blob: 371f6c473ffc0fb9050a48a4dc40d2db44abdc68 [file] [log] [blame]
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: sample_recorder.h
// -----------------------------------------------------------------------------
//
// This header file defines a lock-free linked list for recording samples
// collected from a random/stochastic process.
//
// This utility is internal-only. Use at your own risk.
#ifndef ABSL_PROFILING_INTERNAL_SAMPLE_RECORDER_H_
#define ABSL_PROFILING_INTERNAL_SAMPLE_RECORDER_H_
#include <atomic>
#include <cstddef>
#include <functional>
#include "absl/base/config.h"
#include "absl/base/thread_annotations.h"
#include "absl/synchronization/mutex.h"
#include "absl/time/time.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace profiling_internal {
// Sample<T> that has members required for linking samples in the linked list of
// samples maintained by the SampleRecorder. Type T defines the sampled data.
template <typename T>
struct Sample {
// Guards the ability to restore the sample to a pristine state. This
// prevents races with sampling and resurrecting an object.
absl::Mutex init_mu;
T* next = nullptr;
T* dead ABSL_GUARDED_BY(init_mu) = nullptr;
int64_t weight; // How many sampling events were required to sample this one.
};
// Holds samples and their associated stack traces with a soft limit of
// `SetHashtablezMaxSamples()`.
//
// Thread safe.
template <typename T>
class SampleRecorder {
public:
SampleRecorder();
~SampleRecorder();
// Registers for sampling. Returns an opaque registration info.
template <typename... Targs>
T* Register(Targs&&... args);
// Unregisters the sample.
void Unregister(T* sample);
// The dispose callback will be called on all samples the moment they are
// being unregistered. Only affects samples that are unregistered after the
// callback has been set.
// Returns the previous callback.
using DisposeCallback = void (*)(const T&);
DisposeCallback SetDisposeCallback(DisposeCallback f);
// Iterates over all the registered `StackInfo`s. Returning the number of
// samples that have been dropped.
int64_t Iterate(const std::function<void(const T& stack)>& f);
size_t GetMaxSamples() const;
void SetMaxSamples(size_t max);
private:
void PushNew(T* sample);
void PushDead(T* sample);
template <typename... Targs>
T* PopDead(Targs... args);
std::atomic<size_t> dropped_samples_;
std::atomic<size_t> size_estimate_;
std::atomic<size_t> max_samples_{1 << 20};
// Intrusive lock free linked lists for tracking samples.
//
// `all_` records all samples (they are never removed from this list) and is
// terminated with a `nullptr`.
//
// `graveyard_.dead` is a circular linked list. When it is empty,
// `graveyard_.dead == &graveyard`. The list is circular so that
// every item on it (even the last) has a non-null dead pointer. This allows
// `Iterate` to determine if a given sample is live or dead using only
// information on the sample itself.
//
// For example, nodes [A, B, C, D, E] with [A, C, E] alive and [B, D] dead
// looks like this (G is the Graveyard):
//
// +---+ +---+ +---+ +---+ +---+
// all -->| A |--->| B |--->| C |--->| D |--->| E |
// | | | | | | | | | |
// +---+ | | +->| |-+ | | +->| |-+ | |
// | G | +---+ | +---+ | +---+ | +---+ | +---+
// | | | | | |
// | | --------+ +--------+ |
// +---+ |
// ^ |
// +--------------------------------------+
//
std::atomic<T*> all_;
T graveyard_;
std::atomic<DisposeCallback> dispose_;
};
template <typename T>
typename SampleRecorder<T>::DisposeCallback
SampleRecorder<T>::SetDisposeCallback(DisposeCallback f) {
return dispose_.exchange(f, std::memory_order_relaxed);
}
template <typename T>
SampleRecorder<T>::SampleRecorder()
: dropped_samples_(0), size_estimate_(0), all_(nullptr), dispose_(nullptr) {
absl::MutexLock l(&graveyard_.init_mu);
graveyard_.dead = &graveyard_;
}
template <typename T>
SampleRecorder<T>::~SampleRecorder() {
T* s = all_.load(std::memory_order_acquire);
while (s != nullptr) {
T* next = s->next;
delete s;
s = next;
}
}
template <typename T>
void SampleRecorder<T>::PushNew(T* sample) {
sample->next = all_.load(std::memory_order_relaxed);
while (!all_.compare_exchange_weak(sample->next, sample,
std::memory_order_release,
std::memory_order_relaxed)) {
}
}
template <typename T>
void SampleRecorder<T>::PushDead(T* sample) {
if (auto* dispose = dispose_.load(std::memory_order_relaxed)) {
dispose(*sample);
}
absl::MutexLock graveyard_lock(&graveyard_.init_mu);
absl::MutexLock sample_lock(&sample->init_mu);
sample->dead = graveyard_.dead;
graveyard_.dead = sample;
}
template <typename T>
template <typename... Targs>
T* SampleRecorder<T>::PopDead(Targs... args) {
absl::MutexLock graveyard_lock(&graveyard_.init_mu);
// The list is circular, so eventually it collapses down to
// graveyard_.dead == &graveyard_
// when it is empty.
T* sample = graveyard_.dead;
if (sample == &graveyard_) return nullptr;
absl::MutexLock sample_lock(&sample->init_mu);
graveyard_.dead = sample->dead;
sample->dead = nullptr;
sample->PrepareForSampling(std::forward<Targs>(args)...);
return sample;
}
template <typename T>
template <typename... Targs>
T* SampleRecorder<T>::Register(Targs&&... args) {
size_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed);
if (size > max_samples_.load(std::memory_order_relaxed)) {
size_estimate_.fetch_sub(1, std::memory_order_relaxed);
dropped_samples_.fetch_add(1, std::memory_order_relaxed);
return nullptr;
}
T* sample = PopDead(args...);
if (sample == nullptr) {
// Resurrection failed. Hire a new warlock.
sample = new T();
{
absl::MutexLock sample_lock(&sample->init_mu);
// If flag initialization happens to occur (perhaps in another thread)
// while in this block, it will lock `graveyard_` which is usually always
// locked before any sample. This will appear as a lock inversion.
// However, this code is run exactly once per sample, and this sample
// cannot be accessed until after it is returned from this method. This
// means that this lock state can never be recreated, so we can safely
// inform the deadlock detector to ignore it.
sample->init_mu.ForgetDeadlockInfo();
sample->PrepareForSampling(std::forward<Targs>(args)...);
}
PushNew(sample);
}
return sample;
}
template <typename T>
void SampleRecorder<T>::Unregister(T* sample) {
PushDead(sample);
size_estimate_.fetch_sub(1, std::memory_order_relaxed);
}
template <typename T>
int64_t SampleRecorder<T>::Iterate(
const std::function<void(const T& stack)>& f) {
T* s = all_.load(std::memory_order_acquire);
while (s != nullptr) {
absl::MutexLock l(&s->init_mu);
if (s->dead == nullptr) {
f(*s);
}
s = s->next;
}
return dropped_samples_.load(std::memory_order_relaxed);
}
template <typename T>
void SampleRecorder<T>::SetMaxSamples(size_t max) {
max_samples_.store(max, std::memory_order_release);
}
template <typename T>
size_t SampleRecorder<T>::GetMaxSamples() const {
return max_samples_.load(std::memory_order_acquire);
}
} // namespace profiling_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_PROFILING_INTERNAL_SAMPLE_RECORDER_H_