| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_ |
| #define ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_ |
| |
| #include <cstddef> |
| #include <cstdint> |
| #include <limits> |
| #include <type_traits> |
| |
| #include "absl/base/config.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/random/internal/traits.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace random_internal { |
| // Returns true if the input value is zero or a power of two. Useful for |
| // determining if the range of output values in a URBG |
| template <typename UIntType> |
| constexpr bool IsPowerOfTwoOrZero(UIntType n) { |
| return (n == 0) || ((n & (n - 1)) == 0); |
| } |
| |
| // Computes the length of the range of values producible by the URBG, or returns |
| // zero if that would encompass the entire range of representable values in |
| // URBG::result_type. |
| template <typename URBG> |
| constexpr typename URBG::result_type RangeSize() { |
| using result_type = typename URBG::result_type; |
| static_assert((URBG::max)() != (URBG::min)(), "URBG range cannot be 0."); |
| return ((URBG::max)() == (std::numeric_limits<result_type>::max)() && |
| (URBG::min)() == std::numeric_limits<result_type>::lowest()) |
| ? result_type{0} |
| : ((URBG::max)() - (URBG::min)() + result_type{1}); |
| } |
| |
| // Computes the floor of the log. (i.e., std::floor(std::log2(N)); |
| template <typename UIntType> |
| constexpr UIntType IntegerLog2(UIntType n) { |
| return (n <= 1) ? 0 : 1 + IntegerLog2(n >> 1); |
| } |
| |
| // Returns the number of bits of randomness returned through |
| // `PowerOfTwoVariate(urbg)`. |
| template <typename URBG> |
| constexpr size_t NumBits() { |
| return static_cast<size_t>( |
| RangeSize<URBG>() == 0 |
| ? std::numeric_limits<typename URBG::result_type>::digits |
| : IntegerLog2(RangeSize<URBG>())); |
| } |
| |
| // Given a shift value `n`, constructs a mask with exactly the low `n` bits set. |
| // If `n == 0`, all bits are set. |
| template <typename UIntType> |
| constexpr UIntType MaskFromShift(size_t n) { |
| return ((n % std::numeric_limits<UIntType>::digits) == 0) |
| ? ~UIntType{0} |
| : (UIntType{1} << n) - UIntType{1}; |
| } |
| |
| // Tags used to dispatch FastUniformBits::generate to the simple or more complex |
| // entropy extraction algorithm. |
| struct SimplifiedLoopTag {}; |
| struct RejectionLoopTag {}; |
| |
| // FastUniformBits implements a fast path to acquire uniform independent bits |
| // from a type which conforms to the [rand.req.urbg] concept. |
| // Parameterized by: |
| // `UIntType`: the result (output) type |
| // |
| // The std::independent_bits_engine [rand.adapt.ibits] adaptor can be |
| // instantiated from an existing generator through a copy or a move. It does |
| // not, however, facilitate the production of pseudorandom bits from an un-owned |
| // generator that will outlive the std::independent_bits_engine instance. |
| template <typename UIntType = uint64_t> |
| class FastUniformBits { |
| public: |
| using result_type = UIntType; |
| |
| static constexpr result_type(min)() { return 0; } |
| static constexpr result_type(max)() { |
| return (std::numeric_limits<result_type>::max)(); |
| } |
| |
| template <typename URBG> |
| result_type operator()(URBG& g); // NOLINT(runtime/references) |
| |
| private: |
| static_assert(IsUnsigned<UIntType>::value, |
| "Class-template FastUniformBits<> must be parameterized using " |
| "an unsigned type."); |
| |
| // Generate() generates a random value, dispatched on whether |
| // the underlying URBG must use rejection sampling to generate a value, |
| // or whether a simplified loop will suffice. |
| template <typename URBG> |
| result_type Generate(URBG& g, // NOLINT(runtime/references) |
| SimplifiedLoopTag); |
| |
| template <typename URBG> |
| result_type Generate(URBG& g, // NOLINT(runtime/references) |
| RejectionLoopTag); |
| }; |
| |
| template <typename UIntType> |
| template <typename URBG> |
| typename FastUniformBits<UIntType>::result_type |
| FastUniformBits<UIntType>::operator()(URBG& g) { // NOLINT(runtime/references) |
| // kRangeMask is the mask used when sampling variates from the URBG when the |
| // width of the URBG range is not a power of 2. |
| // Y = (2 ^ kRange) - 1 |
| static_assert((URBG::max)() > (URBG::min)(), |
| "URBG::max and URBG::min may not be equal."); |
| |
| using tag = absl::conditional_t<IsPowerOfTwoOrZero(RangeSize<URBG>()), |
| SimplifiedLoopTag, RejectionLoopTag>; |
| return Generate(g, tag{}); |
| } |
| |
| template <typename UIntType> |
| template <typename URBG> |
| typename FastUniformBits<UIntType>::result_type |
| FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references) |
| SimplifiedLoopTag) { |
| // The simplified version of FastUniformBits works only on URBGs that have |
| // a range that is a power of 2. In this case we simply loop and shift without |
| // attempting to balance the bits across calls. |
| static_assert(IsPowerOfTwoOrZero(RangeSize<URBG>()), |
| "incorrect Generate tag for URBG instance"); |
| |
| static constexpr size_t kResultBits = |
| std::numeric_limits<result_type>::digits; |
| static constexpr size_t kUrbgBits = NumBits<URBG>(); |
| static constexpr size_t kIters = |
| (kResultBits / kUrbgBits) + (kResultBits % kUrbgBits != 0); |
| static constexpr size_t kShift = (kIters == 1) ? 0 : kUrbgBits; |
| static constexpr auto kMin = (URBG::min)(); |
| |
| result_type r = static_cast<result_type>(g() - kMin); |
| for (size_t n = 1; n < kIters; ++n) { |
| r = static_cast<result_type>(r << kShift) + |
| static_cast<result_type>(g() - kMin); |
| } |
| return r; |
| } |
| |
| template <typename UIntType> |
| template <typename URBG> |
| typename FastUniformBits<UIntType>::result_type |
| FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references) |
| RejectionLoopTag) { |
| static_assert(!IsPowerOfTwoOrZero(RangeSize<URBG>()), |
| "incorrect Generate tag for URBG instance"); |
| using urbg_result_type = typename URBG::result_type; |
| |
| // See [rand.adapt.ibits] for more details on the constants calculated below. |
| // |
| // It is preferable to use roughly the same number of bits from each generator |
| // call, however this is only possible when the number of bits provided by the |
| // URBG is a divisor of the number of bits in `result_type`. In all other |
| // cases, the number of bits used cannot always be the same, but it can be |
| // guaranteed to be off by at most 1. Thus we run two loops, one with a |
| // smaller bit-width size (`kSmallWidth`) and one with a larger width size |
| // (satisfying `kLargeWidth == kSmallWidth + 1`). The loops are run |
| // `kSmallIters` and `kLargeIters` times respectively such |
| // that |
| // |
| // `kResultBits == kSmallIters * kSmallBits |
| // + kLargeIters * kLargeBits` |
| // |
| // where `kResultBits` is the total number of bits in `result_type`. |
| // |
| static constexpr size_t kResultBits = |
| std::numeric_limits<result_type>::digits; // w |
| static constexpr urbg_result_type kUrbgRange = RangeSize<URBG>(); // R |
| static constexpr size_t kUrbgBits = NumBits<URBG>(); // m |
| |
| // compute the initial estimate of the bits used. |
| // [rand.adapt.ibits] 2 (c) |
| static constexpr size_t kA = // ceil(w/m) |
| (kResultBits / kUrbgBits) + ((kResultBits % kUrbgBits) != 0); // n' |
| |
| static constexpr size_t kABits = kResultBits / kA; // w0' |
| static constexpr urbg_result_type kARejection = |
| ((kUrbgRange >> kABits) << kABits); // y0' |
| |
| // refine the selection to reduce the rejection frequency. |
| static constexpr size_t kTotalIters = |
| ((kUrbgRange - kARejection) <= (kARejection / kA)) ? kA : (kA + 1); // n |
| |
| // [rand.adapt.ibits] 2 (b) |
| static constexpr size_t kSmallIters = |
| kTotalIters - (kResultBits % kTotalIters); // n0 |
| static constexpr size_t kSmallBits = kResultBits / kTotalIters; // w0 |
| static constexpr urbg_result_type kSmallRejection = |
| ((kUrbgRange >> kSmallBits) << kSmallBits); // y0 |
| |
| static constexpr size_t kLargeBits = kSmallBits + 1; // w0+1 |
| static constexpr urbg_result_type kLargeRejection = |
| ((kUrbgRange >> kLargeBits) << kLargeBits); // y1 |
| |
| // |
| // Because `kLargeBits == kSmallBits + 1`, it follows that |
| // |
| // `kResultBits == kSmallIters * kSmallBits + kLargeIters` |
| // |
| // and therefore |
| // |
| // `kLargeIters == kTotalWidth % kSmallWidth` |
| // |
| // Intuitively, each iteration with the large width accounts for one unit |
| // of the remainder when `kTotalWidth` is divided by `kSmallWidth`. As |
| // mentioned above, if the URBG width is a divisor of `kTotalWidth`, then |
| // there would be no need for any large iterations (i.e., one loop would |
| // suffice), and indeed, in this case, `kLargeIters` would be zero. |
| static_assert(kResultBits == kSmallIters * kSmallBits + |
| (kTotalIters - kSmallIters) * kLargeBits, |
| "Error in looping constant calculations."); |
| |
| // The small shift is essentially small bits, but due to the potential |
| // of generating a smaller result_type from a larger urbg type, the actual |
| // shift might be 0. |
| static constexpr size_t kSmallShift = kSmallBits % kResultBits; |
| static constexpr auto kSmallMask = |
| MaskFromShift<urbg_result_type>(kSmallShift); |
| static constexpr size_t kLargeShift = kLargeBits % kResultBits; |
| static constexpr auto kLargeMask = |
| MaskFromShift<urbg_result_type>(kLargeShift); |
| |
| static constexpr auto kMin = (URBG::min)(); |
| |
| result_type s = 0; |
| for (size_t n = 0; n < kSmallIters; ++n) { |
| urbg_result_type v; |
| do { |
| v = g() - kMin; |
| } while (v >= kSmallRejection); |
| |
| s = (s << kSmallShift) + static_cast<result_type>(v & kSmallMask); |
| } |
| |
| for (size_t n = kSmallIters; n < kTotalIters; ++n) { |
| urbg_result_type v; |
| do { |
| v = g() - kMin; |
| } while (v >= kLargeRejection); |
| |
| s = (s << kLargeShift) + static_cast<result_type>(v & kLargeMask); |
| } |
| return s; |
| } |
| |
| } // namespace random_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_ |