| // Copyright 2020 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/strings/internal/str_format/float_conversion.h" |
| |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <array> |
| #include <cassert> |
| #include <cmath> |
| #include <limits> |
| #include <string> |
| |
| #include "absl/base/attributes.h" |
| #include "absl/base/config.h" |
| #include "absl/base/optimization.h" |
| #include "absl/functional/function_ref.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/numeric/bits.h" |
| #include "absl/numeric/int128.h" |
| #include "absl/numeric/internal/representation.h" |
| #include "absl/strings/numbers.h" |
| #include "absl/types/optional.h" |
| #include "absl/types/span.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace str_format_internal { |
| |
| namespace { |
| |
| using ::absl::numeric_internal::IsDoubleDouble; |
| |
| // The code below wants to avoid heap allocations. |
| // To do so it needs to allocate memory on the stack. |
| // `StackArray` will allocate memory on the stack in the form of a uint32_t |
| // array and call the provided callback with said memory. |
| // It will allocate memory in increments of 512 bytes. We could allocate the |
| // largest needed unconditionally, but that is more than we need in most of |
| // cases. This way we use less stack in the common cases. |
| class StackArray { |
| using Func = absl::FunctionRef<void(absl::Span<uint32_t>)>; |
| static constexpr size_t kStep = 512 / sizeof(uint32_t); |
| // 5 steps is 2560 bytes, which is enough to hold a long double with the |
| // largest/smallest exponents. |
| // The operations below will static_assert their particular maximum. |
| static constexpr size_t kNumSteps = 5; |
| |
| // We do not want this function to be inlined. |
| // Otherwise the caller will allocate the stack space unnecessarily for all |
| // the variants even though it only calls one. |
| template <size_t steps> |
| ABSL_ATTRIBUTE_NOINLINE static void RunWithCapacityImpl(Func f) { |
| uint32_t values[steps * kStep]{}; |
| f(absl::MakeSpan(values)); |
| } |
| |
| public: |
| static constexpr size_t kMaxCapacity = kStep * kNumSteps; |
| |
| static void RunWithCapacity(size_t capacity, Func f) { |
| assert(capacity <= kMaxCapacity); |
| const size_t step = (capacity + kStep - 1) / kStep; |
| assert(step <= kNumSteps); |
| switch (step) { |
| case 1: |
| return RunWithCapacityImpl<1>(f); |
| case 2: |
| return RunWithCapacityImpl<2>(f); |
| case 3: |
| return RunWithCapacityImpl<3>(f); |
| case 4: |
| return RunWithCapacityImpl<4>(f); |
| case 5: |
| return RunWithCapacityImpl<5>(f); |
| } |
| |
| assert(false && "Invalid capacity"); |
| } |
| }; |
| |
| // Calculates `10 * (*v) + carry` and stores the result in `*v` and returns |
| // the carry. |
| // Requires: `0 <= carry <= 9` |
| template <typename Int> |
| inline char MultiplyBy10WithCarry(Int* v, char carry) { |
| using BiggerInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>; |
| BiggerInt tmp = |
| 10 * static_cast<BiggerInt>(*v) + static_cast<BiggerInt>(carry); |
| *v = static_cast<Int>(tmp); |
| return static_cast<char>(tmp >> (sizeof(Int) * 8)); |
| } |
| |
| // Calculates `(2^64 * carry + *v) / 10`. |
| // Stores the quotient in `*v` and returns the remainder. |
| // Requires: `0 <= carry <= 9` |
| inline char DivideBy10WithCarry(uint64_t* v, char carry) { |
| constexpr uint64_t divisor = 10; |
| // 2^64 / divisor = chunk_quotient + chunk_remainder / divisor |
| constexpr uint64_t chunk_quotient = (uint64_t{1} << 63) / (divisor / 2); |
| constexpr uint64_t chunk_remainder = uint64_t{} - chunk_quotient * divisor; |
| |
| const uint64_t carry_u64 = static_cast<uint64_t>(carry); |
| const uint64_t mod = *v % divisor; |
| const uint64_t next_carry = chunk_remainder * carry_u64 + mod; |
| *v = *v / divisor + carry_u64 * chunk_quotient + next_carry / divisor; |
| return static_cast<char>(next_carry % divisor); |
| } |
| |
| using MaxFloatType = |
| typename std::conditional<IsDoubleDouble(), double, long double>::type; |
| |
| // Generates the decimal representation for an integer of the form `v * 2^exp`, |
| // where `v` and `exp` are both positive integers. |
| // It generates the digits from the left (ie the most significant digit first) |
| // to allow for direct printing into the sink. |
| // |
| // Requires `0 <= exp` and `exp <= numeric_limits<MaxFloatType>::max_exponent`. |
| class BinaryToDecimal { |
| static constexpr size_t ChunksNeeded(int exp) { |
| // We will left shift a uint128 by `exp` bits, so we need `128+exp` total |
| // bits. Round up to 32. |
| // See constructor for details about adding `10%` to the value. |
| return static_cast<size_t>((128 + exp + 31) / 32 * 11 / 10); |
| } |
| |
| public: |
| // Run the conversion for `v * 2^exp` and call `f(binary_to_decimal)`. |
| // This function will allocate enough stack space to perform the conversion. |
| static void RunConversion(uint128 v, int exp, |
| absl::FunctionRef<void(BinaryToDecimal)> f) { |
| assert(exp > 0); |
| assert(exp <= std::numeric_limits<MaxFloatType>::max_exponent); |
| static_assert( |
| StackArray::kMaxCapacity >= |
| ChunksNeeded(std::numeric_limits<MaxFloatType>::max_exponent), |
| ""); |
| |
| StackArray::RunWithCapacity( |
| ChunksNeeded(exp), |
| [=](absl::Span<uint32_t> input) { f(BinaryToDecimal(input, v, exp)); }); |
| } |
| |
| size_t TotalDigits() const { |
| return (decimal_end_ - decimal_start_) * kDigitsPerChunk + |
| CurrentDigits().size(); |
| } |
| |
| // See the current block of digits. |
| absl::string_view CurrentDigits() const { |
| return absl::string_view(&digits_[kDigitsPerChunk - size_], size_); |
| } |
| |
| // Advance the current view of digits. |
| // Returns `false` when no more digits are available. |
| bool AdvanceDigits() { |
| if (decimal_start_ >= decimal_end_) return false; |
| |
| uint32_t w = data_[decimal_start_++]; |
| for (size_ = 0; size_ < kDigitsPerChunk; w /= 10) { |
| digits_[kDigitsPerChunk - ++size_] = w % 10 + '0'; |
| } |
| return true; |
| } |
| |
| private: |
| BinaryToDecimal(absl::Span<uint32_t> data, uint128 v, int exp) : data_(data) { |
| // We need to print the digits directly into the sink object without |
| // buffering them all first. To do this we need two things: |
| // - to know the total number of digits to do padding when necessary |
| // - to generate the decimal digits from the left. |
| // |
| // In order to do this, we do a two pass conversion. |
| // On the first pass we convert the binary representation of the value into |
| // a decimal representation in which each uint32_t chunk holds up to 9 |
| // decimal digits. In the second pass we take each decimal-holding-uint32_t |
| // value and generate the ascii decimal digits into `digits_`. |
| // |
| // The binary and decimal representations actually share the same memory |
| // region. As we go converting the chunks from binary to decimal we free |
| // them up and reuse them for the decimal representation. One caveat is that |
| // the decimal representation is around 7% less efficient in space than the |
| // binary one. We allocate an extra 10% memory to account for this. See |
| // ChunksNeeded for this calculation. |
| size_t after_chunk_index = static_cast<size_t>(exp / 32 + 1); |
| decimal_start_ = decimal_end_ = ChunksNeeded(exp); |
| const int offset = exp % 32; |
| // Left shift v by exp bits. |
| data_[after_chunk_index - 1] = static_cast<uint32_t>(v << offset); |
| for (v >>= (32 - offset); v; v >>= 32) |
| data_[++after_chunk_index - 1] = static_cast<uint32_t>(v); |
| |
| while (after_chunk_index > 0) { |
| // While we have more than one chunk available, go in steps of 1e9. |
| // `data_[after_chunk_index - 1]` holds the highest non-zero binary chunk, |
| // so keep the variable updated. |
| uint32_t carry = 0; |
| for (size_t i = after_chunk_index; i > 0; --i) { |
| uint64_t tmp = uint64_t{data_[i - 1]} + (uint64_t{carry} << 32); |
| data_[i - 1] = static_cast<uint32_t>(tmp / uint64_t{1000000000}); |
| carry = static_cast<uint32_t>(tmp % uint64_t{1000000000}); |
| } |
| |
| // If the highest chunk is now empty, remove it from view. |
| if (data_[after_chunk_index - 1] == 0) |
| --after_chunk_index; |
| |
| --decimal_start_; |
| assert(decimal_start_ != after_chunk_index - 1); |
| data_[decimal_start_] = carry; |
| } |
| |
| // Fill the first set of digits. The first chunk might not be complete, so |
| // handle differently. |
| for (uint32_t first = data_[decimal_start_++]; first != 0; first /= 10) { |
| digits_[kDigitsPerChunk - ++size_] = first % 10 + '0'; |
| } |
| } |
| |
| private: |
| static constexpr size_t kDigitsPerChunk = 9; |
| |
| size_t decimal_start_; |
| size_t decimal_end_; |
| |
| std::array<char, kDigitsPerChunk> digits_; |
| size_t size_ = 0; |
| |
| absl::Span<uint32_t> data_; |
| }; |
| |
| // Converts a value of the form `x * 2^-exp` into a sequence of decimal digits. |
| // Requires `-exp < 0` and |
| // `-exp >= limits<MaxFloatType>::min_exponent - limits<MaxFloatType>::digits`. |
| class FractionalDigitGenerator { |
| public: |
| // Run the conversion for `v * 2^exp` and call `f(generator)`. |
| // This function will allocate enough stack space to perform the conversion. |
| static void RunConversion( |
| uint128 v, int exp, absl::FunctionRef<void(FractionalDigitGenerator)> f) { |
| using Limits = std::numeric_limits<MaxFloatType>; |
| assert(-exp < 0); |
| assert(-exp >= Limits::min_exponent - 128); |
| static_assert(StackArray::kMaxCapacity >= |
| (Limits::digits + 128 - Limits::min_exponent + 31) / 32, |
| ""); |
| StackArray::RunWithCapacity( |
| static_cast<size_t>((Limits::digits + exp + 31) / 32), |
| [=](absl::Span<uint32_t> input) { |
| f(FractionalDigitGenerator(input, v, exp)); |
| }); |
| } |
| |
| // Returns true if there are any more non-zero digits left. |
| bool HasMoreDigits() const { return next_digit_ != 0 || after_chunk_index_; } |
| |
| // Returns true if the remainder digits are greater than 5000... |
| bool IsGreaterThanHalf() const { |
| return next_digit_ > 5 || (next_digit_ == 5 && after_chunk_index_); |
| } |
| // Returns true if the remainder digits are exactly 5000... |
| bool IsExactlyHalf() const { return next_digit_ == 5 && !after_chunk_index_; } |
| |
| struct Digits { |
| char digit_before_nine; |
| size_t num_nines; |
| }; |
| |
| // Get the next set of digits. |
| // They are composed by a non-9 digit followed by a runs of zero or more 9s. |
| Digits GetDigits() { |
| Digits digits{next_digit_, 0}; |
| |
| next_digit_ = GetOneDigit(); |
| while (next_digit_ == 9) { |
| ++digits.num_nines; |
| next_digit_ = GetOneDigit(); |
| } |
| |
| return digits; |
| } |
| |
| private: |
| // Return the next digit. |
| char GetOneDigit() { |
| if (!after_chunk_index_) |
| return 0; |
| |
| char carry = 0; |
| for (size_t i = after_chunk_index_; i > 0; --i) { |
| carry = MultiplyBy10WithCarry(&data_[i - 1], carry); |
| } |
| // If the lowest chunk is now empty, remove it from view. |
| if (data_[after_chunk_index_ - 1] == 0) |
| --after_chunk_index_; |
| return carry; |
| } |
| |
| FractionalDigitGenerator(absl::Span<uint32_t> data, uint128 v, int exp) |
| : after_chunk_index_(static_cast<size_t>(exp / 32 + 1)), data_(data) { |
| const int offset = exp % 32; |
| // Right shift `v` by `exp` bits. |
| data_[after_chunk_index_ - 1] = static_cast<uint32_t>(v << (32 - offset)); |
| v >>= offset; |
| // Make sure we don't overflow the data. We already calculated that |
| // non-zero bits fit, so we might not have space for leading zero bits. |
| for (size_t pos = after_chunk_index_ - 1; v; v >>= 32) |
| data_[--pos] = static_cast<uint32_t>(v); |
| |
| // Fill next_digit_, as GetDigits expects it to be populated always. |
| next_digit_ = GetOneDigit(); |
| } |
| |
| char next_digit_; |
| size_t after_chunk_index_; |
| absl::Span<uint32_t> data_; |
| }; |
| |
| // Count the number of leading zero bits. |
| int LeadingZeros(uint64_t v) { return countl_zero(v); } |
| int LeadingZeros(uint128 v) { |
| auto high = static_cast<uint64_t>(v >> 64); |
| auto low = static_cast<uint64_t>(v); |
| return high != 0 ? countl_zero(high) : 64 + countl_zero(low); |
| } |
| |
| // Round up the text digits starting at `p`. |
| // The buffer must have an extra digit that is known to not need rounding. |
| // This is done below by having an extra '0' digit on the left. |
| void RoundUp(char *p) { |
| while (*p == '9' || *p == '.') { |
| if (*p == '9') *p = '0'; |
| --p; |
| } |
| ++*p; |
| } |
| |
| // Check the previous digit and round up or down to follow the round-to-even |
| // policy. |
| void RoundToEven(char *p) { |
| if (*p == '.') --p; |
| if (*p % 2 == 1) RoundUp(p); |
| } |
| |
| // Simple integral decimal digit printing for values that fit in 64-bits. |
| // Returns the pointer to the last written digit. |
| char *PrintIntegralDigitsFromRightFast(uint64_t v, char *p) { |
| do { |
| *--p = DivideBy10WithCarry(&v, 0) + '0'; |
| } while (v != 0); |
| return p; |
| } |
| |
| // Simple integral decimal digit printing for values that fit in 128-bits. |
| // Returns the pointer to the last written digit. |
| char *PrintIntegralDigitsFromRightFast(uint128 v, char *p) { |
| auto high = static_cast<uint64_t>(v >> 64); |
| auto low = static_cast<uint64_t>(v); |
| |
| while (high != 0) { |
| char carry = DivideBy10WithCarry(&high, 0); |
| carry = DivideBy10WithCarry(&low, carry); |
| *--p = carry + '0'; |
| } |
| return PrintIntegralDigitsFromRightFast(low, p); |
| } |
| |
| // Simple fractional decimal digit printing for values that fir in 64-bits after |
| // shifting. |
| // Performs rounding if necessary to fit within `precision`. |
| // Returns the pointer to one after the last character written. |
| char* PrintFractionalDigitsFast(uint64_t v, |
| char* start, |
| int exp, |
| size_t precision) { |
| char *p = start; |
| v <<= (64 - exp); |
| while (precision > 0) { |
| if (!v) return p; |
| *p++ = MultiplyBy10WithCarry(&v, 0) + '0'; |
| --precision; |
| } |
| |
| // We need to round. |
| if (v < 0x8000000000000000) { |
| // We round down, so nothing to do. |
| } else if (v > 0x8000000000000000) { |
| // We round up. |
| RoundUp(p - 1); |
| } else { |
| RoundToEven(p - 1); |
| } |
| |
| return p; |
| } |
| |
| // Simple fractional decimal digit printing for values that fir in 128-bits |
| // after shifting. |
| // Performs rounding if necessary to fit within `precision`. |
| // Returns the pointer to one after the last character written. |
| char* PrintFractionalDigitsFast(uint128 v, |
| char* start, |
| int exp, |
| size_t precision) { |
| char *p = start; |
| v <<= (128 - exp); |
| auto high = static_cast<uint64_t>(v >> 64); |
| auto low = static_cast<uint64_t>(v); |
| |
| // While we have digits to print and `low` is not empty, do the long |
| // multiplication. |
| while (precision > 0 && low != 0) { |
| char carry = MultiplyBy10WithCarry(&low, 0); |
| carry = MultiplyBy10WithCarry(&high, carry); |
| |
| *p++ = carry + '0'; |
| --precision; |
| } |
| |
| // Now `low` is empty, so use a faster approach for the rest of the digits. |
| // This block is pretty much the same as the main loop for the 64-bit case |
| // above. |
| while (precision > 0) { |
| if (!high) return p; |
| *p++ = MultiplyBy10WithCarry(&high, 0) + '0'; |
| --precision; |
| } |
| |
| // We need to round. |
| if (high < 0x8000000000000000) { |
| // We round down, so nothing to do. |
| } else if (high > 0x8000000000000000 || low != 0) { |
| // We round up. |
| RoundUp(p - 1); |
| } else { |
| RoundToEven(p - 1); |
| } |
| |
| return p; |
| } |
| |
| struct FormatState { |
| char sign_char; |
| size_t precision; |
| const FormatConversionSpecImpl &conv; |
| FormatSinkImpl *sink; |
| |
| // In `alt` mode (flag #) we keep the `.` even if there are no fractional |
| // digits. In non-alt mode, we strip it. |
| bool ShouldPrintDot() const { return precision != 0 || conv.has_alt_flag(); } |
| }; |
| |
| struct Padding { |
| size_t left_spaces; |
| size_t zeros; |
| size_t right_spaces; |
| }; |
| |
| Padding ExtraWidthToPadding(size_t total_size, const FormatState &state) { |
| if (state.conv.width() < 0 || |
| static_cast<size_t>(state.conv.width()) <= total_size) { |
| return {0, 0, 0}; |
| } |
| size_t missing_chars = static_cast<size_t>(state.conv.width()) - total_size; |
| if (state.conv.has_left_flag()) { |
| return {0, 0, missing_chars}; |
| } else if (state.conv.has_zero_flag()) { |
| return {0, missing_chars, 0}; |
| } else { |
| return {missing_chars, 0, 0}; |
| } |
| } |
| |
| void FinalPrint(const FormatState& state, |
| absl::string_view data, |
| size_t padding_offset, |
| size_t trailing_zeros, |
| absl::string_view data_postfix) { |
| if (state.conv.width() < 0) { |
| // No width specified. Fast-path. |
| if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); |
| state.sink->Append(data); |
| state.sink->Append(trailing_zeros, '0'); |
| state.sink->Append(data_postfix); |
| return; |
| } |
| |
| auto padding = |
| ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) + data.size() + |
| data_postfix.size() + trailing_zeros, |
| state); |
| |
| state.sink->Append(padding.left_spaces, ' '); |
| if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); |
| // Padding in general needs to be inserted somewhere in the middle of `data`. |
| state.sink->Append(data.substr(0, padding_offset)); |
| state.sink->Append(padding.zeros, '0'); |
| state.sink->Append(data.substr(padding_offset)); |
| state.sink->Append(trailing_zeros, '0'); |
| state.sink->Append(data_postfix); |
| state.sink->Append(padding.right_spaces, ' '); |
| } |
| |
| // Fastpath %f formatter for when the shifted value fits in a simple integral |
| // type. |
| // Prints `v*2^exp` with the options from `state`. |
| template <typename Int> |
| void FormatFFast(Int v, int exp, const FormatState &state) { |
| constexpr int input_bits = sizeof(Int) * 8; |
| |
| static constexpr size_t integral_size = |
| /* in case we need to round up an extra digit */ 1 + |
| /* decimal digits for uint128 */ 40 + 1; |
| char buffer[integral_size + /* . */ 1 + /* max digits uint128 */ 128]; |
| buffer[integral_size] = '.'; |
| char *const integral_digits_end = buffer + integral_size; |
| char *integral_digits_start; |
| char *const fractional_digits_start = buffer + integral_size + 1; |
| char *fractional_digits_end = fractional_digits_start; |
| |
| if (exp >= 0) { |
| const int total_bits = input_bits - LeadingZeros(v) + exp; |
| integral_digits_start = |
| total_bits <= 64 |
| ? PrintIntegralDigitsFromRightFast(static_cast<uint64_t>(v) << exp, |
| integral_digits_end) |
| : PrintIntegralDigitsFromRightFast(static_cast<uint128>(v) << exp, |
| integral_digits_end); |
| } else { |
| exp = -exp; |
| |
| integral_digits_start = PrintIntegralDigitsFromRightFast( |
| exp < input_bits ? v >> exp : 0, integral_digits_end); |
| // PrintFractionalDigits may pull a carried 1 all the way up through the |
| // integral portion. |
| integral_digits_start[-1] = '0'; |
| |
| fractional_digits_end = |
| exp <= 64 ? PrintFractionalDigitsFast(v, fractional_digits_start, exp, |
| state.precision) |
| : PrintFractionalDigitsFast(static_cast<uint128>(v), |
| fractional_digits_start, exp, |
| state.precision); |
| // There was a carry, so include the first digit too. |
| if (integral_digits_start[-1] != '0') --integral_digits_start; |
| } |
| |
| size_t size = |
| static_cast<size_t>(fractional_digits_end - integral_digits_start); |
| |
| // In `alt` mode (flag #) we keep the `.` even if there are no fractional |
| // digits. In non-alt mode, we strip it. |
| if (!state.ShouldPrintDot()) --size; |
| FinalPrint(state, absl::string_view(integral_digits_start, size), |
| /*padding_offset=*/0, |
| state.precision - static_cast<size_t>(fractional_digits_end - |
| fractional_digits_start), |
| /*data_postfix=*/""); |
| } |
| |
| // Slow %f formatter for when the shifted value does not fit in a uint128, and |
| // `exp > 0`. |
| // Prints `v*2^exp` with the options from `state`. |
| // This one is guaranteed to not have fractional digits, so we don't have to |
| // worry about anything after the `.`. |
| void FormatFPositiveExpSlow(uint128 v, int exp, const FormatState &state) { |
| BinaryToDecimal::RunConversion(v, exp, [&](BinaryToDecimal btd) { |
| const size_t total_digits = |
| btd.TotalDigits() + (state.ShouldPrintDot() ? state.precision + 1 : 0); |
| |
| const auto padding = ExtraWidthToPadding( |
| total_digits + (state.sign_char != '\0' ? 1 : 0), state); |
| |
| state.sink->Append(padding.left_spaces, ' '); |
| if (state.sign_char != '\0') |
| state.sink->Append(1, state.sign_char); |
| state.sink->Append(padding.zeros, '0'); |
| |
| do { |
| state.sink->Append(btd.CurrentDigits()); |
| } while (btd.AdvanceDigits()); |
| |
| if (state.ShouldPrintDot()) |
| state.sink->Append(1, '.'); |
| state.sink->Append(state.precision, '0'); |
| state.sink->Append(padding.right_spaces, ' '); |
| }); |
| } |
| |
| // Slow %f formatter for when the shifted value does not fit in a uint128, and |
| // `exp < 0`. |
| // Prints `v*2^exp` with the options from `state`. |
| // This one is guaranteed to be < 1.0, so we don't have to worry about integral |
| // digits. |
| void FormatFNegativeExpSlow(uint128 v, int exp, const FormatState &state) { |
| const size_t total_digits = |
| /* 0 */ 1 + (state.ShouldPrintDot() ? state.precision + 1 : 0); |
| auto padding = |
| ExtraWidthToPadding(total_digits + (state.sign_char ? 1 : 0), state); |
| padding.zeros += 1; |
| state.sink->Append(padding.left_spaces, ' '); |
| if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); |
| state.sink->Append(padding.zeros, '0'); |
| |
| if (state.ShouldPrintDot()) state.sink->Append(1, '.'); |
| |
| // Print digits |
| size_t digits_to_go = state.precision; |
| |
| FractionalDigitGenerator::RunConversion( |
| v, exp, [&](FractionalDigitGenerator digit_gen) { |
| // There are no digits to print here. |
| if (state.precision == 0) return; |
| |
| // We go one digit at a time, while keeping track of runs of nines. |
| // The runs of nines are used to perform rounding when necessary. |
| |
| while (digits_to_go > 0 && digit_gen.HasMoreDigits()) { |
| auto digits = digit_gen.GetDigits(); |
| |
| // Now we have a digit and a run of nines. |
| // See if we can print them all. |
| if (digits.num_nines + 1 < digits_to_go) { |
| // We don't have to round yet, so print them. |
| state.sink->Append(1, digits.digit_before_nine + '0'); |
| state.sink->Append(digits.num_nines, '9'); |
| digits_to_go -= digits.num_nines + 1; |
| |
| } else { |
| // We can't print all the nines, see where we have to truncate. |
| |
| bool round_up = false; |
| if (digits.num_nines + 1 > digits_to_go) { |
| // We round up at a nine. No need to print them. |
| round_up = true; |
| } else { |
| // We can fit all the nines, but truncate just after it. |
| if (digit_gen.IsGreaterThanHalf()) { |
| round_up = true; |
| } else if (digit_gen.IsExactlyHalf()) { |
| // Round to even |
| round_up = |
| digits.num_nines != 0 || digits.digit_before_nine % 2 == 1; |
| } |
| } |
| |
| if (round_up) { |
| state.sink->Append(1, digits.digit_before_nine + '1'); |
| --digits_to_go; |
| // The rest will be zeros. |
| } else { |
| state.sink->Append(1, digits.digit_before_nine + '0'); |
| state.sink->Append(digits_to_go - 1, '9'); |
| digits_to_go = 0; |
| } |
| return; |
| } |
| } |
| }); |
| |
| state.sink->Append(digits_to_go, '0'); |
| state.sink->Append(padding.right_spaces, ' '); |
| } |
| |
| template <typename Int> |
| void FormatF(Int mantissa, int exp, const FormatState &state) { |
| if (exp >= 0) { |
| const int total_bits = |
| static_cast<int>(sizeof(Int) * 8) - LeadingZeros(mantissa) + exp; |
| |
| // Fallback to the slow stack-based approach if we can't do it in a 64 or |
| // 128 bit state. |
| if (ABSL_PREDICT_FALSE(total_bits > 128)) { |
| return FormatFPositiveExpSlow(mantissa, exp, state); |
| } |
| } else { |
| // Fallback to the slow stack-based approach if we can't do it in a 64 or |
| // 128 bit state. |
| if (ABSL_PREDICT_FALSE(exp < -128)) { |
| return FormatFNegativeExpSlow(mantissa, -exp, state); |
| } |
| } |
| return FormatFFast(mantissa, exp, state); |
| } |
| |
| // Grab the group of four bits (nibble) from `n`. E.g., nibble 1 corresponds to |
| // bits 4-7. |
| template <typename Int> |
| uint8_t GetNibble(Int n, size_t nibble_index) { |
| constexpr Int mask_low_nibble = Int{0xf}; |
| int shift = static_cast<int>(nibble_index * 4); |
| n &= mask_low_nibble << shift; |
| return static_cast<uint8_t>((n >> shift) & 0xf); |
| } |
| |
| // Add one to the given nibble, applying carry to higher nibbles. Returns true |
| // if overflow, false otherwise. |
| template <typename Int> |
| bool IncrementNibble(size_t nibble_index, Int* n) { |
| constexpr size_t kShift = sizeof(Int) * 8 - 1; |
| constexpr size_t kNumNibbles = sizeof(Int) * 8 / 4; |
| Int before = *n >> kShift; |
| // Here we essentially want to take the number 1 and move it into the |
| // requested nibble, then add it to *n to effectively increment the nibble. |
| // However, ASan will complain if we try to shift the 1 beyond the limits of |
| // the Int, i.e., if the nibble_index is out of range. So therefore we check |
| // for this and if we are out of range we just add 0 which leaves *n |
| // unchanged, which seems like the reasonable thing to do in that case. |
| *n += ((nibble_index >= kNumNibbles) |
| ? 0 |
| : (Int{1} << static_cast<int>(nibble_index * 4))); |
| Int after = *n >> kShift; |
| return (before && !after) || (nibble_index >= kNumNibbles); |
| } |
| |
| // Return a mask with 1's in the given nibble and all lower nibbles. |
| template <typename Int> |
| Int MaskUpToNibbleInclusive(size_t nibble_index) { |
| constexpr size_t kNumNibbles = sizeof(Int) * 8 / 4; |
| static const Int ones = ~Int{0}; |
| ++nibble_index; |
| return ones >> static_cast<int>( |
| 4 * (std::max(kNumNibbles, nibble_index) - nibble_index)); |
| } |
| |
| // Return a mask with 1's below the given nibble. |
| template <typename Int> |
| Int MaskUpToNibbleExclusive(size_t nibble_index) { |
| return nibble_index == 0 ? 0 : MaskUpToNibbleInclusive<Int>(nibble_index - 1); |
| } |
| |
| template <typename Int> |
| Int MoveToNibble(uint8_t nibble, size_t nibble_index) { |
| return Int{nibble} << static_cast<int>(4 * nibble_index); |
| } |
| |
| // Given mantissa size, find optimal # of mantissa bits to put in initial digit. |
| // |
| // In the hex representation we keep a single hex digit to the left of the dot. |
| // However, the question as to how many bits of the mantissa should be put into |
| // that hex digit in theory is arbitrary, but in practice it is optimal to |
| // choose based on the size of the mantissa. E.g., for a `double`, there are 53 |
| // mantissa bits, so that means that we should put 1 bit to the left of the dot, |
| // thereby leaving 52 bits to the right, which is evenly divisible by four and |
| // thus all fractional digits represent actual precision. For a `long double`, |
| // on the other hand, there are 64 bits of mantissa, thus we can use all four |
| // bits for the initial hex digit and still have a number left over (60) that is |
| // a multiple of four. Once again, the goal is to have all fractional digits |
| // represent real precision. |
| template <typename Float> |
| constexpr size_t HexFloatLeadingDigitSizeInBits() { |
| return std::numeric_limits<Float>::digits % 4 > 0 |
| ? static_cast<size_t>(std::numeric_limits<Float>::digits % 4) |
| : size_t{4}; |
| } |
| |
| // This function captures the rounding behavior of glibc for hex float |
| // representations. E.g. when rounding 0x1.ab800000 to a precision of .2 |
| // ("%.2a") glibc will round up because it rounds toward the even number (since |
| // 0xb is an odd number, it will round up to 0xc). However, when rounding at a |
| // point that is not followed by 800000..., it disregards the parity and rounds |
| // up if > 8 and rounds down if < 8. |
| template <typename Int> |
| bool HexFloatNeedsRoundUp(Int mantissa, |
| size_t final_nibble_displayed, |
| uint8_t leading) { |
| // If the last nibble (hex digit) to be displayed is the lowest on in the |
| // mantissa then that means that we don't have any further nibbles to inform |
| // rounding, so don't round. |
| if (final_nibble_displayed == 0) { |
| return false; |
| } |
| size_t rounding_nibble_idx = final_nibble_displayed - 1; |
| constexpr size_t kTotalNibbles = sizeof(Int) * 8 / 4; |
| assert(final_nibble_displayed <= kTotalNibbles); |
| Int mantissa_up_to_rounding_nibble_inclusive = |
| mantissa & MaskUpToNibbleInclusive<Int>(rounding_nibble_idx); |
| Int eight = MoveToNibble<Int>(8, rounding_nibble_idx); |
| if (mantissa_up_to_rounding_nibble_inclusive != eight) { |
| return mantissa_up_to_rounding_nibble_inclusive > eight; |
| } |
| // Nibble in question == 8. |
| uint8_t round_if_odd = (final_nibble_displayed == kTotalNibbles) |
| ? leading |
| : GetNibble(mantissa, final_nibble_displayed); |
| return round_if_odd % 2 == 1; |
| } |
| |
| // Stores values associated with a Float type needed by the FormatA |
| // implementation in order to avoid templatizing that function by the Float |
| // type. |
| struct HexFloatTypeParams { |
| template <typename Float> |
| explicit HexFloatTypeParams(Float) |
| : min_exponent(std::numeric_limits<Float>::min_exponent - 1), |
| leading_digit_size_bits(HexFloatLeadingDigitSizeInBits<Float>()) { |
| assert(leading_digit_size_bits >= 1 && leading_digit_size_bits <= 4); |
| } |
| |
| int min_exponent; |
| size_t leading_digit_size_bits; |
| }; |
| |
| // Hex Float Rounding. First check if we need to round; if so, then we do that |
| // by manipulating (incrementing) the mantissa, that way we can later print the |
| // mantissa digits by iterating through them in the same way regardless of |
| // whether a rounding happened. |
| template <typename Int> |
| void FormatARound(bool precision_specified, const FormatState &state, |
| uint8_t *leading, Int *mantissa, int *exp) { |
| constexpr size_t kTotalNibbles = sizeof(Int) * 8 / 4; |
| // Index of the last nibble that we could display given precision. |
| size_t final_nibble_displayed = |
| precision_specified |
| ? (std::max(kTotalNibbles, state.precision) - state.precision) |
| : 0; |
| if (HexFloatNeedsRoundUp(*mantissa, final_nibble_displayed, *leading)) { |
| // Need to round up. |
| bool overflow = IncrementNibble(final_nibble_displayed, mantissa); |
| *leading += (overflow ? 1 : 0); |
| if (ABSL_PREDICT_FALSE(*leading > 15)) { |
| // We have overflowed the leading digit. This would mean that we would |
| // need two hex digits to the left of the dot, which is not allowed. So |
| // adjust the mantissa and exponent so that the result is always 1.0eXXX. |
| *leading = 1; |
| *mantissa = 0; |
| *exp += 4; |
| } |
| } |
| // Now that we have handled a possible round-up we can go ahead and zero out |
| // all the nibbles of the mantissa that we won't need. |
| if (precision_specified) { |
| *mantissa &= ~MaskUpToNibbleExclusive<Int>(final_nibble_displayed); |
| } |
| } |
| |
| template <typename Int> |
| void FormatANormalize(const HexFloatTypeParams float_traits, uint8_t *leading, |
| Int *mantissa, int *exp) { |
| constexpr size_t kIntBits = sizeof(Int) * 8; |
| static const Int kHighIntBit = Int{1} << (kIntBits - 1); |
| const size_t kLeadDigitBitsCount = float_traits.leading_digit_size_bits; |
| // Normalize mantissa so that highest bit set is in MSB position, unless we |
| // get interrupted by the exponent threshold. |
| while (*mantissa && !(*mantissa & kHighIntBit)) { |
| if (ABSL_PREDICT_FALSE(*exp - 1 < float_traits.min_exponent)) { |
| *mantissa >>= (float_traits.min_exponent - *exp); |
| *exp = float_traits.min_exponent; |
| return; |
| } |
| *mantissa <<= 1; |
| --*exp; |
| } |
| // Extract bits for leading digit then shift them away leaving the |
| // fractional part. |
| *leading = static_cast<uint8_t>( |
| *mantissa >> static_cast<int>(kIntBits - kLeadDigitBitsCount)); |
| *exp -= (*mantissa != 0) ? static_cast<int>(kLeadDigitBitsCount) : *exp; |
| *mantissa <<= static_cast<int>(kLeadDigitBitsCount); |
| } |
| |
| template <typename Int> |
| void FormatA(const HexFloatTypeParams float_traits, Int mantissa, int exp, |
| bool uppercase, const FormatState &state) { |
| // Int properties. |
| constexpr size_t kIntBits = sizeof(Int) * 8; |
| constexpr size_t kTotalNibbles = sizeof(Int) * 8 / 4; |
| // Did the user specify a precision explicitly? |
| const bool precision_specified = state.conv.precision() >= 0; |
| |
| // ========== Normalize/Denormalize ========== |
| exp += kIntBits; // make all digits fractional digits. |
| // This holds the (up to four) bits of leading digit, i.e., the '1' in the |
| // number 0x1.e6fp+2. It's always > 0 unless number is zero or denormal. |
| uint8_t leading = 0; |
| FormatANormalize(float_traits, &leading, &mantissa, &exp); |
| |
| // =============== Rounding ================== |
| // Check if we need to round; if so, then we do that by manipulating |
| // (incrementing) the mantissa before beginning to print characters. |
| FormatARound(precision_specified, state, &leading, &mantissa, &exp); |
| |
| // ============= Format Result =============== |
| // This buffer holds the "0x1.ab1de3" portion of "0x1.ab1de3pe+2". Compute the |
| // size with long double which is the largest of the floats. |
| constexpr size_t kBufSizeForHexFloatRepr = |
| 2 // 0x |
| + std::numeric_limits<MaxFloatType>::digits / 4 // number of hex digits |
| + 1 // round up |
| + 1; // "." (dot) |
| char digits_buffer[kBufSizeForHexFloatRepr]; |
| char *digits_iter = digits_buffer; |
| const char *const digits = |
| static_cast<const char *>("0123456789ABCDEF0123456789abcdef") + |
| (uppercase ? 0 : 16); |
| |
| // =============== Hex Prefix ================ |
| *digits_iter++ = '0'; |
| *digits_iter++ = uppercase ? 'X' : 'x'; |
| |
| // ========== Non-Fractional Digit =========== |
| *digits_iter++ = digits[leading]; |
| |
| // ================== Dot ==================== |
| // There are three reasons we might need a dot. Keep in mind that, at this |
| // point, the mantissa holds only the fractional part. |
| if ((precision_specified && state.precision > 0) || |
| (!precision_specified && mantissa > 0) || state.conv.has_alt_flag()) { |
| *digits_iter++ = '.'; |
| } |
| |
| // ============ Fractional Digits ============ |
| size_t digits_emitted = 0; |
| while (mantissa > 0) { |
| *digits_iter++ = digits[GetNibble(mantissa, kTotalNibbles - 1)]; |
| mantissa <<= 4; |
| ++digits_emitted; |
| } |
| size_t trailing_zeros = 0; |
| if (precision_specified) { |
| assert(state.precision >= digits_emitted); |
| trailing_zeros = state.precision - digits_emitted; |
| } |
| auto digits_result = string_view( |
| digits_buffer, static_cast<size_t>(digits_iter - digits_buffer)); |
| |
| // =============== Exponent ================== |
| constexpr size_t kBufSizeForExpDecRepr = |
| numbers_internal::kFastToBufferSize // required for FastIntToBuffer |
| + 1 // 'p' or 'P' |
| + 1; // '+' or '-' |
| char exp_buffer[kBufSizeForExpDecRepr]; |
| exp_buffer[0] = uppercase ? 'P' : 'p'; |
| exp_buffer[1] = exp >= 0 ? '+' : '-'; |
| numbers_internal::FastIntToBuffer(exp < 0 ? -exp : exp, exp_buffer + 2); |
| |
| // ============ Assemble Result ============== |
| FinalPrint(state, |
| digits_result, // 0xN.NNN... |
| 2, // offset of any padding |
| static_cast<size_t>(trailing_zeros), // remaining mantissa padding |
| exp_buffer); // exponent |
| } |
| |
| char *CopyStringTo(absl::string_view v, char *out) { |
| std::memcpy(out, v.data(), v.size()); |
| return out + v.size(); |
| } |
| |
| template <typename Float> |
| bool FallbackToSnprintf(const Float v, const FormatConversionSpecImpl &conv, |
| FormatSinkImpl *sink) { |
| int w = conv.width() >= 0 ? conv.width() : 0; |
| int p = conv.precision() >= 0 ? conv.precision() : -1; |
| char fmt[32]; |
| { |
| char *fp = fmt; |
| *fp++ = '%'; |
| fp = CopyStringTo(FormatConversionSpecImplFriend::FlagsToString(conv), fp); |
| fp = CopyStringTo("*.*", fp); |
| if (std::is_same<long double, Float>()) { |
| *fp++ = 'L'; |
| } |
| *fp++ = FormatConversionCharToChar(conv.conversion_char()); |
| *fp = 0; |
| assert(fp < fmt + sizeof(fmt)); |
| } |
| std::string space(512, '\0'); |
| absl::string_view result; |
| while (true) { |
| int n = snprintf(&space[0], space.size(), fmt, w, p, v); |
| if (n < 0) return false; |
| if (static_cast<size_t>(n) < space.size()) { |
| result = absl::string_view(space.data(), static_cast<size_t>(n)); |
| break; |
| } |
| space.resize(static_cast<size_t>(n) + 1); |
| } |
| sink->Append(result); |
| return true; |
| } |
| |
| // 128-bits in decimal: ceil(128*log(2)/log(10)) |
| // or std::numeric_limits<__uint128_t>::digits10 |
| constexpr size_t kMaxFixedPrecision = 39; |
| |
| constexpr size_t kBufferLength = /*sign*/ 1 + |
| /*integer*/ kMaxFixedPrecision + |
| /*point*/ 1 + |
| /*fraction*/ kMaxFixedPrecision + |
| /*exponent e+123*/ 5; |
| |
| struct Buffer { |
| void push_front(char c) { |
| assert(begin > data); |
| *--begin = c; |
| } |
| void push_back(char c) { |
| assert(end < data + sizeof(data)); |
| *end++ = c; |
| } |
| void pop_back() { |
| assert(begin < end); |
| --end; |
| } |
| |
| char &back() const { |
| assert(begin < end); |
| return end[-1]; |
| } |
| |
| char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; } |
| |
| size_t size() const { return static_cast<size_t>(end - begin); } |
| |
| char data[kBufferLength]; |
| char *begin; |
| char *end; |
| }; |
| |
| enum class FormatStyle { Fixed, Precision }; |
| |
| // If the value is Inf or Nan, print it and return true. |
| // Otherwise, return false. |
| template <typename Float> |
| bool ConvertNonNumericFloats(char sign_char, Float v, |
| const FormatConversionSpecImpl &conv, |
| FormatSinkImpl *sink) { |
| char text[4], *ptr = text; |
| if (sign_char != '\0') *ptr++ = sign_char; |
| if (std::isnan(v)) { |
| ptr = std::copy_n( |
| FormatConversionCharIsUpper(conv.conversion_char()) ? "NAN" : "nan", 3, |
| ptr); |
| } else if (std::isinf(v)) { |
| ptr = std::copy_n( |
| FormatConversionCharIsUpper(conv.conversion_char()) ? "INF" : "inf", 3, |
| ptr); |
| } else { |
| return false; |
| } |
| |
| return sink->PutPaddedString( |
| string_view(text, static_cast<size_t>(ptr - text)), conv.width(), -1, |
| conv.has_left_flag()); |
| } |
| |
| // Round up the last digit of the value. |
| // It will carry over and potentially overflow. 'exp' will be adjusted in that |
| // case. |
| template <FormatStyle mode> |
| void RoundUp(Buffer *buffer, int *exp) { |
| char *p = &buffer->back(); |
| while (p >= buffer->begin && (*p == '9' || *p == '.')) { |
| if (*p == '9') *p = '0'; |
| --p; |
| } |
| |
| if (p < buffer->begin) { |
| *p = '1'; |
| buffer->begin = p; |
| if (mode == FormatStyle::Precision) { |
| std::swap(p[1], p[2]); // move the . |
| ++*exp; |
| buffer->pop_back(); |
| } |
| } else { |
| ++*p; |
| } |
| } |
| |
| void PrintExponent(int exp, char e, Buffer *out) { |
| out->push_back(e); |
| if (exp < 0) { |
| out->push_back('-'); |
| exp = -exp; |
| } else { |
| out->push_back('+'); |
| } |
| // Exponent digits. |
| if (exp > 99) { |
| out->push_back(static_cast<char>(exp / 100 + '0')); |
| out->push_back(static_cast<char>(exp / 10 % 10 + '0')); |
| out->push_back(static_cast<char>(exp % 10 + '0')); |
| } else { |
| out->push_back(static_cast<char>(exp / 10 + '0')); |
| out->push_back(static_cast<char>(exp % 10 + '0')); |
| } |
| } |
| |
| template <typename Float, typename Int> |
| constexpr bool CanFitMantissa() { |
| return |
| #if defined(__clang__) && (__clang_major__ < 9) && !defined(__SSE3__) |
| // Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289 |
| // Casting from long double to uint64_t is miscompiled and drops bits. |
| (!std::is_same<Float, long double>::value || |
| !std::is_same<Int, uint64_t>::value) && |
| #endif |
| std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits; |
| } |
| |
| template <typename Float> |
| struct Decomposed { |
| using MantissaType = |
| absl::conditional_t<std::is_same<long double, Float>::value, uint128, |
| uint64_t>; |
| static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8, |
| ""); |
| MantissaType mantissa; |
| int exponent; |
| }; |
| |
| // Decompose the double into an integer mantissa and an exponent. |
| template <typename Float> |
| Decomposed<Float> Decompose(Float v) { |
| int exp; |
| Float m = std::frexp(v, &exp); |
| m = std::ldexp(m, std::numeric_limits<Float>::digits); |
| exp -= std::numeric_limits<Float>::digits; |
| |
| return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp}; |
| } |
| |
| // Print 'digits' as decimal. |
| // In Fixed mode, we add a '.' at the end. |
| // In Precision mode, we add a '.' after the first digit. |
| template <FormatStyle mode, typename Int> |
| size_t PrintIntegralDigits(Int digits, Buffer* out) { |
| size_t printed = 0; |
| if (digits) { |
| for (; digits; digits /= 10) out->push_front(digits % 10 + '0'); |
| printed = out->size(); |
| if (mode == FormatStyle::Precision) { |
| out->push_front(*out->begin); |
| out->begin[1] = '.'; |
| } else { |
| out->push_back('.'); |
| } |
| } else if (mode == FormatStyle::Fixed) { |
| out->push_front('0'); |
| out->push_back('.'); |
| printed = 1; |
| } |
| return printed; |
| } |
| |
| // Back out 'extra_digits' digits and round up if necessary. |
| void RemoveExtraPrecision(size_t extra_digits, |
| bool has_leftover_value, |
| Buffer* out, |
| int* exp_out) { |
| // Back out the extra digits |
| out->end -= extra_digits; |
| |
| bool needs_to_round_up = [&] { |
| // We look at the digit just past the end. |
| // There must be 'extra_digits' extra valid digits after end. |
| if (*out->end > '5') return true; |
| if (*out->end < '5') return false; |
| if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits, |
| [](char c) { return c != '0'; })) |
| return true; |
| |
| // Ends in ...50*, round to even. |
| return out->last_digit() % 2 == 1; |
| }(); |
| |
| if (needs_to_round_up) { |
| RoundUp<FormatStyle::Precision>(out, exp_out); |
| } |
| } |
| |
| // Print the value into the buffer. |
| // This will not include the exponent, which will be returned in 'exp_out' for |
| // Precision mode. |
| template <typename Int, typename Float, FormatStyle mode> |
| bool FloatToBufferImpl(Int int_mantissa, |
| int exp, |
| size_t precision, |
| Buffer* out, |
| int* exp_out) { |
| assert((CanFitMantissa<Float, Int>())); |
| |
| const int int_bits = std::numeric_limits<Int>::digits; |
| |
| // In precision mode, we start printing one char to the right because it will |
| // also include the '.' |
| // In fixed mode we put the dot afterwards on the right. |
| out->begin = out->end = |
| out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision); |
| |
| if (exp >= 0) { |
| if (std::numeric_limits<Float>::digits + exp > int_bits) { |
| // The value will overflow the Int |
| return false; |
| } |
| size_t digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out); |
| size_t digits_to_zero_pad = precision; |
| if (mode == FormatStyle::Precision) { |
| *exp_out = static_cast<int>(digits_printed - 1); |
| if (digits_to_zero_pad < digits_printed - 1) { |
| RemoveExtraPrecision(digits_printed - 1 - digits_to_zero_pad, false, |
| out, exp_out); |
| return true; |
| } |
| digits_to_zero_pad -= digits_printed - 1; |
| } |
| for (; digits_to_zero_pad-- > 0;) out->push_back('0'); |
| return true; |
| } |
| |
| exp = -exp; |
| // We need at least 4 empty bits for the next decimal digit. |
| // We will multiply by 10. |
| if (exp > int_bits - 4) return false; |
| |
| const Int mask = (Int{1} << exp) - 1; |
| |
| // Print the integral part first. |
| size_t digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out); |
| int_mantissa &= mask; |
| |
| size_t fractional_count = precision; |
| if (mode == FormatStyle::Precision) { |
| if (digits_printed == 0) { |
| // Find the first non-zero digit, when in Precision mode. |
| *exp_out = 0; |
| if (int_mantissa) { |
| while (int_mantissa <= mask) { |
| int_mantissa *= 10; |
| --*exp_out; |
| } |
| } |
| out->push_front(static_cast<char>(int_mantissa >> exp) + '0'); |
| out->push_back('.'); |
| int_mantissa &= mask; |
| } else { |
| // We already have a digit, and a '.' |
| *exp_out = static_cast<int>(digits_printed - 1); |
| if (fractional_count < digits_printed - 1) { |
| // If we had enough digits, return right away. |
| // The code below will try to round again otherwise. |
| RemoveExtraPrecision(digits_printed - 1 - fractional_count, |
| int_mantissa != 0, out, exp_out); |
| return true; |
| } |
| fractional_count -= digits_printed - 1; |
| } |
| } |
| |
| auto get_next_digit = [&] { |
| int_mantissa *= 10; |
| char digit = static_cast<char>(int_mantissa >> exp); |
| int_mantissa &= mask; |
| return digit; |
| }; |
| |
| // Print fractional_count more digits, if available. |
| for (; fractional_count > 0; --fractional_count) { |
| out->push_back(get_next_digit() + '0'); |
| } |
| |
| char next_digit = get_next_digit(); |
| if (next_digit > 5 || |
| (next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) { |
| RoundUp<mode>(out, exp_out); |
| } |
| |
| return true; |
| } |
| |
| template <FormatStyle mode, typename Float> |
| bool FloatToBuffer(Decomposed<Float> decomposed, |
| size_t precision, |
| Buffer* out, |
| int* exp) { |
| if (precision > kMaxFixedPrecision) return false; |
| |
| // Try with uint64_t. |
| if (CanFitMantissa<Float, std::uint64_t>() && |
| FloatToBufferImpl<std::uint64_t, Float, mode>( |
| static_cast<std::uint64_t>(decomposed.mantissa), decomposed.exponent, |
| precision, out, exp)) |
| return true; |
| |
| #if defined(ABSL_HAVE_INTRINSIC_INT128) |
| // If that is not enough, try with __uint128_t. |
| return CanFitMantissa<Float, __uint128_t>() && |
| FloatToBufferImpl<__uint128_t, Float, mode>( |
| static_cast<__uint128_t>(decomposed.mantissa), decomposed.exponent, |
| precision, out, exp); |
| #endif |
| return false; |
| } |
| |
| void WriteBufferToSink(char sign_char, absl::string_view str, |
| const FormatConversionSpecImpl &conv, |
| FormatSinkImpl *sink) { |
| size_t left_spaces = 0, zeros = 0, right_spaces = 0; |
| size_t missing_chars = 0; |
| if (conv.width() >= 0) { |
| const size_t conv_width_size_t = static_cast<size_t>(conv.width()); |
| const size_t existing_chars = |
| str.size() + static_cast<size_t>(sign_char != 0); |
| if (conv_width_size_t > existing_chars) |
| missing_chars = conv_width_size_t - existing_chars; |
| } |
| if (conv.has_left_flag()) { |
| right_spaces = missing_chars; |
| } else if (conv.has_zero_flag()) { |
| zeros = missing_chars; |
| } else { |
| left_spaces = missing_chars; |
| } |
| |
| sink->Append(left_spaces, ' '); |
| if (sign_char != '\0') sink->Append(1, sign_char); |
| sink->Append(zeros, '0'); |
| sink->Append(str); |
| sink->Append(right_spaces, ' '); |
| } |
| |
| template <typename Float> |
| bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv, |
| FormatSinkImpl *sink) { |
| // Print the sign or the sign column. |
| Float abs_v = v; |
| char sign_char = 0; |
| if (std::signbit(abs_v)) { |
| sign_char = '-'; |
| abs_v = -abs_v; |
| } else if (conv.has_show_pos_flag()) { |
| sign_char = '+'; |
| } else if (conv.has_sign_col_flag()) { |
| sign_char = ' '; |
| } |
| |
| // Print nan/inf. |
| if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) { |
| return true; |
| } |
| |
| size_t precision = |
| conv.precision() < 0 ? 6 : static_cast<size_t>(conv.precision()); |
| |
| int exp = 0; |
| |
| auto decomposed = Decompose(abs_v); |
| |
| Buffer buffer; |
| |
| FormatConversionChar c = conv.conversion_char(); |
| |
| if (c == FormatConversionCharInternal::f || |
| c == FormatConversionCharInternal::F) { |
| FormatF(decomposed.mantissa, decomposed.exponent, |
| {sign_char, precision, conv, sink}); |
| return true; |
| } else if (c == FormatConversionCharInternal::e || |
| c == FormatConversionCharInternal::E) { |
| if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer, |
| &exp)) { |
| return FallbackToSnprintf(v, conv, sink); |
| } |
| if (!conv.has_alt_flag() && buffer.back() == '.') buffer.pop_back(); |
| PrintExponent( |
| exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e', |
| &buffer); |
| } else if (c == FormatConversionCharInternal::g || |
| c == FormatConversionCharInternal::G) { |
| precision = std::max(precision, size_t{1}) - 1; |
| if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer, |
| &exp)) { |
| return FallbackToSnprintf(v, conv, sink); |
| } |
| if ((exp < 0 || precision + 1 > static_cast<size_t>(exp)) && exp >= -4) { |
| if (exp < 0) { |
| // Have 1.23456, needs 0.00123456 |
| // Move the first digit |
| buffer.begin[1] = *buffer.begin; |
| // Add some zeros |
| for (; exp < -1; ++exp) *buffer.begin-- = '0'; |
| *buffer.begin-- = '.'; |
| *buffer.begin = '0'; |
| } else if (exp > 0) { |
| // Have 1.23456, needs 1234.56 |
| // Move the '.' exp positions to the right. |
| std::rotate(buffer.begin + 1, buffer.begin + 2, buffer.begin + exp + 2); |
| } |
| exp = 0; |
| } |
| if (!conv.has_alt_flag()) { |
| while (buffer.back() == '0') buffer.pop_back(); |
| if (buffer.back() == '.') buffer.pop_back(); |
| } |
| if (exp) { |
| PrintExponent( |
| exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e', |
| &buffer); |
| } |
| } else if (c == FormatConversionCharInternal::a || |
| c == FormatConversionCharInternal::A) { |
| bool uppercase = (c == FormatConversionCharInternal::A); |
| FormatA(HexFloatTypeParams(Float{}), decomposed.mantissa, |
| decomposed.exponent, uppercase, {sign_char, precision, conv, sink}); |
| return true; |
| } else { |
| return false; |
| } |
| |
| WriteBufferToSink( |
| sign_char, |
| absl::string_view(buffer.begin, |
| static_cast<size_t>(buffer.end - buffer.begin)), |
| conv, sink); |
| |
| return true; |
| } |
| |
| } // namespace |
| |
| bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv, |
| FormatSinkImpl *sink) { |
| if (IsDoubleDouble()) { |
| // This is the `double-double` representation of `long double`. We do not |
| // handle it natively. Fallback to snprintf. |
| return FallbackToSnprintf(v, conv, sink); |
| } |
| |
| return FloatToSink(v, conv, sink); |
| } |
| |
| bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv, |
| FormatSinkImpl *sink) { |
| return FloatToSink(static_cast<double>(v), conv, sink); |
| } |
| |
| bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv, |
| FormatSinkImpl *sink) { |
| return FloatToSink(v, conv, sink); |
| } |
| |
| } // namespace str_format_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |