blob: 79dace34f44f9520e0a2d052fd4fb1df7b218d3f [file] [log] [blame]
// Copyright 2022 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Hardware accelerated CRC32 computation on Intel and ARM architecture.
#include <cstddef>
#include <cstdint>
#include <memory>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/prefetch.h"
#include "absl/crc/internal/cpu_detect.h"
#include "absl/crc/internal/crc32_x86_arm_combined_simd.h"
#include "absl/crc/internal/crc_internal.h"
#include "absl/memory/memory.h"
#include "absl/numeric/bits.h"
#if defined(ABSL_CRC_INTERNAL_HAVE_ARM_SIMD) || \
defined(ABSL_CRC_INTERNAL_HAVE_X86_SIMD)
#define ABSL_INTERNAL_CAN_USE_SIMD_CRC32C
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace crc_internal {
#if defined(ABSL_INTERNAL_CAN_USE_SIMD_CRC32C)
// Implementation details not exported outside of file
namespace {
// Some machines have CRC acceleration hardware.
// We can do a faster version of Extend() on such machines.
class CRC32AcceleratedX86ARMCombined : public CRC32 {
public:
CRC32AcceleratedX86ARMCombined() {}
~CRC32AcceleratedX86ARMCombined() override {}
void ExtendByZeroes(uint32_t* crc, size_t length) const override;
uint32_t ComputeZeroConstant(size_t length) const;
private:
CRC32AcceleratedX86ARMCombined(const CRC32AcceleratedX86ARMCombined&) =
delete;
CRC32AcceleratedX86ARMCombined& operator=(
const CRC32AcceleratedX86ARMCombined&) = delete;
};
// Constants for switching between algorithms.
// Chosen by comparing speed at different powers of 2.
constexpr size_t kSmallCutoff = 256;
constexpr size_t kMediumCutoff = 2048;
#define ABSL_INTERNAL_STEP1(crc) \
do { \
crc = CRC32_u8(static_cast<uint32_t>(crc), *p++); \
} while (0)
#define ABSL_INTERNAL_STEP2(crc) \
do { \
crc = \
CRC32_u16(static_cast<uint32_t>(crc), absl::little_endian::Load16(p)); \
p += 2; \
} while (0)
#define ABSL_INTERNAL_STEP4(crc) \
do { \
crc = \
CRC32_u32(static_cast<uint32_t>(crc), absl::little_endian::Load32(p)); \
p += 4; \
} while (0)
#define ABSL_INTERNAL_STEP8(crc, data) \
do { \
crc = CRC32_u64(static_cast<uint32_t>(crc), \
absl::little_endian::Load64(data)); \
data += 8; \
} while (0)
#define ABSL_INTERNAL_STEP8BY2(crc0, crc1, p0, p1) \
do { \
ABSL_INTERNAL_STEP8(crc0, p0); \
ABSL_INTERNAL_STEP8(crc1, p1); \
} while (0)
#define ABSL_INTERNAL_STEP8BY3(crc0, crc1, crc2, p0, p1, p2) \
do { \
ABSL_INTERNAL_STEP8(crc0, p0); \
ABSL_INTERNAL_STEP8(crc1, p1); \
ABSL_INTERNAL_STEP8(crc2, p2); \
} while (0)
namespace {
uint32_t multiply(uint32_t a, uint32_t b) {
V128 power = V128_From64WithZeroFill(a);
V128 crc = V128_From64WithZeroFill(b);
V128 res = V128_PMulLow(power, crc);
// Combine crc values.
//
// Adding res to itself is equivalent to multiplying by 2,
// or shifting left by 1. Addition is used as not all compilers
// are able to generate optimal code without this hint.
// https://godbolt.org/z/rr3fMnf39
res = V128_Add64(res, res);
return static_cast<uint32_t>(V128_Extract32<1>(res)) ^
CRC32_u32(0, static_cast<uint32_t>(V128_Low64(res)));
}
// Powers of crc32c polynomial, for faster ExtendByZeros.
// Verified against folly:
// folly/hash/detail/Crc32CombineDetail.cpp
constexpr uint32_t kCRC32CPowers[] = {
0x82f63b78, 0x6ea2d55c, 0x18b8ea18, 0x510ac59a, 0xb82be955, 0xb8fdb1e7,
0x88e56f72, 0x74c360a4, 0xe4172b16, 0x0d65762a, 0x35d73a62, 0x28461564,
0xbf455269, 0xe2ea32dc, 0xfe7740e6, 0xf946610b, 0x3c204f8f, 0x538586e3,
0x59726915, 0x734d5309, 0xbc1ac763, 0x7d0722cc, 0xd289cabe, 0xe94ca9bc,
0x05b74f3f, 0xa51e1f42, 0x40000000, 0x20000000, 0x08000000, 0x00800000,
0x00008000, 0x82f63b78, 0x6ea2d55c, 0x18b8ea18, 0x510ac59a, 0xb82be955,
0xb8fdb1e7, 0x88e56f72, 0x74c360a4, 0xe4172b16, 0x0d65762a, 0x35d73a62,
0x28461564, 0xbf455269, 0xe2ea32dc, 0xfe7740e6, 0xf946610b, 0x3c204f8f,
0x538586e3, 0x59726915, 0x734d5309, 0xbc1ac763, 0x7d0722cc, 0xd289cabe,
0xe94ca9bc, 0x05b74f3f, 0xa51e1f42, 0x40000000, 0x20000000, 0x08000000,
0x00800000, 0x00008000,
};
} // namespace
// Compute a magic constant, so that multiplying by it is the same as
// extending crc by length zeros.
uint32_t CRC32AcceleratedX86ARMCombined::ComputeZeroConstant(
size_t length) const {
// Lowest 2 bits are handled separately in ExtendByZeroes
length >>= 2;
int index = absl::countr_zero(length);
uint32_t prev = kCRC32CPowers[index];
length &= length - 1;
while (length) {
// For each bit of length, extend by 2**n zeros.
index = absl::countr_zero(length);
prev = multiply(prev, kCRC32CPowers[index]);
length &= length - 1;
}
return prev;
}
void CRC32AcceleratedX86ARMCombined::ExtendByZeroes(uint32_t* crc,
size_t length) const {
uint32_t val = *crc;
// Don't bother with multiplication for small length.
switch (length & 3) {
case 0:
break;
case 1:
val = CRC32_u8(val, 0);
break;
case 2:
val = CRC32_u16(val, 0);
break;
case 3:
val = CRC32_u8(val, 0);
val = CRC32_u16(val, 0);
break;
}
if (length > 3) {
val = multiply(val, ComputeZeroConstant(length));
}
*crc = val;
}
// Taken from Intel paper "Fast CRC Computation for iSCSI Polynomial Using CRC32
// Instruction"
// https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/crc-iscsi-polynomial-crc32-instruction-paper.pdf
// We only need every 4th value, because we unroll loop by 4.
constexpr uint64_t kClmulConstants[] = {
0x09e4addf8, 0x0ba4fc28e, 0x00d3b6092, 0x09e4addf8, 0x0ab7aff2a,
0x102f9b8a2, 0x0b9e02b86, 0x00d3b6092, 0x1bf2e8b8a, 0x18266e456,
0x0d270f1a2, 0x0ab7aff2a, 0x11eef4f8e, 0x083348832, 0x0dd7e3b0c,
0x0b9e02b86, 0x0271d9844, 0x1b331e26a, 0x06b749fb2, 0x1bf2e8b8a,
0x0e6fc4e6a, 0x0ce7f39f4, 0x0d7a4825c, 0x0d270f1a2, 0x026f6a60a,
0x12ed0daac, 0x068bce87a, 0x11eef4f8e, 0x1329d9f7e, 0x0b3e32c28,
0x0170076fa, 0x0dd7e3b0c, 0x1fae1cc66, 0x010746f3c, 0x086d8e4d2,
0x0271d9844, 0x0b3af077a, 0x093a5f730, 0x1d88abd4a, 0x06b749fb2,
0x0c9c8b782, 0x0cec3662e, 0x1ddffc5d4, 0x0e6fc4e6a, 0x168763fa6,
0x0b0cd4768, 0x19b1afbc4, 0x0d7a4825c, 0x123888b7a, 0x00167d312,
0x133d7a042, 0x026f6a60a, 0x000bcf5f6, 0x19d34af3a, 0x1af900c24,
0x068bce87a, 0x06d390dec, 0x16cba8aca, 0x1f16a3418, 0x1329d9f7e,
0x19fb2a8b0, 0x02178513a, 0x1a0f717c4, 0x0170076fa,
};
enum class CutoffStrategy {
// Use 3 CRC streams to fold into 1.
Fold3,
// Unroll CRC instructions for 64 bytes.
Unroll64CRC,
};
// Base class for CRC32AcceleratedX86ARMCombinedMultipleStreams containing the
// methods and data that don't need the template arguments.
class CRC32AcceleratedX86ARMCombinedMultipleStreamsBase
: public CRC32AcceleratedX86ARMCombined {
protected:
// Update partialCRC with crc of 64 byte block. Calling FinalizePclmulStream
// would produce a single crc checksum, but it is expensive. PCLMULQDQ has a
// high latency, so we run 4 128-bit partial checksums that can be reduced to
// a single value by FinalizePclmulStream later. Computing crc for arbitrary
// polynomialas with PCLMULQDQ is described in Intel paper "Fast CRC
// Computation for Generic Polynomials Using PCLMULQDQ Instruction"
// https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
// We are applying it to CRC32C polynomial.
ABSL_ATTRIBUTE_ALWAYS_INLINE void Process64BytesPclmul(
const uint8_t* p, V128* partialCRC) const {
V128 loopMultiplicands = V128_Load(reinterpret_cast<const V128*>(k1k2));
V128 partialCRC1 = partialCRC[0];
V128 partialCRC2 = partialCRC[1];
V128 partialCRC3 = partialCRC[2];
V128 partialCRC4 = partialCRC[3];
V128 tmp1 = V128_PMulHi(partialCRC1, loopMultiplicands);
V128 tmp2 = V128_PMulHi(partialCRC2, loopMultiplicands);
V128 tmp3 = V128_PMulHi(partialCRC3, loopMultiplicands);
V128 tmp4 = V128_PMulHi(partialCRC4, loopMultiplicands);
V128 data1 = V128_LoadU(reinterpret_cast<const V128*>(p + 16 * 0));
V128 data2 = V128_LoadU(reinterpret_cast<const V128*>(p + 16 * 1));
V128 data3 = V128_LoadU(reinterpret_cast<const V128*>(p + 16 * 2));
V128 data4 = V128_LoadU(reinterpret_cast<const V128*>(p + 16 * 3));
partialCRC1 = V128_PMulLow(partialCRC1, loopMultiplicands);
partialCRC2 = V128_PMulLow(partialCRC2, loopMultiplicands);
partialCRC3 = V128_PMulLow(partialCRC3, loopMultiplicands);
partialCRC4 = V128_PMulLow(partialCRC4, loopMultiplicands);
partialCRC1 = V128_Xor(tmp1, partialCRC1);
partialCRC2 = V128_Xor(tmp2, partialCRC2);
partialCRC3 = V128_Xor(tmp3, partialCRC3);
partialCRC4 = V128_Xor(tmp4, partialCRC4);
partialCRC1 = V128_Xor(partialCRC1, data1);
partialCRC2 = V128_Xor(partialCRC2, data2);
partialCRC3 = V128_Xor(partialCRC3, data3);
partialCRC4 = V128_Xor(partialCRC4, data4);
partialCRC[0] = partialCRC1;
partialCRC[1] = partialCRC2;
partialCRC[2] = partialCRC3;
partialCRC[3] = partialCRC4;
}
// Reduce partialCRC produced by Process64BytesPclmul into a single value,
// that represents crc checksum of all the processed bytes.
ABSL_ATTRIBUTE_ALWAYS_INLINE uint64_t
FinalizePclmulStream(V128* partialCRC) const {
V128 partialCRC1 = partialCRC[0];
V128 partialCRC2 = partialCRC[1];
V128 partialCRC3 = partialCRC[2];
V128 partialCRC4 = partialCRC[3];
// Combine 4 vectors of partial crc into a single vector.
V128 reductionMultiplicands =
V128_Load(reinterpret_cast<const V128*>(k5k6));
V128 low = V128_PMulLow(reductionMultiplicands, partialCRC1);
V128 high = V128_PMulHi(reductionMultiplicands, partialCRC1);
partialCRC1 = V128_Xor(low, high);
partialCRC1 = V128_Xor(partialCRC1, partialCRC2);
low = V128_PMulLow(reductionMultiplicands, partialCRC3);
high = V128_PMulHi(reductionMultiplicands, partialCRC3);
partialCRC3 = V128_Xor(low, high);
partialCRC3 = V128_Xor(partialCRC3, partialCRC4);
reductionMultiplicands = V128_Load(reinterpret_cast<const V128*>(k3k4));
low = V128_PMulLow(reductionMultiplicands, partialCRC1);
high = V128_PMulHi(reductionMultiplicands, partialCRC1);
V128 fullCRC = V128_Xor(low, high);
fullCRC = V128_Xor(fullCRC, partialCRC3);
// Reduce fullCRC into scalar value.
reductionMultiplicands = V128_Load(reinterpret_cast<const V128*>(k5k6));
V128 mask = V128_Load(reinterpret_cast<const V128*>(kMask));
V128 tmp = V128_PMul01(reductionMultiplicands, fullCRC);
fullCRC = V128_ShiftRight<8>(fullCRC);
fullCRC = V128_Xor(fullCRC, tmp);
reductionMultiplicands = V128_Load(reinterpret_cast<const V128*>(k7k0));
tmp = V128_ShiftRight<4>(fullCRC);
fullCRC = V128_And(fullCRC, mask);
fullCRC = V128_PMulLow(reductionMultiplicands, fullCRC);
fullCRC = V128_Xor(tmp, fullCRC);
reductionMultiplicands = V128_Load(reinterpret_cast<const V128*>(kPoly));
tmp = V128_And(fullCRC, mask);
tmp = V128_PMul01(reductionMultiplicands, tmp);
tmp = V128_And(tmp, mask);
tmp = V128_PMulLow(reductionMultiplicands, tmp);
fullCRC = V128_Xor(tmp, fullCRC);
return static_cast<uint64_t>(V128_Extract32<1>(fullCRC));
}
// Update crc with 64 bytes of data from p.
ABSL_ATTRIBUTE_ALWAYS_INLINE uint64_t Process64BytesCRC(const uint8_t* p,
uint64_t crc) const {
for (int i = 0; i < 8; i++) {
crc =
CRC32_u64(static_cast<uint32_t>(crc), absl::little_endian::Load64(p));
p += 8;
}
return crc;
}
// Generated by crc32c_x86_test --crc32c_generate_constants=true
// and verified against constants in linux kernel for S390:
// https://github.com/torvalds/linux/blob/master/arch/s390/crypto/crc32le-vx.S
alignas(16) static constexpr uint64_t k1k2[2] = {0x0740eef02, 0x09e4addf8};
alignas(16) static constexpr uint64_t k3k4[2] = {0x1384aa63a, 0x0ba4fc28e};
alignas(16) static constexpr uint64_t k5k6[2] = {0x0f20c0dfe, 0x14cd00bd6};
alignas(16) static constexpr uint64_t k7k0[2] = {0x0dd45aab8, 0x000000000};
alignas(16) static constexpr uint64_t kPoly[2] = {0x105ec76f0, 0x0dea713f1};
alignas(16) static constexpr uint32_t kMask[4] = {~0u, 0u, ~0u, 0u};
// Medium runs of bytes are broken into groups of kGroupsSmall blocks of same
// size. Each group is CRCed in parallel then combined at the end of the
// block.
static constexpr size_t kGroupsSmall = 3;
// For large runs we use up to kMaxStreams blocks computed with CRC
// instruction, and up to kMaxStreams blocks computed with PCLMULQDQ, which
// are combined in the end.
static constexpr size_t kMaxStreams = 3;
};
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
alignas(16) constexpr uint64_t
CRC32AcceleratedX86ARMCombinedMultipleStreamsBase::k1k2[2];
alignas(16) constexpr uint64_t
CRC32AcceleratedX86ARMCombinedMultipleStreamsBase::k3k4[2];
alignas(16) constexpr uint64_t
CRC32AcceleratedX86ARMCombinedMultipleStreamsBase::k5k6[2];
alignas(16) constexpr uint64_t
CRC32AcceleratedX86ARMCombinedMultipleStreamsBase::k7k0[2];
alignas(16) constexpr uint64_t
CRC32AcceleratedX86ARMCombinedMultipleStreamsBase::kPoly[2];
alignas(16) constexpr uint32_t
CRC32AcceleratedX86ARMCombinedMultipleStreamsBase::kMask[4];
constexpr size_t
CRC32AcceleratedX86ARMCombinedMultipleStreamsBase::kGroupsSmall;
constexpr size_t CRC32AcceleratedX86ARMCombinedMultipleStreamsBase::kMaxStreams;
#endif // ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
template <size_t num_crc_streams, size_t num_pclmul_streams,
CutoffStrategy strategy>
class CRC32AcceleratedX86ARMCombinedMultipleStreams
: public CRC32AcceleratedX86ARMCombinedMultipleStreamsBase {
ABSL_ATTRIBUTE_HOT
void Extend(uint32_t* crc, const void* bytes, size_t length) const override {
static_assert(num_crc_streams >= 1 && num_crc_streams <= kMaxStreams,
"Invalid number of crc streams");
static_assert(num_pclmul_streams >= 0 && num_pclmul_streams <= kMaxStreams,
"Invalid number of pclmul streams");
const uint8_t* p = static_cast<const uint8_t*>(bytes);
const uint8_t* e = p + length;
uint32_t l = *crc;
uint64_t l64;
// We have dedicated instruction for 1,2,4 and 8 bytes.
if (length & 8) {
ABSL_INTERNAL_STEP8(l, p);
length &= ~size_t{8};
}
if (length & 4) {
ABSL_INTERNAL_STEP4(l);
length &= ~size_t{4};
}
if (length & 2) {
ABSL_INTERNAL_STEP2(l);
length &= ~size_t{2};
}
if (length & 1) {
ABSL_INTERNAL_STEP1(l);
length &= ~size_t{1};
}
if (length == 0) {
*crc = l;
return;
}
// length is now multiple of 16.
// For small blocks just run simple loop, because cost of combining multiple
// streams is significant.
if (strategy != CutoffStrategy::Unroll64CRC) {
if (length < kSmallCutoff) {
while (length >= 16) {
ABSL_INTERNAL_STEP8(l, p);
ABSL_INTERNAL_STEP8(l, p);
length -= 16;
}
*crc = l;
return;
}
}
// For medium blocks we run 3 crc streams and combine them as described in
// Intel paper above. Running 4th stream doesn't help, because crc
// instruction has latency 3 and throughput 1.
if (length < kMediumCutoff) {
l64 = l;
if (strategy == CutoffStrategy::Fold3) {
uint64_t l641 = 0;
uint64_t l642 = 0;
const size_t blockSize = 32;
size_t bs = static_cast<size_t>(e - p) / kGroupsSmall / blockSize;
const uint8_t* p1 = p + bs * blockSize;
const uint8_t* p2 = p1 + bs * blockSize;
for (size_t i = 0; i + 1 < bs; ++i) {
ABSL_INTERNAL_STEP8BY3(l64, l641, l642, p, p1, p2);
ABSL_INTERNAL_STEP8BY3(l64, l641, l642, p, p1, p2);
ABSL_INTERNAL_STEP8BY3(l64, l641, l642, p, p1, p2);
ABSL_INTERNAL_STEP8BY3(l64, l641, l642, p, p1, p2);
PrefetchToLocalCache(
reinterpret_cast<const char*>(p + kPrefetchHorizonMedium));
PrefetchToLocalCache(
reinterpret_cast<const char*>(p1 + kPrefetchHorizonMedium));
PrefetchToLocalCache(
reinterpret_cast<const char*>(p2 + kPrefetchHorizonMedium));
}
// Don't run crc on last 8 bytes.
ABSL_INTERNAL_STEP8BY3(l64, l641, l642, p, p1, p2);
ABSL_INTERNAL_STEP8BY3(l64, l641, l642, p, p1, p2);
ABSL_INTERNAL_STEP8BY3(l64, l641, l642, p, p1, p2);
ABSL_INTERNAL_STEP8BY2(l64, l641, p, p1);
V128 magic = *(reinterpret_cast<const V128*>(kClmulConstants) + bs - 1);
V128 tmp = V128_From64WithZeroFill(l64);
V128 res1 = V128_PMulLow(tmp, magic);
tmp = V128_From64WithZeroFill(l641);
V128 res2 = V128_PMul10(tmp, magic);
V128 x = V128_Xor(res1, res2);
l64 = static_cast<uint64_t>(V128_Low64(x)) ^
absl::little_endian::Load64(p2);
l64 = CRC32_u64(static_cast<uint32_t>(l642), l64);
p = p2 + 8;
} else if (strategy == CutoffStrategy::Unroll64CRC) {
while ((e - p) >= 64) {
l64 = Process64BytesCRC(p, l64);
p += 64;
}
}
} else {
// There is a lot of data, we can ignore combine costs and run all
// requested streams (num_crc_streams + num_pclmul_streams),
// using prefetch. CRC and PCLMULQDQ use different cpu execution units,
// so on some cpus it makes sense to execute both of them for different
// streams.
// Point x at first 8-byte aligned byte in string.
const uint8_t* x = RoundUp<8>(p);
// Process bytes until p is 8-byte aligned, if that isn't past the end.
while (p != x) {
ABSL_INTERNAL_STEP1(l);
}
size_t bs = static_cast<size_t>(e - p) /
(num_crc_streams + num_pclmul_streams) / 64;
const uint8_t* crc_streams[kMaxStreams];
const uint8_t* pclmul_streams[kMaxStreams];
// We are guaranteed to have at least one crc stream.
crc_streams[0] = p;
for (size_t i = 1; i < num_crc_streams; i++) {
crc_streams[i] = crc_streams[i - 1] + bs * 64;
}
pclmul_streams[0] = crc_streams[num_crc_streams - 1] + bs * 64;
for (size_t i = 1; i < num_pclmul_streams; i++) {
pclmul_streams[i] = pclmul_streams[i - 1] + bs * 64;
}
// Per stream crc sums.
uint64_t l64_crc[kMaxStreams] = {l};
uint64_t l64_pclmul[kMaxStreams] = {0};
// Peel first iteration, because PCLMULQDQ stream, needs setup.
for (size_t i = 0; i < num_crc_streams; i++) {
l64_crc[i] = Process64BytesCRC(crc_streams[i], l64_crc[i]);
crc_streams[i] += 16 * 4;
}
V128 partialCRC[kMaxStreams][4];
for (size_t i = 0; i < num_pclmul_streams; i++) {
partialCRC[i][0] = V128_LoadU(
reinterpret_cast<const V128*>(pclmul_streams[i] + 16 * 0));
partialCRC[i][1] = V128_LoadU(
reinterpret_cast<const V128*>(pclmul_streams[i] + 16 * 1));
partialCRC[i][2] = V128_LoadU(
reinterpret_cast<const V128*>(pclmul_streams[i] + 16 * 2));
partialCRC[i][3] = V128_LoadU(
reinterpret_cast<const V128*>(pclmul_streams[i] + 16 * 3));
pclmul_streams[i] += 16 * 4;
}
for (size_t i = 1; i < bs; i++) {
// Prefetch data for next iterations.
for (size_t j = 0; j < num_crc_streams; j++) {
PrefetchToLocalCache(
reinterpret_cast<const char*>(crc_streams[j] + kPrefetchHorizon));
}
for (size_t j = 0; j < num_pclmul_streams; j++) {
PrefetchToLocalCache(reinterpret_cast<const char*>(pclmul_streams[j] +
kPrefetchHorizon));
}
// We process each stream in 64 byte blocks. This can be written as
// for (int i = 0; i < num_pclmul_streams; i++) {
// Process64BytesPclmul(pclmul_streams[i], partialCRC[i]);
// pclmul_streams[i] += 16 * 4;
// }
// for (int i = 0; i < num_crc_streams; i++) {
// l64_crc[i] = Process64BytesCRC(crc_streams[i], l64_crc[i]);
// crc_streams[i] += 16*4;
// }
// But unrolling and interleaving PCLMULQDQ and CRC blocks manually
// gives ~2% performance boost.
l64_crc[0] = Process64BytesCRC(crc_streams[0], l64_crc[0]);
crc_streams[0] += 16 * 4;
if (num_pclmul_streams > 0) {
Process64BytesPclmul(pclmul_streams[0], partialCRC[0]);
pclmul_streams[0] += 16 * 4;
}
if (num_crc_streams > 1) {
l64_crc[1] = Process64BytesCRC(crc_streams[1], l64_crc[1]);
crc_streams[1] += 16 * 4;
}
if (num_pclmul_streams > 1) {
Process64BytesPclmul(pclmul_streams[1], partialCRC[1]);
pclmul_streams[1] += 16 * 4;
}
if (num_crc_streams > 2) {
l64_crc[2] = Process64BytesCRC(crc_streams[2], l64_crc[2]);
crc_streams[2] += 16 * 4;
}
if (num_pclmul_streams > 2) {
Process64BytesPclmul(pclmul_streams[2], partialCRC[2]);
pclmul_streams[2] += 16 * 4;
}
}
// PCLMULQDQ based streams require special final step;
// CRC based don't.
for (size_t i = 0; i < num_pclmul_streams; i++) {
l64_pclmul[i] = FinalizePclmulStream(partialCRC[i]);
}
// Combine all streams into single result.
uint32_t magic = ComputeZeroConstant(bs * 64);
l64 = l64_crc[0];
for (size_t i = 1; i < num_crc_streams; i++) {
l64 = multiply(static_cast<uint32_t>(l64), magic);
l64 ^= l64_crc[i];
}
for (size_t i = 0; i < num_pclmul_streams; i++) {
l64 = multiply(static_cast<uint32_t>(l64), magic);
l64 ^= l64_pclmul[i];
}
// Update p.
if (num_pclmul_streams > 0) {
p = pclmul_streams[num_pclmul_streams - 1];
} else {
p = crc_streams[num_crc_streams - 1];
}
}
l = static_cast<uint32_t>(l64);
while ((e - p) >= 16) {
ABSL_INTERNAL_STEP8(l, p);
ABSL_INTERNAL_STEP8(l, p);
}
// Process the last few bytes
while (p != e) {
ABSL_INTERNAL_STEP1(l);
}
#undef ABSL_INTERNAL_STEP8BY3
#undef ABSL_INTERNAL_STEP8BY2
#undef ABSL_INTERNAL_STEP8
#undef ABSL_INTERNAL_STEP4
#undef ABSL_INTERNAL_STEP2
#undef ABSL_INTERNAL_STEP1
*crc = l;
}
};
} // namespace
// Intel processors with SSE4.2 have an instruction for one particular
// 32-bit CRC polynomial: crc32c
CRCImpl* TryNewCRC32AcceleratedX86ARMCombined() {
CpuType type = GetCpuType();
switch (type) {
case CpuType::kIntelHaswell:
case CpuType::kAmdRome:
case CpuType::kAmdNaples:
case CpuType::kAmdMilan:
return new CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 1, CutoffStrategy::Fold3>();
// PCLMULQDQ is fast, use combined PCLMULQDQ + CRC implementation.
case CpuType::kIntelCascadelakeXeon:
case CpuType::kIntelSkylakeXeon:
case CpuType::kIntelBroadwell:
case CpuType::kIntelSkylake:
return new CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 2, CutoffStrategy::Fold3>();
// PCLMULQDQ is slow, don't use it.
case CpuType::kIntelIvybridge:
case CpuType::kIntelSandybridge:
case CpuType::kIntelWestmere:
return new CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 0, CutoffStrategy::Fold3>();
case CpuType::kArmNeoverseN1:
case CpuType::kArmNeoverseN2:
case CpuType::kArmNeoverseV1:
return new CRC32AcceleratedX86ARMCombinedMultipleStreams<
1, 1, CutoffStrategy::Unroll64CRC>();
case CpuType::kAmpereSiryn:
return new CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 2, CutoffStrategy::Fold3>();
case CpuType::kArmNeoverseV2:
return new CRC32AcceleratedX86ARMCombinedMultipleStreams<
1, 2, CutoffStrategy::Unroll64CRC>();
#if defined(__aarch64__)
default:
// Not all ARM processors support the needed instructions, so check here
// before trying to use an accelerated implementation.
if (SupportsArmCRC32PMULL()) {
return new CRC32AcceleratedX86ARMCombinedMultipleStreams<
1, 1, CutoffStrategy::Unroll64CRC>();
} else {
return nullptr;
}
#else
default:
// Something else, play it safe and assume slow PCLMULQDQ.
return new CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 0, CutoffStrategy::Fold3>();
#endif
}
}
std::vector<std::unique_ptr<CRCImpl>> NewCRC32AcceleratedX86ARMCombinedAll() {
auto ret = std::vector<std::unique_ptr<CRCImpl>>();
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
1, 0, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
1, 1, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
1, 2, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
1, 3, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
2, 0, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
2, 1, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
2, 2, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
2, 3, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 0, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 1, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 2, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 3, CutoffStrategy::Fold3>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
1, 0, CutoffStrategy::Unroll64CRC>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
1, 1, CutoffStrategy::Unroll64CRC>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
1, 2, CutoffStrategy::Unroll64CRC>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
1, 3, CutoffStrategy::Unroll64CRC>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
2, 0, CutoffStrategy::Unroll64CRC>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
2, 1, CutoffStrategy::Unroll64CRC>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
2, 2, CutoffStrategy::Unroll64CRC>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
2, 3, CutoffStrategy::Unroll64CRC>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 0, CutoffStrategy::Unroll64CRC>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 1, CutoffStrategy::Unroll64CRC>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 2, CutoffStrategy::Unroll64CRC>>());
ret.push_back(absl::make_unique<CRC32AcceleratedX86ARMCombinedMultipleStreams<
3, 3, CutoffStrategy::Unroll64CRC>>());
return ret;
}
#else // !ABSL_INTERNAL_CAN_USE_SIMD_CRC32C
std::vector<std::unique_ptr<CRCImpl>> NewCRC32AcceleratedX86ARMCombinedAll() {
return std::vector<std::unique_ptr<CRCImpl>>();
}
// no hardware acceleration available
CRCImpl* TryNewCRC32AcceleratedX86ARMCombined() { return nullptr; }
#endif
} // namespace crc_internal
ABSL_NAMESPACE_END
} // namespace absl