| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/container/flat_hash_map.h" |
| |
| #include <cstddef> |
| #include <memory> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| #include "gtest/gtest.h" |
| #include "absl/container/internal/hash_generator_testing.h" |
| #include "absl/container/internal/unordered_map_constructor_test.h" |
| #include "absl/container/internal/unordered_map_lookup_test.h" |
| #include "absl/container/internal/unordered_map_members_test.h" |
| #include "absl/container/internal/unordered_map_modifiers_test.h" |
| #include "absl/log/check.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/types/any.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace container_internal { |
| namespace { |
| using ::absl::container_internal::hash_internal::Enum; |
| using ::absl::container_internal::hash_internal::EnumClass; |
| using ::testing::_; |
| using ::testing::IsEmpty; |
| using ::testing::Pair; |
| using ::testing::UnorderedElementsAre; |
| |
| // Check that absl::flat_hash_map works in a global constructor. |
| struct BeforeMain { |
| BeforeMain() { |
| absl::flat_hash_map<int, int> x; |
| x.insert({1, 1}); |
| CHECK(x.find(0) == x.end()) << "x should not contain 0"; |
| auto it = x.find(1); |
| CHECK(it != x.end()) << "x should contain 1"; |
| CHECK(it->second) << "1 should map to 1"; |
| } |
| }; |
| const BeforeMain before_main; |
| |
| template <class K, class V> |
| using Map = flat_hash_map<K, V, StatefulTestingHash, StatefulTestingEqual, |
| Alloc<std::pair<const K, V>>>; |
| |
| static_assert(!std::is_standard_layout<NonStandardLayout>(), ""); |
| |
| using MapTypes = |
| ::testing::Types<Map<int, int>, Map<std::string, int>, |
| Map<Enum, std::string>, Map<EnumClass, int>, |
| Map<int, NonStandardLayout>, Map<NonStandardLayout, int>>; |
| |
| INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashMap, ConstructorTest, MapTypes); |
| INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashMap, LookupTest, MapTypes); |
| INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashMap, MembersTest, MapTypes); |
| INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashMap, ModifiersTest, MapTypes); |
| |
| using UniquePtrMapTypes = ::testing::Types<Map<int, std::unique_ptr<int>>>; |
| |
| INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashMap, UniquePtrModifiersTest, |
| UniquePtrMapTypes); |
| |
| TEST(FlatHashMap, StandardLayout) { |
| struct Int { |
| explicit Int(size_t value) : value(value) {} |
| Int() : value(0) { ADD_FAILURE(); } |
| Int(const Int& other) : value(other.value) { ADD_FAILURE(); } |
| Int(Int&&) = default; |
| bool operator==(const Int& other) const { return value == other.value; } |
| size_t value; |
| }; |
| static_assert(std::is_standard_layout<Int>(), ""); |
| |
| struct Hash { |
| size_t operator()(const Int& obj) const { return obj.value; } |
| }; |
| |
| // Verify that neither the key nor the value get default-constructed or |
| // copy-constructed. |
| { |
| flat_hash_map<Int, Int, Hash> m; |
| m.try_emplace(Int(1), Int(2)); |
| m.try_emplace(Int(3), Int(4)); |
| m.erase(Int(1)); |
| m.rehash(2 * m.bucket_count()); |
| } |
| { |
| flat_hash_map<Int, Int, Hash> m; |
| m.try_emplace(Int(1), Int(2)); |
| m.try_emplace(Int(3), Int(4)); |
| m.erase(Int(1)); |
| m.clear(); |
| } |
| } |
| |
| TEST(FlatHashMap, Relocatability) { |
| static_assert(absl::is_trivially_relocatable<int>::value, ""); |
| static_assert( |
| absl::is_trivially_relocatable<std::pair<const int, int>>::value, ""); |
| static_assert( |
| std::is_same<decltype(absl::container_internal::FlatHashMapPolicy< |
| int, int>::transfer<std::allocator<char>>(nullptr, |
| nullptr, |
| nullptr)), |
| std::true_type>::value, |
| ""); |
| |
| struct NonRelocatable { |
| NonRelocatable() = default; |
| NonRelocatable(NonRelocatable&&) {} |
| NonRelocatable& operator=(NonRelocatable&&) { return *this; } |
| void* self = nullptr; |
| }; |
| |
| EXPECT_FALSE(absl::is_trivially_relocatable<NonRelocatable>::value); |
| EXPECT_TRUE( |
| (std::is_same<decltype(absl::container_internal::FlatHashMapPolicy< |
| int, NonRelocatable>:: |
| transfer<std::allocator<char>>(nullptr, nullptr, |
| nullptr)), |
| std::false_type>::value)); |
| } |
| |
| // gcc becomes unhappy if this is inside the method, so pull it out here. |
| struct balast {}; |
| |
| TEST(FlatHashMap, IteratesMsan) { |
| // Because SwissTable randomizes on pointer addresses, we keep old tables |
| // around to ensure we don't reuse old memory. |
| std::vector<absl::flat_hash_map<int, balast>> garbage; |
| for (int i = 0; i < 100; ++i) { |
| absl::flat_hash_map<int, balast> t; |
| for (int j = 0; j < 100; ++j) { |
| t[j]; |
| for (const auto& p : t) EXPECT_THAT(p, Pair(_, _)); |
| } |
| garbage.push_back(std::move(t)); |
| } |
| } |
| |
| // Demonstration of the "Lazy Key" pattern. This uses heterogeneous insert to |
| // avoid creating expensive key elements when the item is already present in the |
| // map. |
| struct LazyInt { |
| explicit LazyInt(size_t value, int* tracker) |
| : value(value), tracker(tracker) {} |
| |
| explicit operator size_t() const { |
| ++*tracker; |
| return value; |
| } |
| |
| size_t value; |
| int* tracker; |
| }; |
| |
| struct Hash { |
| using is_transparent = void; |
| int* tracker; |
| size_t operator()(size_t obj) const { |
| ++*tracker; |
| return obj; |
| } |
| size_t operator()(const LazyInt& obj) const { |
| ++*tracker; |
| return obj.value; |
| } |
| }; |
| |
| struct Eq { |
| using is_transparent = void; |
| bool operator()(size_t lhs, size_t rhs) const { return lhs == rhs; } |
| bool operator()(size_t lhs, const LazyInt& rhs) const { |
| return lhs == rhs.value; |
| } |
| }; |
| |
| TEST(FlatHashMap, LazyKeyPattern) { |
| // hashes are only guaranteed in opt mode, we use assertions to track internal |
| // state that can cause extra calls to hash. |
| int conversions = 0; |
| int hashes = 0; |
| flat_hash_map<size_t, size_t, Hash, Eq> m(0, Hash{&hashes}); |
| m.reserve(3); |
| |
| m[LazyInt(1, &conversions)] = 1; |
| EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 1))); |
| EXPECT_EQ(conversions, 1); |
| #ifdef NDEBUG |
| EXPECT_EQ(hashes, 1); |
| #endif |
| |
| m[LazyInt(1, &conversions)] = 2; |
| EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2))); |
| EXPECT_EQ(conversions, 1); |
| #ifdef NDEBUG |
| EXPECT_EQ(hashes, 2); |
| #endif |
| |
| m.try_emplace(LazyInt(2, &conversions), 3); |
| EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3))); |
| EXPECT_EQ(conversions, 2); |
| #ifdef NDEBUG |
| EXPECT_EQ(hashes, 3); |
| #endif |
| |
| m.try_emplace(LazyInt(2, &conversions), 4); |
| EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3))); |
| EXPECT_EQ(conversions, 2); |
| #ifdef NDEBUG |
| EXPECT_EQ(hashes, 4); |
| #endif |
| } |
| |
| TEST(FlatHashMap, BitfieldArgument) { |
| union { |
| int n : 1; |
| }; |
| n = 0; |
| flat_hash_map<int, int> m; |
| m.erase(n); |
| m.count(n); |
| m.prefetch(n); |
| m.find(n); |
| m.contains(n); |
| m.equal_range(n); |
| m.insert_or_assign(n, n); |
| m.insert_or_assign(m.end(), n, n); |
| m.try_emplace(n); |
| m.try_emplace(m.end(), n); |
| m.at(n); |
| m[n]; |
| } |
| |
| TEST(FlatHashMap, MergeExtractInsert) { |
| // We can't test mutable keys, or non-copyable keys with flat_hash_map. |
| // Test that the nodes have the proper API. |
| absl::flat_hash_map<int, int> m = {{1, 7}, {2, 9}}; |
| auto node = m.extract(1); |
| EXPECT_TRUE(node); |
| EXPECT_EQ(node.key(), 1); |
| EXPECT_EQ(node.mapped(), 7); |
| EXPECT_THAT(m, UnorderedElementsAre(Pair(2, 9))); |
| |
| node.mapped() = 17; |
| m.insert(std::move(node)); |
| EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 17), Pair(2, 9))); |
| } |
| |
| bool FirstIsEven(std::pair<const int, int> p) { return p.first % 2 == 0; } |
| |
| TEST(FlatHashMap, EraseIf) { |
| // Erase all elements. |
| { |
| flat_hash_map<int, int> s = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}}; |
| EXPECT_EQ(erase_if(s, [](std::pair<const int, int>) { return true; }), 5); |
| EXPECT_THAT(s, IsEmpty()); |
| } |
| // Erase no elements. |
| { |
| flat_hash_map<int, int> s = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}}; |
| EXPECT_EQ(erase_if(s, [](std::pair<const int, int>) { return false; }), 0); |
| EXPECT_THAT(s, UnorderedElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), |
| Pair(4, 4), Pair(5, 5))); |
| } |
| // Erase specific elements. |
| { |
| flat_hash_map<int, int> s = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}}; |
| EXPECT_EQ(erase_if(s, |
| [](std::pair<const int, int> kvp) { |
| return kvp.first % 2 == 1; |
| }), |
| 3); |
| EXPECT_THAT(s, UnorderedElementsAre(Pair(2, 2), Pair(4, 4))); |
| } |
| // Predicate is function reference. |
| { |
| flat_hash_map<int, int> s = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}}; |
| EXPECT_EQ(erase_if(s, FirstIsEven), 2); |
| EXPECT_THAT(s, UnorderedElementsAre(Pair(1, 1), Pair(3, 3), Pair(5, 5))); |
| } |
| // Predicate is function pointer. |
| { |
| flat_hash_map<int, int> s = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}}; |
| EXPECT_EQ(erase_if(s, &FirstIsEven), 2); |
| EXPECT_THAT(s, UnorderedElementsAre(Pair(1, 1), Pair(3, 3), Pair(5, 5))); |
| } |
| } |
| |
| // This test requires std::launder for mutable key access in node handles. |
| #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 |
| TEST(FlatHashMap, NodeHandleMutableKeyAccess) { |
| flat_hash_map<std::string, std::string> map; |
| |
| map["key1"] = "mapped"; |
| |
| auto nh = map.extract(map.begin()); |
| nh.key().resize(3); |
| map.insert(std::move(nh)); |
| |
| EXPECT_THAT(map, testing::ElementsAre(Pair("key", "mapped"))); |
| } |
| #endif |
| |
| TEST(FlatHashMap, Reserve) { |
| // Verify that if we reserve(size() + n) then we can perform n insertions |
| // without a rehash, i.e., without invalidating any references. |
| for (size_t trial = 0; trial < 20; ++trial) { |
| for (size_t initial = 3; initial < 100; ++initial) { |
| // Fill in `initial` entries, then erase 2 of them, then reserve space for |
| // two inserts and check for reference stability while doing the inserts. |
| flat_hash_map<size_t, size_t> map; |
| for (size_t i = 0; i < initial; ++i) { |
| map[i] = i; |
| } |
| map.erase(0); |
| map.erase(1); |
| map.reserve(map.size() + 2); |
| size_t& a2 = map[2]; |
| // In the event of a failure, asan will complain in one of these two |
| // assignments. |
| map[initial] = a2; |
| map[initial + 1] = a2; |
| // Fail even when not under asan: |
| size_t& a2new = map[2]; |
| EXPECT_EQ(&a2, &a2new); |
| } |
| } |
| } |
| |
| TEST(FlatHashMap, RecursiveTypeCompiles) { |
| struct RecursiveType { |
| flat_hash_map<int, RecursiveType> m; |
| }; |
| RecursiveType t; |
| t.m[0] = RecursiveType{}; |
| } |
| |
| } // namespace |
| } // namespace container_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |