| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/random/internal/distribution_test_util.h" |
| |
| #include "gtest/gtest.h" |
| |
| namespace { |
| |
| TEST(TestUtil, InverseErf) { |
| const struct { |
| const double z; |
| const double value; |
| } kErfInvTable[] = { |
| {0.0000001, 8.86227e-8}, |
| {0.00001, 8.86227e-6}, |
| {0.5, 0.4769362762044}, |
| {0.6, 0.5951160814499}, |
| {0.99999, 3.1234132743}, |
| {0.9999999, 3.7665625816}, |
| {0.999999944, 3.8403850690566985}, // = log((1-x) * (1+x)) =~ 16.004 |
| {0.999999999, 4.3200053849134452}, |
| }; |
| |
| for (const auto& data : kErfInvTable) { |
| auto value = absl::random_internal::erfinv(data.z); |
| |
| // Log using the Wolfram-alpha function name & parameters. |
| EXPECT_NEAR(value, data.value, 1e-8) |
| << " InverseErf[" << data.z << "] (expected=" << data.value << ") -> " |
| << value; |
| } |
| } |
| |
| const struct { |
| const double p; |
| const double q; |
| const double x; |
| const double alpha; |
| } kBetaTable[] = { |
| {0.5, 0.5, 0.01, 0.06376856085851985}, |
| {0.5, 0.5, 0.1, 0.2048327646991335}, |
| {0.5, 0.5, 1, 1}, |
| {1, 0.5, 0, 0}, |
| {1, 0.5, 0.01, 0.005012562893380045}, |
| {1, 0.5, 0.1, 0.0513167019494862}, |
| {1, 0.5, 0.5, 0.2928932188134525}, |
| {1, 1, 0.5, 0.5}, |
| {2, 2, 0.1, 0.028}, |
| {2, 2, 0.2, 0.104}, |
| {2, 2, 0.3, 0.216}, |
| {2, 2, 0.4, 0.352}, |
| {2, 2, 0.5, 0.5}, |
| {2, 2, 0.6, 0.648}, |
| {2, 2, 0.7, 0.784}, |
| {2, 2, 0.8, 0.896}, |
| {2, 2, 0.9, 0.972}, |
| {5.5, 5, 0.5, 0.4361908850559777}, |
| {10, 0.5, 0.9, 0.1516409096346979}, |
| {10, 5, 0.5, 0.08978271484375}, |
| {10, 5, 1, 1}, |
| {10, 10, 0.5, 0.5}, |
| {20, 5, 0.8, 0.4598773297575791}, |
| {20, 10, 0.6, 0.2146816102371739}, |
| {20, 10, 0.8, 0.9507364826957875}, |
| {20, 20, 0.5, 0.5}, |
| {20, 20, 0.6, 0.8979413687105918}, |
| {30, 10, 0.7, 0.2241297491808366}, |
| {30, 10, 0.8, 0.7586405487192086}, |
| {40, 20, 0.7, 0.7001783247477069}, |
| {1, 0.5, 0.1, 0.0513167019494862}, |
| {1, 0.5, 0.2, 0.1055728090000841}, |
| {1, 0.5, 0.3, 0.1633399734659245}, |
| {1, 0.5, 0.4, 0.2254033307585166}, |
| {1, 2, 0.2, 0.36}, |
| {1, 3, 0.2, 0.488}, |
| {1, 4, 0.2, 0.5904}, |
| {1, 5, 0.2, 0.67232}, |
| {2, 2, 0.3, 0.216}, |
| {3, 2, 0.3, 0.0837}, |
| {4, 2, 0.3, 0.03078}, |
| {5, 2, 0.3, 0.010935}, |
| |
| // These values test small & large points along the range of the Beta |
| // function. |
| // |
| // When selecting test points, remember that if BetaIncomplete(x, p, q) |
| // returns the same value to within the limits of precision over a large |
| // domain of the input, x, then BetaIncompleteInv(alpha, p, q) may return an |
| // essentially arbitrary value where BetaIncomplete(x, p, q) =~ alpha. |
| |
| // BetaRegularized[x, 0.00001, 0.00001], |
| // For x in {~0.001 ... ~0.999}, => ~0.5 |
| {1e-5, 1e-5, 1e-5, 0.4999424388184638311}, |
| {1e-5, 1e-5, (1.0 - 1e-8), 0.5000920948389232964}, |
| |
| // BetaRegularized[x, 0.00001, 10000]. |
| // For x in {~epsilon ... 1.0}, => ~1 |
| {1e-5, 1e5, 1e-6, 0.9999817708130066936}, |
| {1e-5, 1e5, (1.0 - 1e-7), 1.0}, |
| |
| // BetaRegularized[x, 10000, 0.00001]. |
| // For x in {0 .. 1-epsilon}, => ~0 |
| {1e5, 1e-5, 1e-6, 0}, |
| {1e5, 1e-5, (1.0 - 1e-6), 1.8229186993306369e-5}, |
| }; |
| |
| TEST(BetaTest, BetaIncomplete) { |
| for (const auto& data : kBetaTable) { |
| auto value = absl::random_internal::BetaIncomplete(data.x, data.p, data.q); |
| |
| // Log using the Wolfram-alpha function name & parameters. |
| EXPECT_NEAR(value, data.alpha, 1e-12) |
| << " BetaRegularized[" << data.x << ", " << data.p << ", " << data.q |
| << "] (expected=" << data.alpha << ") -> " << value; |
| } |
| } |
| |
| TEST(BetaTest, BetaIncompleteInv) { |
| for (const auto& data : kBetaTable) { |
| auto value = |
| absl::random_internal::BetaIncompleteInv(data.p, data.q, data.alpha); |
| |
| // Log using the Wolfram-alpha function name & parameters. |
| EXPECT_NEAR(value, data.x, 1e-6) |
| << " InverseBetaRegularized[" << data.alpha << ", " << data.p << ", " |
| << data.q << "] (expected=" << data.x << ") -> " << value; |
| } |
| } |
| |
| TEST(MaxErrorTolerance, MaxErrorTolerance) { |
| std::vector<std::pair<double, double>> cases = { |
| {0.0000001, 8.86227e-8 * 1.41421356237}, |
| {0.00001, 8.86227e-6 * 1.41421356237}, |
| {0.5, 0.4769362762044 * 1.41421356237}, |
| {0.6, 0.5951160814499 * 1.41421356237}, |
| {0.99999, 3.1234132743 * 1.41421356237}, |
| {0.9999999, 3.7665625816 * 1.41421356237}, |
| {0.999999944, 3.8403850690566985 * 1.41421356237}, |
| {0.999999999, 4.3200053849134452 * 1.41421356237}}; |
| for (auto entry : cases) { |
| EXPECT_NEAR(absl::random_internal::MaxErrorTolerance(entry.first), |
| entry.second, 1e-8); |
| } |
| } |
| |
| TEST(ZScore, WithSameMean) { |
| absl::random_internal::DistributionMoments m; |
| m.n = 100; |
| m.mean = 5; |
| m.variance = 1; |
| EXPECT_NEAR(absl::random_internal::ZScore(5, m), 0, 1e-12); |
| |
| m.n = 1; |
| m.mean = 0; |
| m.variance = 1; |
| EXPECT_NEAR(absl::random_internal::ZScore(0, m), 0, 1e-12); |
| |
| m.n = 10000; |
| m.mean = -5; |
| m.variance = 100; |
| EXPECT_NEAR(absl::random_internal::ZScore(-5, m), 0, 1e-12); |
| } |
| |
| TEST(ZScore, DifferentMean) { |
| absl::random_internal::DistributionMoments m; |
| m.n = 100; |
| m.mean = 5; |
| m.variance = 1; |
| EXPECT_NEAR(absl::random_internal::ZScore(4, m), 10, 1e-12); |
| |
| m.n = 1; |
| m.mean = 0; |
| m.variance = 1; |
| EXPECT_NEAR(absl::random_internal::ZScore(-1, m), 1, 1e-12); |
| |
| m.n = 10000; |
| m.mean = -5; |
| m.variance = 100; |
| EXPECT_NEAR(absl::random_internal::ZScore(-4, m), -10, 1e-12); |
| } |
| } // namespace |