m, tree); |
| } |
| BrotliConvertBitDepthsToSymbols(depth, length, bits); |
| if (count <= 4) { |
| size_t i; |
| /* value of 1 indicates a simple Huffman code */ |
| BrotliWriteBits(2, 1, storage_ix, storage); |
| BrotliWriteBits(2, count - 1, storage_ix, storage); /* NSYM - 1 */ |
| |
| /* Sort */ |
| for (i = 0; i < count; i++) { |
| size_t j; |
| for (j = i + 1; j < count; j++) { |
| if (depth[symbols[j]] < depth[symbols[i]]) { |
| BROTLI_SWAP(size_t, symbols, j, i); |
| } |
| } |
| } |
| |
| if (count == 2) { |
| BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| } else if (count == 3) { |
| BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
| } else { |
| BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
| BrotliWriteBits(max_bits, symbols[3], storage_ix, storage); |
| /* tree-select */ |
| BrotliWriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); |
| } |
| } else { |
| uint8_t previous_value = 8; |
| size_t i; |
| /* Complex Huffman Tree */ |
| StoreStaticCodeLengthCode(storage_ix, storage); |
| |
| /* Actual RLE coding. */ |
| for (i = 0; i < length;) { |
| const uint8_t value = depth[i]; |
| size_t reps = 1; |
| size_t k; |
| for (k = i + 1; k < length && depth[k] == value; ++k) { |
| ++reps; |
| } |
| i += reps; |
| if (value == 0) { |
| BrotliWriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps], |
| storage_ix, storage); |
| } else { |
| if (previous_value != value) { |
| BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value], |
| storage_ix, storage); |
| --reps; |
| } |
| if (reps < 3) { |
| while (reps != 0) { |
| reps--; |
| BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value], |
| storage_ix, storage); |
| } |
| } else { |
| reps -= 3; |
| BrotliWriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps], |
| storage_ix, storage); |
| } |
| previous_value = value; |
| } |
| } |
| } |
| } |
| |
| static size_t IndexOf(const uint8_t* v, size_t v_size, uint8_t value) { |
| size_t i = 0; |
| for (; i < v_size; ++i) { |
| if (v[i] == value) return i; |
| } |
| return i; |
| } |
| |
| static void MoveToFront(uint8_t* v, size_t index) { |
| uint8_t value = v[index]; |
| size_t i; |
| for (i = index; i != 0; --i) { |
| v[i] = v[i - 1]; |
| } |
| v[0] = value; |
| } |
| |
| static void MoveToFrontTransform(const uint32_t* BROTLI_RESTRICT v_in, |
| const size_t v_size, |
| uint32_t* v_out) { |
| size_t i; |
| uint8_t mtf[256]; |
| uint32_t max_value; |
| if (v_size == 0) { |
| return; |
| } |
| max_value = v_in[0]; |
| for (i = 1; i < v_size; ++i) { |
| if (v_in[i] > max_value) max_value = v_in[i]; |
| } |
| assert(max_value < 256u); |
| for (i = 0; i <= max_value; ++i) { |
| mtf[i] = (uint8_t)i; |
| } |
| { |
| size_t mtf_size = max_value + 1; |
| for (i = 0; i < v_size; ++i) { |
| size_t index = IndexOf(mtf, mtf_size, (uint8_t)v_in[i]); |
| assert(index < mtf_size); |
| v_out[i] = (uint32_t)index; |
| MoveToFront(mtf, index); |
| } |
| } |
| } |
| |
| /* Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of |
| the run length plus extra bits (lower 9 bits is the prefix code and the rest |
| are the extra bits). Non-zero values in v[] are shifted by |
| *max_length_prefix. Will not create prefix codes bigger than the initial |
| value of *max_run_length_prefix. The prefix code of run length L is simply |
| Log2Floor(L) and the number of extra bits is the same as the prefix code. */ |
| static void RunLengthCodeZeros(const size_t in_size, |
| uint32_t* BROTLI_RESTRICT v, size_t* BROTLI_RESTRICT out_size, |
| uint32_t* BROTLI_RESTRICT max_run_length_prefix) { |
| uint32_t max_reps = 0; |
| size_t i; |
| uint32_t max_prefix; |
| for (i = 0; i < in_size;) { |
| uint32_t reps = 0; |
| for (; i < in_size && v[i] != 0; ++i) ; |
| for (; i < in_size && v[i] == 0; ++i) { |
| ++reps; |
| } |
| max_reps = BROTLI_MAX(uint32_t, reps, max_reps); |
| } |
| max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0; |
| max_prefix = BROTLI_MIN(uint32_t, max_prefix, *max_run_length_prefix); |
| *max_run_length_prefix = max_prefix; |
| *out_size = 0; |
| for (i = 0; i < in_size;) { |
| assert(*out_size <= i); |
| if (v[i] != 0) { |
| v[*out_size] = v[i] + *max_run_length_prefix; |
| ++i; |
| ++(*out_size); |
| } else { |
| uint32_t reps = 1; |
| size_t k; |
| for (k = i + 1; k < in_size && v[k] == 0; ++k) { |
| ++reps; |
| } |
| i += reps; |
| while (reps != 0) { |
| if (reps < (2u << max_prefix)) { |
| uint32_t run_length_prefix = Log2FloorNonZero(reps); |
| const uint32_t extra_bits = reps - (1u << run_length_prefix); |
| v[*out_size] = run_length_prefix + (extra_bits << 9); |
| ++(*out_size); |
| break; |
| } else { |
| const uint32_t extra_bits = (1u << max_prefix) - 1u; |
| v[*out_size] = max_prefix + (extra_bits << 9); |
| reps -= (2u << max_prefix) - 1u; |
| ++(*out_size); |
| } |
| } |
| } |
| } |
| } |
| |
| #define SYMBOL_BITS 9 |
| |
| static void EncodeContextMap(MemoryManager* m, |
| const uint32_t* context_map, |
| size_t context_map_size, |
| size_t num_clusters, |
| HuffmanTree* tree, |
| size_t* storage_ix, uint8_t* storage) { |
| size_t i; |
| uint32_t* rle_symbols; |
| uint32_t max_run_length_prefix = 6; |
| size_t num_rle_symbols = 0; |
| uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| static const uint32_t kSymbolMask = (1u << SYMBOL_BITS) - 1u; |
| uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| |
| StoreVarLenUint8(num_clusters - 1, storage_ix, storage); |
| |
| if (num_clusters == 1) { |
| return; |
| } |
| |
| rle_symbols = BROTLI_ALLOC(m, uint32_t, context_map_size); |
| if (BROTLI_IS_OOM(m)) return; |
| MoveToFrontTransform(context_map, context_map_size, rle_symbols); |
| RunLengthCodeZeros(context_map_size, rle_symbols, |
| &num_rle_symbols, &max_run_length_prefix); |
| memset(histogram, 0, sizeof(histogram)); |
| for (i = 0; i < num_rle_symbols; ++i) { |
| ++histogram[rle_symbols[i] & kSymbolMask]; |
| } |
| { |
| BROTLI_BOOL use_rle = TO_BROTLI_BOOL(max_run_length_prefix > 0); |
| BrotliWriteBits(1, (uint64_t)use_rle, storage_ix, storage); |
| if (use_rle) { |
| BrotliWriteBits(4, max_run_length_prefix - 1, storage_ix, storage); |
| } |
| } |
| BuildAndStoreHuffmanTree(histogram, num_clusters + max_run_length_prefix, |
| tree, depths, bits, storage_ix, storage); |
| for (i = 0; i < num_rle_symbols; ++i) { |
| const uint32_t rle_symbol = rle_symbols[i] & kSymbolMask; |
| const uint32_t extra_bits_val = rle_symbols[i] >> SYMBOL_BITS; |
| BrotliWriteBits(depths[rle_symbol], bits[rle_symbol], storage_ix, storage); |
| if (rle_symbol > 0 && rle_symbol <= max_run_length_prefix) { |
| BrotliWriteBits(rle_symbol, extra_bits_val, storage_ix, storage); |
| } |
| } |
| BrotliWriteBits(1, 1, storage_ix, storage); /* use move-to-front */ |
| BROTLI_FREE(m, rle_symbols); |
| } |
| |
| /* Stores the block switch command with index block_ix to the bit stream. */ |
| static BROTLI_INLINE void StoreBlockSwitch(BlockSplitCode* code, |
| const uint32_t block_len, |
| const uint8_t block_type, |
| BROTLI_BOOL is_first_block, |
| size_t* storage_ix, |
| uint8_t* storage) { |
| size_t typecode = NextBlockTypeCode(&code->type_code_calculator, block_type); |
| size_t lencode; |
| uint32_t len_nextra; |
| uint32_t len_extra; |
| if (!is_first_block) { |
| BrotliWriteBits(code->type_depths[typecode], code->type_bits[typecode], |
| storage_ix, storage); |
| } |
| GetBlockLengthPrefixCode(block_len, &lencode, &len_nextra, &len_extra); |
| |
| BrotliWriteBits(code->length_depths[lencode], code->length_bits[lencode], |
| storage_ix, storage); |
| BrotliWriteBits(len_nextra, len_extra, storage_ix, storage); |
| } |
| |
| /* Builds a BlockSplitCode data structure from the block split given by the |
| vector of block types and block lengths and stores it to the bit stream. */ |
| static void BuildAndStoreBlockSplitCode(const uint8_t* types, |
| const uint32_t* lengths, |
| const size_t num_blocks, |
| const size_t num_types, |
| HuffmanTree* tree, |
| BlockSplitCode* code, |
| size_t* storage_ix, |
| uint8_t* storage) { |
| uint32_t type_histo[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; |
| uint32_t length_histo[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; |
| size_t i; |
| BlockTypeCodeCalculator type_code_calculator; |
| memset(type_histo, 0, (num_types + 2) * sizeof(type_histo[0])); |
| memset(length_histo, 0, sizeof(length_histo)); |
| InitBlockTypeCodeCalculator(&type_code_calculator); |
| for (i = 0; i < num_blocks; ++i) { |
| size_t type_code = NextBlockTypeCode(&type_code_calculator, types[i]); |
| if (i != 0) ++type_histo[type_code]; |
| ++length_histo[BlockLengthPrefixCode(lengths[i])]; |
| } |
| StoreVarLenUint8(num_types - 1, storage_ix, storage); |
| if (num_types > 1) { /* TODO: else? could StoreBlockSwitch occur? */ |
| BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, tree, |
| &code->type_depths[0], &code->type_bits[0], |
| storage_ix, storage); |
| BuildAndStoreHuffmanTree(&length_histo[0], BROTLI_NUM_BLOCK_LEN_SYMBOLS, |
| tree, &code->length_depths[0], |
| &code->length_bits[0], storage_ix, storage); |
| StoreBlockSwitch(code, lengths[0], types[0], 1, storage_ix, storage); |
| } |
| } |
| |
| /* Stores a context map where the histogram type is always the block type. */ |
| static void StoreTrivialContextMap(size_t num_types, |
| size_t context_bits, |
| HuffmanTree* tree, |
| size_t* storage_ix, |
| uint8_t* storage) { |
| StoreVarLenUint8(num_types - 1, storage_ix, storage); |
| if (num_types > 1) { |
| size_t repeat_code = context_bits - 1u; |
| size_t repeat_bits = (1u << repeat_code) - 1u; |
| size_t alphabet_size = num_types + repeat_code; |
| uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| size_t i; |
| memset(histogram, 0, alphabet_size * sizeof(histogram[0])); |
| /* Write RLEMAX. */ |
| BrotliWriteBits(1, 1, storage_ix, storage); |
| BrotliWriteBits(4, repeat_code - 1, storage_ix, storage); |
| histogram[repeat_code] = (uint32_t)num_types; |
| histogram[0] = 1; |
| for (i = context_bits; i < alphabet_size; ++i) { |
| histogram[i] = 1; |
| } |
| BuildAndStoreHuffmanTree(histogram, alphabet_size, tree, |
| depths, bits, storage_ix, storage); |
| for (i = 0; i < num_types; ++i) { |
| size_t code = (i == 0 ? 0 : i + context_bits - 1); |
| BrotliWriteBits(depths[code], bits[code], storage_ix, storage); |
| BrotliWriteBits( |
| depths[repeat_code], bits[repeat_code], storage_ix, storage); |
| BrotliWriteBits(repeat_code, repeat_bits, storage_ix, storage); |
| } |
| /* Write IMTF (inverse-move-to-front) bit. */ |
| BrotliWriteBits(1, 1, storage_ix, storage); |
| } |
| } |
| |
| /* Manages the encoding of one block category (literal, command or distance). */ |
| typedef struct BlockEncoder { |
| size_t alphabet_size_; |
| size_t num_block_types_; |
| const uint8_t* block_types_; /* Not owned. */ |
| const uint32_t* block_lengths_; /* Not owned. */ |
| size_t num_blocks_; |
| BlockSplitCode block_split_code_; |
| size_t block_ix_; |
| size_t block_len_; |
| size_t entropy_ix_; |
| uint8_t* depths_; |
| uint16_t* bits_; |
| } BlockEncoder; |
| |
| static void InitBlockEncoder(BlockEncoder* self, size_t alphabet_size, |
| size_t num_block_types, const uint8_t* block_types, |
| const uint32_t* block_lengths, const size_t num_blocks) { |
| self->alphabet_size_ = alphabet_size; |
| self->num_block_types_ = num_block_types; |
| self->block_types_ = block_types; |
| self->block_lengths_ = block_lengths; |
| self->num_blocks_ = num_blocks; |
| InitBlockTypeCodeCalculator(&self->block_split_code_.type_code_calculator); |
| self->block_ix_ = 0; |
| self->block_len_ = num_blocks == 0 ? 0 : block_lengths[0]; |
| self->entropy_ix_ = 0; |
| self->depths_ = 0; |
| self->bits_ = 0; |
| } |
| |
| static void CleanupBlockEncoder(MemoryManager* m, BlockEncoder* self) { |
| BROTLI_FREE(m, self->depths_); |
| BROTLI_FREE(m, self->bits_); |
| } |
| |
| /* Creates entropy codes of block lengths and block types and stores them |
| to the bit stream. */ |
| static void BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder* self, |
| HuffmanTree* tree, size_t* storage_ix, uint8_t* storage) { |
| BuildAndStoreBlockSplitCode(self->block_types_, self->block_lengths_, |
| self->num_blocks_, self->num_block_types_, tree, &self->block_split_code_, |
| storage_ix, storage); |
| } |
| |
| /* Stores the next symbol with the entropy code of the current block type. |
| Updates the block type and block length at block boundaries. */ |
| static void StoreSymbol(BlockEncoder* self, size_t symbol, size_t* storage_ix, |
| uint8_t* storage) { |
| if (self->block_len_ == 0) { |
| size_t block_ix = ++self->block_ix_; |
| uint32_t block_len = self->block_lengths_[block_ix]; |
| uint8_t block_type = self->block_types_[block_ix]; |
| self->block_len_ = block_len; |
| self->entropy_ix_ = block_type * self->alphabet_size_; |
| StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0, |
| storage_ix, storage); |
| } |
| --self->block_len_; |
| { |
| size_t ix = self->entropy_ix_ + symbol; |
| BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage); |
| } |
| } |
| |
| /* Stores the next symbol with the entropy code of the current block type and |
| context value. |
| Updates the block type and block length at block boundaries. */ |
| static void StoreSymbolWithContext(BlockEncoder* self, size_t symbol, |
| size_t context, const uint32_t* context_map, size_t* storage_ix, |
| uint8_t* storage, const size_t context_bits) { |
| if (self->block_len_ == 0) { |
| size_t block_ix = ++self->block_ix_; |
| uint32_t block_len = self->block_lengths_[block_ix]; |
| uint8_t block_type = self->block_types_[block_ix]; |
| self->block_len_ = block_len; |
| self->entropy_ix_ = (size_t)block_type << context_bits; |
| StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0, |
| storage_ix, storage); |
| } |
| --self->block_len_; |
| { |
| size_t histo_ix = context_map[self->entropy_ix_ + context]; |
| size_t ix = histo_ix * self->alphabet_size_ + symbol; |
| BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage); |
| } |
| } |
| |
| #define FN(X) X ## Literal |
| /* NOLINTNEXTLINE(build/include) */ |
| #include "./block_encoder_inc.h" |
| #undef FN |
| |
| #define FN(X) X ## Command |
| /* NOLINTNEXTLINE(build/include) */ |
| #include "./block_encoder_inc.h" |
| #undef FN |
| |
| #define FN(X) X ## Distance |
| /* NOLINTNEXTLINE(build/include) */ |
| #include "./block_encoder_inc.h" |
| #undef FN |
| |
| static void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) { |
| *storage_ix = (*storage_ix + 7u) & ~7u; |
| storage[*storage_ix >> 3] = 0; |
| } |
| |
| void BrotliStoreMetaBlock(MemoryManager* m, |
| const uint8_t* input, |
| size_t start_pos, |
| size_t length, |
| size_t mask, |
| uint8_t prev_byte, |
| uint8_t prev_byte2, |
| BROTLI_BOOL is_last, |
| uint32_t num_direct_distance_codes, |
| uint32_t distance_postfix_bits, |
| ContextType literal_context_mode, |
| const Command *commands, |
| size_t n_commands, |
| const MetaBlockSplit* mb, |
| size_t *storage_ix, |
| uint8_t *storage) { |
| size_t pos = start_pos; |
| size_t i; |
| size_t num_distance_codes = |
| BROTLI_NUM_DISTANCE_SHORT_CODES + num_direct_distance_codes + |
| (48u << distance_postfix_bits); |
| HuffmanTree* tree; |
| BlockEncoder literal_enc; |
| BlockEncoder command_enc; |
| BlockEncoder distance_enc; |
| |
| StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); |
| |
| tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE); |
| if (BROTLI_IS_OOM(m)) return; |
| InitBlockEncoder(&literal_enc, 256, mb->literal_split.num_types, |
| mb->literal_split.types, mb->literal_split.lengths, |
| mb->literal_split.num_blocks); |
| InitBlockEncoder(&command_enc, BROTLI_NUM_COMMAND_SYMBOLS, |
| mb->command_split.num_types, mb->command_split.types, |
| mb->command_split.lengths, mb->command_split.num_blocks); |
| InitBlockEncoder(&distance_enc, num_distance_codes, |
| mb->distance_split.num_types, mb->distance_split.types, |
| mb->distance_split.lengths, mb->distance_split.num_blocks); |
| |
| BuildAndStoreBlockSwitchEntropyCodes(&literal_enc, tree, storage_ix, storage); |
| BuildAndStoreBlockSwitchEntropyCodes(&command_enc, tree, storage_ix, storage); |
| BuildAndStoreBlockSwitchEntropyCodes( |
| &distance_enc, tree, storage_ix, storage); |
| |
| BrotliWriteBits(2, distance_postfix_bits, storage_ix, storage); |
| BrotliWriteBits(4, num_direct_distance_codes >> distance_postfix_bits, |
| storage_ix, storage); |
| for (i = 0; i < mb->literal_split.num_types; ++i) { |
| BrotliWriteBits(2, literal_context_mode, storage_ix, storage); |
| } |
| |
| if (mb->literal_context_map_size == 0) { |
| StoreTrivialContextMap(mb->literal_histograms_size, |
| BROTLI_LITERAL_CONTEXT_BITS, tree, storage_ix, storage); |
| } else { |
| EncodeContextMap(m, |
| mb->literal_context_map, mb->literal_context_map_size, |
| mb->literal_histograms_size, tree, storage_ix, storage); |
| if (BROTLI_IS_OOM(m)) return; |
| } |
| |
| if (mb->distance_context_map_size == 0) { |
| StoreTrivialContextMap(mb->distance_histograms_size, |
| BROTLI_DISTANCE_CONTEXT_BITS, tree, storage_ix, storage); |
| } else { |
| EncodeContextMap(m, |
| mb->distance_context_map, mb->distance_context_map_size, |
| mb->distance_histograms_size, tree, storage_ix, storage); |
| if (BROTLI_IS_OOM(m)) return; |
| } |
| |
| BuildAndStoreEntropyCodesLiteral(m, &literal_enc, mb->literal_histograms, |
| mb->literal_histograms_size, tree, storage_ix, storage); |
| if (BROTLI_IS_OOM(m)) return; |
| BuildAndStoreEntropyCodesCommand(m, &command_enc, mb->command_histograms, |
| mb->command_histograms_size, tree, storage_ix, storage); |
| if (BROTLI_IS_OOM(m)) return; |
| BuildAndStoreEntropyCodesDistance(m, &distance_enc, mb->distance_histograms, |
| mb->distance_histograms_size, tree, storage_ix, storage); |
| if (BROTLI_IS_OOM(m)) return; |
| BROTLI_FREE(m, tree); |
| |
| for (i = 0; i < n_commands; ++i) { |
| const Command cmd = commands[i]; |
| size_t cmd_code = cmd.cmd_prefix_; |
| StoreSymbol(&command_enc, cmd_code, storage_ix, storage); |
| StoreCommandExtra(&cmd, storage_ix, storage); |
| if (mb->literal_context_map_size == 0) { |
| size_t j; |
| for (j = cmd.insert_len_; j != 0; --j) { |
| StoreSymbol(&literal_enc, input[pos & mask], storage_ix, storage); |
| ++pos; |
| } |
| } else { |
| size_t j; |
| for (j = cmd.insert_len_; j != 0; --j) { |
| size_t context = Context(prev_byte, prev_byte2, literal_context_mode); |
| uint8_t literal = input[pos & mask]; |
| StoreSymbolWithContext(&literal_enc, literal, context, |
| mb->literal_context_map, storage_ix, storage, |
| BROTLI_LITERAL_CONTEXT_BITS); |
| prev_byte2 = prev_byte; |
| prev_byte = literal; |
| ++pos; |
| } |
| } |
| pos += CommandCopyLen(&cmd); |
| if (CommandCopyLen(&cmd)) { |
| prev_byte2 = input[(pos - 2) & mask]; |
| prev_byte = input[(pos - 1) & mask]; |
| if (cmd.cmd_prefix_ >= 128) { |
| size_t dist_code = cmd.dist_prefix_; |
| uint32_t distnumextra = cmd.dist_extra_ >> 24; |
| uint64_t distextra = cmd.dist_extra_ & 0xffffff; |
| if (mb->distance_context_map_size == 0) { |
| StoreSymbol(&distance_enc, dist_code, storage_ix, storage); |
| } else { |
| size_t context = CommandDistanceContext(&cmd); |
| StoreSymbolWithContext(&distance_enc, dist_code, context, |
| mb->distance_context_map, storage_ix, storage, |
| BROTLI_DISTANCE_CONTEXT_BITS); |
| } |
| BrotliWriteBits(distnumextra, distextra, storage_ix, storage); |
| } |
| } |
| } |
| CleanupBlockEncoder(m, &distance_enc); |
| CleanupBlockEncoder(m, &command_enc); |
| CleanupBlockEncoder(m, &literal_enc); |
| if (is_last) { |
| JumpToByteBoundary(storage_ix, storage); |
| } |
| } |
| |
| static void BuildHistograms(const uint8_t* input, |
| size_t start_pos, |
| size_t mask, |
| const Command *commands, |
| size_t n_commands, |
| HistogramLiteral* lit_histo, |
| HistogramCommand* cmd_histo, |
| HistogramDistance* dist_histo) { |
| size_t pos = start_pos; |
| size_t i; |
| for (i = 0; i < n_commands; ++i) { |
| const Command cmd = commands[i]; |
| size_t j; |
| HistogramAddCommand(cmd_histo, cmd.cmd_prefix_); |
| for (j = cmd.insert_len_; j != 0; --j) { |
| HistogramAddLiteral(lit_histo, input[pos & mask]); |
| ++pos; |
| } |
| pos += CommandCopyLen(&cmd); |
| if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) { |
| HistogramAddDistance(dist_histo, cmd.dist_prefix_); |
| } |
| } |
| } |
| |
| static void StoreDataWithHuffmanCodes(const uint8_t* input, |
| size_t start_pos, |
| size_t mask, |
| const Command *commands, |
| size_t n_commands, |
| const uint8_t* lit_depth, |
| const uint16_t* lit_bits, |
| const uint8_t* cmd_depth, |
| const uint16_t* cmd_bits, |
| const uint8_t* dist_depth, |
| const uint16_t* dist_bits, |
| size_t* storage_ix, |
| uint8_t* storage) { |
| size_t pos = start_pos; |
| size_t i; |
| for (i = 0; i < n_commands; ++i) { |
| const Command cmd = commands[i]; |
| const size_t cmd_code = cmd.cmd_prefix_; |
| size_t j; |
| BrotliWriteBits( |
| cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage); |
| StoreCommandExtra(&cmd, storage_ix, storage); |
| for (j = cmd.insert_len_; j != 0; --j) { |
| const uint8_t literal = input[pos & mask]; |
| BrotliWriteBits( |
| lit_depth[literal], lit_bits[literal], storage_ix, storage); |
| ++pos; |
| } |
| pos += CommandCopyLen(&cmd); |
| if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) { |
| const size_t dist_code = cmd.dist_prefix_; |
| const uint32_t distnumextra = cmd.dist_extra_ >> 24; |
| const uint32_t distextra = cmd.dist_extra_ & 0xffffff; |
| BrotliWriteBits(dist_depth[dist_code], dist_bits[dist_code], |
| storage_ix, storage); |
| BrotliWriteBits(distnumextra, distextra, storage_ix, storage); |
| } |
| } |
| } |
| |
| void BrotliStoreMetaBlockTrivial(MemoryManager* m, |
| const uint8_t* input, |
| size_t start_pos, |
| size_t length, |
| size_t mask, |
| BROTLI_BOOL is_last, |
| const Command *commands, |
| size_t n_commands, |
| size_t *storage_ix, |
| uint8_t *storage) { |
| HistogramLiteral lit_histo; |
| HistogramCommand cmd_histo; |
| HistogramDistance dist_histo; |
| uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS]; |
| uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS]; |
| uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS]; |
| uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS]; |
| uint8_t dist_depth[SIMPLE_DISTANCE_ALPHABET_SIZE]; |
| uint16_t dist_bits[SIMPLE_DISTANCE_ALPHABET_SIZE]; |
| HuffmanTree* tree; |
| |
| StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); |
| |
| HistogramClearLiteral(&lit_histo); |
| HistogramClearCommand(&cmd_histo); |
| HistogramClearDistance(&dist_histo); |
| |
| BuildHistograms(input, start_pos, mask, commands, n_commands, |
| &lit_histo, &cmd_histo, &dist_histo); |
| |
| BrotliWriteBits(13, 0, storage_ix, storage); |
| |
| tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE); |
| if (BROTLI_IS_OOM(m)) return; |
| BuildAndStoreHuffmanTree(lit_histo.data_, BROTLI_NUM_LITERAL_SYMBOLS, tree, |
| lit_depth, lit_bits, |
| storage_ix, storage); |
| BuildAndStoreHuffmanTree(cmd_histo.data_, BROTLI_NUM_COMMAND_SYMBOLS, tree, |
| cmd_depth, cmd_bits, |
| storage_ix, storage); |
| BuildAndStoreHuffmanTree(dist_histo.data_, SIMPLE_DISTANCE_ALPHABET_SIZE, |
| tree, |
| dist_depth, dist_bits, |
| storage_ix, storage); |
| BROTLI_FREE(m, tree); |
| StoreDataWithHuffmanCodes(input, start_pos, mask, commands, |
| n_commands, lit_depth, lit_bits, |
| cmd_depth, cmd_bits, |
| dist_depth, dist_bits, |
| storage_ix, storage); |
| if (is_last) { |
| JumpToByteBoundary(storage_ix, storage); |
| } |
| } |
| |
| void BrotliStoreMetaBlockFast(MemoryManager* m, |
| const uint8_t* input, |
| size_t start_pos, |
| size_t length, |
| size_t mask, |
| BROTLI_BOOL is_last, |
| const Command *commands, |
| size_t n_commands, |
| size_t *storage_ix, |
| uint8_t *storage) { |
| StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); |
| |
| BrotliWriteBits(13, 0, storage_ix, storage); |
| |
| if (n_commands <= 128) { |
| uint32_t histogram[BROTLI_NUM_LITERAL_SYMBOLS] = { 0 }; |
| size_t pos = start_pos; |
| size_t num_literals = 0; |
| size_t i; |
| uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS]; |
| uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS]; |
| for (i = 0; i < n_commands; ++i) { |
| const Command cmd = commands[i]; |
| size_t j; |
| for (j = cmd.insert_len_; j != 0; --j) { |
| ++histogram[input[pos & mask]]; |
| ++pos; |
| } |
| num_literals += cmd.insert_len_; |
| pos += CommandCopyLen(&cmd); |
| } |
| BrotliBuildAndStoreHuffmanTreeFast(m, histogram, num_literals, |
| /* max_bits = */ 8, |
| lit_depth, lit_bits, |
| storage_ix, storage); |
| if (BROTLI_IS_OOM(m)) return; |
| StoreStaticCommandHuffmanTree(storage_ix, storage); |
| StoreStaticDistanceHuffmanTree(storage_ix, storage); |
| StoreDataWithHuffmanCodes(input, start_pos, mask, commands, |
| n_commands, lit_depth, lit_bits, |
| kStaticCommandCodeDepth, |
| kStaticCommandCodeBits, |
| kStaticDistanceCodeDepth, |
| kStaticDistanceCodeBits, |
| storage_ix, storage); |
| } else { |
| HistogramLiteral lit_histo; |
| HistogramCommand cmd_histo; |
| HistogramDistance dist_histo; |
| uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS]; |
| uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS]; |
| uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS]; |
| uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS]; |
| uint8_t dist_depth[SIMPLE_DISTANCE_ALPHABET_SIZE]; |
| uint16_t dist_bits[SIMPLE_DISTANCE_ALPHABET_SIZE]; |
| HistogramClearLiteral(&lit_histo); |
| HistogramClearCommand(&cmd_histo); |
| HistogramClearDistance(&dist_histo); |
| BuildHistograms(input, start_pos, mask, commands, n_commands, |
| &lit_histo, &cmd_histo, &dist_histo); |
| BrotliBuildAndStoreHuffmanTreeFast(m, lit_histo.data_, |
| lit_histo.total_count_, |
| /* max_bits = */ 8, |
| lit_depth, lit_bits, |
| storage_ix, storage); |
| if (BROTLI_IS_OOM(m)) return; |
| BrotliBuildAndStoreHuffmanTreeFast(m, cmd_histo.data_, |
| cmd_histo.total_count_, |
| /* max_bits = */ 10, |
| cmd_depth, cmd_bits, |
| storage_ix, storage); |
| if (BROTLI_IS_OOM(m)) return; |
| BrotliBuildAndStoreHuffmanTreeFast(m, dist_histo.data_, |
| dist_histo.total_count_, |
| /* max_bits = */ |
| SIMPLE_DISTANCE_ALPHABET_BITS, |
| dist_depth, dist_bits, |
| storage_ix, storage); |
| if (BROTLI_IS_OOM(m)) return; |
| StoreDataWithHuffmanCodes(input, start_pos, mask, commands, |
| n_commands, lit_depth, lit_bits, |
| cmd_depth, cmd_bits, |
| dist_depth, dist_bits, |
| storage_ix, storage); |
| } |
| |
| if (is_last) { |
| JumpToByteBoundary(storage_ix, storage); |
| } |
| } |
| |
| /* This is for storing uncompressed blocks (simple raw storage of |
| bytes-as-bytes). */ |
| void BrotliStoreUncompressedMetaBlock(BROTLI_BOOL is_final_block, |
| const uint8_t * BROTLI_RESTRICT input, |
| size_t position, size_t mask, |
| size_t len, |
| size_t * BROTLI_RESTRICT storage_ix, |
| uint8_t * BROTLI_RESTRICT storage) { |
| size_t masked_pos = position & mask; |
| BrotliStoreUncompressedMetaBlockHeader(len, storage_ix, storage); |
| JumpToByteBoundary(storage_ix, storage); |
| |
| if (masked_pos + len > mask + 1) { |
| size_t len1 = mask + 1 - masked_pos; |
| memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1); |
| *storage_ix += len1 << 3; |
| len -= len1; |
| masked_pos = 0; |
| } |
| memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len); |
| *storage_ix += len << 3; |
| |
| /* We need to clear the next 4 bytes to continue to be |
| compatible with BrotliWriteBits. */ |
| BrotliWriteBitsPrepareStorage(*storage_ix, storage); |
| |
| /* Since the uncompressed block itself may not be the final block, add an |
| empty one after this. */ |
| if (is_final_block) { |
| BrotliWriteBits(1, 1, storage_ix, storage); /* islast */ |
| BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */ |
| JumpToByteBoundary(storage_ix, storage); |
| } |
| } |
| |
| void BrotliStoreSyncMetaBlock(size_t* BROTLI_RESTRICT storage_ix, |
| uint8_t* BROTLI_RESTRICT storage) { |
| /* Empty metadata meta-block bit pattern: |
| 1 bit: is_last (0) |
| 2 bits: num nibbles (3) |
| 1 bit: reserved (0) |
| 2 bits: metadata length bytes (0) */ |
| BrotliWriteBits(6, 6, storage_ix, storage); |
| JumpToByteBoundary(storage_ix, storage); |
| } |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| } /* extern "C" */ |
| #endif |