| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // An open-addressing |
| // hashtable with quadratic probing. |
| // |
| // This is a low level hashtable on top of which different interfaces can be |
| // implemented, like flat_hash_set, node_hash_set, string_hash_set, etc. |
| // |
| // The table interface is similar to that of std::unordered_set. Notable |
| // differences are that most member functions support heterogeneous keys when |
| // BOTH the hash and eq functions are marked as transparent. They do so by |
| // providing a typedef called `is_transparent`. |
| // |
| // When heterogeneous lookup is enabled, functions that take key_type act as if |
| // they have an overload set like: |
| // |
| // iterator find(const key_type& key); |
| // template <class K> |
| // iterator find(const K& key); |
| // |
| // size_type erase(const key_type& key); |
| // template <class K> |
| // size_type erase(const K& key); |
| // |
| // std::pair<iterator, iterator> equal_range(const key_type& key); |
| // template <class K> |
| // std::pair<iterator, iterator> equal_range(const K& key); |
| // |
| // When heterogeneous lookup is disabled, only the explicit `key_type` overloads |
| // exist. |
| // |
| // find() also supports passing the hash explicitly: |
| // |
| // iterator find(const key_type& key, size_t hash); |
| // template <class U> |
| // iterator find(const U& key, size_t hash); |
| // |
| // In addition the pointer to element and iterator stability guarantees are |
| // weaker: all iterators and pointers are invalidated after a new element is |
| // inserted. |
| // |
| // IMPLEMENTATION DETAILS |
| // |
| // # Table Layout |
| // |
| // A raw_hash_set's backing array consists of control bytes followed by slots |
| // that may or may not contain objects. |
| // |
| // The layout of the backing array, for `capacity` slots, is thus, as a |
| // pseudo-struct: |
| // |
| // struct BackingArray { |
| // // Sampling handler. This field isn't present when the sampling is |
| // // disabled or this allocation hasn't been selected for sampling. |
| // HashtablezInfoHandle infoz_; |
| // // The number of elements we can insert before growing the capacity. |
| // size_t growth_left; |
| // // Control bytes for the "real" slots. |
| // ctrl_t ctrl[capacity]; |
| // // Always `ctrl_t::kSentinel`. This is used by iterators to find when to |
| // // stop and serves no other purpose. |
| // ctrl_t sentinel; |
| // // A copy of the first `kWidth - 1` elements of `ctrl`. This is used so |
| // // that if a probe sequence picks a value near the end of `ctrl`, |
| // // `Group` will have valid control bytes to look at. |
| // ctrl_t clones[kWidth - 1]; |
| // // The actual slot data. |
| // slot_type slots[capacity]; |
| // }; |
| // |
| // The length of this array is computed by `RawHashSetLayout::alloc_size` below. |
| // |
| // Control bytes (`ctrl_t`) are bytes (collected into groups of a |
| // platform-specific size) that define the state of the corresponding slot in |
| // the slot array. Group manipulation is tightly optimized to be as efficient |
| // as possible: SSE and friends on x86, clever bit operations on other arches. |
| // |
| // Group 1 Group 2 Group 3 |
| // +---------------+---------------+---------------+ |
| // | | | | | | | | | | | | | | | | | | | | | | | | | |
| // +---------------+---------------+---------------+ |
| // |
| // Each control byte is either a special value for empty slots, deleted slots |
| // (sometimes called *tombstones*), and a special end-of-table marker used by |
| // iterators, or, if occupied, seven bits (H2) from the hash of the value in the |
| // corresponding slot. |
| // |
| // Storing control bytes in a separate array also has beneficial cache effects, |
| // since more logical slots will fit into a cache line. |
| // |
| // # Small Object Optimization (SOO) |
| // |
| // When the size/alignment of the value_type and the capacity of the table are |
| // small, we enable small object optimization and store the values inline in |
| // the raw_hash_set object. This optimization allows us to avoid |
| // allocation/deallocation as well as cache/dTLB misses. |
| // |
| // # Hashing |
| // |
| // We compute two separate hashes, `H1` and `H2`, from the hash of an object. |
| // `H1(hash(x))` is an index into `slots`, and essentially the starting point |
| // for the probe sequence. `H2(hash(x))` is a 7-bit value used to filter out |
| // objects that cannot possibly be the one we are looking for. |
| // |
| // # Table operations. |
| // |
| // The key operations are `insert`, `find`, and `erase`. |
| // |
| // Since `insert` and `erase` are implemented in terms of `find`, we describe |
| // `find` first. To `find` a value `x`, we compute `hash(x)`. From |
| // `H1(hash(x))` and the capacity, we construct a `probe_seq` that visits every |
| // group of slots in some interesting order. |
| // |
| // We now walk through these indices. At each index, we select the entire group |
| // starting with that index and extract potential candidates: occupied slots |
| // with a control byte equal to `H2(hash(x))`. If we find an empty slot in the |
| // group, we stop and return an error. Each candidate slot `y` is compared with |
| // `x`; if `x == y`, we are done and return `&y`; otherwise we continue to the |
| // next probe index. Tombstones effectively behave like full slots that never |
| // match the value we're looking for. |
| // |
| // The `H2` bits ensure when we compare a slot to an object with `==`, we are |
| // likely to have actually found the object. That is, the chance is low that |
| // `==` is called and returns `false`. Thus, when we search for an object, we |
| // are unlikely to call `==` many times. This likelyhood can be analyzed as |
| // follows (assuming that H2 is a random enough hash function). |
| // |
| // Let's assume that there are `k` "wrong" objects that must be examined in a |
| // probe sequence. For example, when doing a `find` on an object that is in the |
| // table, `k` is the number of objects between the start of the probe sequence |
| // and the final found object (not including the final found object). The |
| // expected number of objects with an H2 match is then `k/128`. Measurements |
| // and analysis indicate that even at high load factors, `k` is less than 32, |
| // meaning that the number of "false positive" comparisons we must perform is |
| // less than 1/8 per `find`. |
| |
| // `insert` is implemented in terms of `unchecked_insert`, which inserts a |
| // value presumed to not be in the table (violating this requirement will cause |
| // the table to behave erratically). Given `x` and its hash `hash(x)`, to insert |
| // it, we construct a `probe_seq` once again, and use it to find the first |
| // group with an unoccupied (empty *or* deleted) slot. We place `x` into the |
| // first such slot in the group and mark it as full with `x`'s H2. |
| // |
| // To `insert`, we compose `unchecked_insert` with `find`. We compute `h(x)` and |
| // perform a `find` to see if it's already present; if it is, we're done. If |
| // it's not, we may decide the table is getting overcrowded (i.e. the load |
| // factor is greater than 7/8 for big tables; `is_small()` tables use a max load |
| // factor of 1); in this case, we allocate a bigger array, `unchecked_insert` |
| // each element of the table into the new array (we know that no insertion here |
| // will insert an already-present value), and discard the old backing array. At |
| // this point, we may `unchecked_insert` the value `x`. |
| // |
| // Below, `unchecked_insert` is partly implemented by `prepare_insert`, which |
| // presents a viable, initialized slot pointee to the caller. |
| // |
| // `erase` is implemented in terms of `erase_at`, which takes an index to a |
| // slot. Given an offset, we simply create a tombstone and destroy its contents. |
| // If we can prove that the slot would not appear in a probe sequence, we can |
| // make the slot as empty, instead. We can prove this by observing that if a |
| // group has any empty slots, it has never been full (assuming we never create |
| // an empty slot in a group with no empties, which this heuristic guarantees we |
| // never do) and find would stop at this group anyways (since it does not probe |
| // beyond groups with empties). |
| // |
| // `erase` is `erase_at` composed with `find`: if we |
| // have a value `x`, we can perform a `find`, and then `erase_at` the resulting |
| // slot. |
| // |
| // To iterate, we simply traverse the array, skipping empty and deleted slots |
| // and stopping when we hit a `kSentinel`. |
| |
| #ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ |
| #define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <initializer_list> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <tuple> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/base/attributes.h" |
| #include "absl/base/config.h" |
| #include "absl/base/internal/endian.h" |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/base/macros.h" |
| #include "absl/base/optimization.h" |
| #include "absl/base/options.h" |
| #include "absl/base/port.h" |
| #include "absl/base/prefetch.h" |
| #include "absl/container/internal/common.h" // IWYU pragma: export // for node_handle |
| #include "absl/container/internal/compressed_tuple.h" |
| #include "absl/container/internal/container_memory.h" |
| #include "absl/container/internal/hash_policy_traits.h" |
| #include "absl/container/internal/hashtable_debug_hooks.h" |
| #include "absl/container/internal/hashtablez_sampler.h" |
| #include "absl/memory/memory.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/numeric/bits.h" |
| #include "absl/utility/utility.h" |
| |
| #ifdef ABSL_INTERNAL_HAVE_SSE2 |
| #include <emmintrin.h> |
| #endif |
| |
| #ifdef ABSL_INTERNAL_HAVE_SSSE3 |
| #include <tmmintrin.h> |
| #endif |
| |
| #ifdef _MSC_VER |
| #include <intrin.h> |
| #endif |
| |
| #ifdef ABSL_INTERNAL_HAVE_ARM_NEON |
| #include <arm_neon.h> |
| #endif |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace container_internal { |
| |
| #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS |
| #error ABSL_SWISSTABLE_ENABLE_GENERATIONS cannot be directly set |
| #elif (defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ |
| defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \ |
| defined(ABSL_HAVE_MEMORY_SANITIZER)) && \ |
| !defined(NDEBUG_SANITIZER) // If defined, performance is important. |
| // When compiled in sanitizer mode, we add generation integers to the backing |
| // array and iterators. In the backing array, we store the generation between |
| // the control bytes and the slots. When iterators are dereferenced, we assert |
| // that the container has not been mutated in a way that could cause iterator |
| // invalidation since the iterator was initialized. |
| #define ABSL_SWISSTABLE_ENABLE_GENERATIONS |
| #endif |
| |
| // We use uint8_t so we don't need to worry about padding. |
| using GenerationType = uint8_t; |
| |
| // A sentinel value for empty generations. Using 0 makes it easy to constexpr |
| // initialize an array of this value. |
| constexpr GenerationType SentinelEmptyGeneration() { return 0; } |
| |
| constexpr GenerationType NextGeneration(GenerationType generation) { |
| return ++generation == SentinelEmptyGeneration() ? ++generation : generation; |
| } |
| |
| #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS |
| constexpr bool SwisstableGenerationsEnabled() { return true; } |
| constexpr size_t NumGenerationBytes() { return sizeof(GenerationType); } |
| #else |
| constexpr bool SwisstableGenerationsEnabled() { return false; } |
| constexpr size_t NumGenerationBytes() { return 0; } |
| #endif |
| |
| template <typename AllocType> |
| void SwapAlloc(AllocType& lhs, AllocType& rhs, |
| std::true_type /* propagate_on_container_swap */) { |
| using std::swap; |
| swap(lhs, rhs); |
| } |
| template <typename AllocType> |
| void SwapAlloc(AllocType& lhs, AllocType& rhs, |
| std::false_type /* propagate_on_container_swap */) { |
| (void)lhs; |
| (void)rhs; |
| assert(lhs == rhs && |
| "It's UB to call swap with unequal non-propagating allocators."); |
| } |
| |
| template <typename AllocType> |
| void CopyAlloc(AllocType& lhs, AllocType& rhs, |
| std::true_type /* propagate_alloc */) { |
| lhs = rhs; |
| } |
| template <typename AllocType> |
| void CopyAlloc(AllocType&, AllocType&, std::false_type /* propagate_alloc */) {} |
| |
| // The state for a probe sequence. |
| // |
| // Currently, the sequence is a triangular progression of the form |
| // |
| // p(i) := Width * (i^2 + i)/2 + hash (mod mask + 1) |
| // |
| // The use of `Width` ensures that each probe step does not overlap groups; |
| // the sequence effectively outputs the addresses of *groups* (although not |
| // necessarily aligned to any boundary). The `Group` machinery allows us |
| // to check an entire group with minimal branching. |
| // |
| // Wrapping around at `mask + 1` is important, but not for the obvious reason. |
| // As described above, the first few entries of the control byte array |
| // are mirrored at the end of the array, which `Group` will find and use |
| // for selecting candidates. However, when those candidates' slots are |
| // actually inspected, there are no corresponding slots for the cloned bytes, |
| // so we need to make sure we've treated those offsets as "wrapping around". |
| // |
| // It turns out that this probe sequence visits every group exactly once if the |
| // number of groups is a power of two, since (i^2+i)/2 is a bijection in |
| // Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing |
| template <size_t Width> |
| class probe_seq { |
| public: |
| // Creates a new probe sequence using `hash` as the initial value of the |
| // sequence and `mask` (usually the capacity of the table) as the mask to |
| // apply to each value in the progression. |
| probe_seq(size_t hash, size_t mask) { |
| assert(((mask + 1) & mask) == 0 && "not a mask"); |
| mask_ = mask; |
| offset_ = hash & mask_; |
| } |
| |
| // The offset within the table, i.e., the value `p(i)` above. |
| size_t offset() const { return offset_; } |
| size_t offset(size_t i) const { return (offset_ + i) & mask_; } |
| |
| void next() { |
| index_ += Width; |
| offset_ += index_; |
| offset_ &= mask_; |
| } |
| // 0-based probe index, a multiple of `Width`. |
| size_t index() const { return index_; } |
| |
| private: |
| size_t mask_; |
| size_t offset_; |
| size_t index_ = 0; |
| }; |
| |
| template <class ContainerKey, class Hash, class Eq> |
| struct RequireUsableKey { |
| template <class PassedKey, class... Args> |
| std::pair< |
| decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())), |
| decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(), |
| std::declval<const PassedKey&>()))>* |
| operator()(const PassedKey&, const Args&...) const; |
| }; |
| |
| template <class E, class Policy, class Hash, class Eq, class... Ts> |
| struct IsDecomposable : std::false_type {}; |
| |
| template <class Policy, class Hash, class Eq, class... Ts> |
| struct IsDecomposable< |
| absl::void_t<decltype(Policy::apply( |
| RequireUsableKey<typename Policy::key_type, Hash, Eq>(), |
| std::declval<Ts>()...))>, |
| Policy, Hash, Eq, Ts...> : std::true_type {}; |
| |
| // TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it. |
| template <class T> |
| constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) { |
| using std::swap; |
| return noexcept(swap(std::declval<T&>(), std::declval<T&>())); |
| } |
| template <class T> |
| constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) { |
| return false; |
| } |
| |
| template <typename T> |
| uint32_t TrailingZeros(T x) { |
| ABSL_ASSUME(x != 0); |
| return static_cast<uint32_t>(countr_zero(x)); |
| } |
| |
| // 8 bytes bitmask with most significant bit set for every byte. |
| constexpr uint64_t kMsbs8Bytes = 0x8080808080808080ULL; |
| |
| // An abstract bitmask, such as that emitted by a SIMD instruction. |
| // |
| // Specifically, this type implements a simple bitset whose representation is |
| // controlled by `SignificantBits` and `Shift`. `SignificantBits` is the number |
| // of abstract bits in the bitset, while `Shift` is the log-base-two of the |
| // width of an abstract bit in the representation. |
| // This mask provides operations for any number of real bits set in an abstract |
| // bit. To add iteration on top of that, implementation must guarantee no more |
| // than the most significant real bit is set in a set abstract bit. |
| template <class T, int SignificantBits, int Shift = 0> |
| class NonIterableBitMask { |
| public: |
| explicit NonIterableBitMask(T mask) : mask_(mask) {} |
| |
| explicit operator bool() const { return this->mask_ != 0; } |
| |
| // Returns the index of the lowest *abstract* bit set in `self`. |
| uint32_t LowestBitSet() const { |
| return container_internal::TrailingZeros(mask_) >> Shift; |
| } |
| |
| // Returns the index of the highest *abstract* bit set in `self`. |
| uint32_t HighestBitSet() const { |
| return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift); |
| } |
| |
| // Returns the number of trailing zero *abstract* bits. |
| uint32_t TrailingZeros() const { |
| return container_internal::TrailingZeros(mask_) >> Shift; |
| } |
| |
| // Returns the number of leading zero *abstract* bits. |
| uint32_t LeadingZeros() const { |
| constexpr int total_significant_bits = SignificantBits << Shift; |
| constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits; |
| return static_cast<uint32_t>( |
| countl_zero(static_cast<T>(mask_ << extra_bits))) >> |
| Shift; |
| } |
| |
| T mask_; |
| }; |
| |
| // Mask that can be iterable |
| // |
| // For example, when `SignificantBits` is 16 and `Shift` is zero, this is just |
| // an ordinary 16-bit bitset occupying the low 16 bits of `mask`. When |
| // `SignificantBits` is 8 and `Shift` is 3, abstract bits are represented as |
| // the bytes `0x00` and `0x80`, and it occupies all 64 bits of the bitmask. |
| // If NullifyBitsOnIteration is true (only allowed for Shift == 3), |
| // non zero abstract bit is allowed to have additional bits |
| // (e.g., `0xff`, `0x83` and `0x9c` are ok, but `0x6f` is not). |
| // |
| // For example: |
| // for (int i : BitMask<uint32_t, 16>(0b101)) -> yields 0, 2 |
| // for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3 |
| template <class T, int SignificantBits, int Shift = 0, |
| bool NullifyBitsOnIteration = false> |
| class BitMask : public NonIterableBitMask<T, SignificantBits, Shift> { |
| using Base = NonIterableBitMask<T, SignificantBits, Shift>; |
| static_assert(std::is_unsigned<T>::value, ""); |
| static_assert(Shift == 0 || Shift == 3, ""); |
| static_assert(!NullifyBitsOnIteration || Shift == 3, ""); |
| |
| public: |
| explicit BitMask(T mask) : Base(mask) { |
| if (Shift == 3 && !NullifyBitsOnIteration) { |
| assert(this->mask_ == (this->mask_ & kMsbs8Bytes)); |
| } |
| } |
| // BitMask is an iterator over the indices of its abstract bits. |
| using value_type = int; |
| using iterator = BitMask; |
| using const_iterator = BitMask; |
| |
| BitMask& operator++() { |
| if (Shift == 3 && NullifyBitsOnIteration) { |
| this->mask_ &= kMsbs8Bytes; |
| } |
| this->mask_ &= (this->mask_ - 1); |
| return *this; |
| } |
| |
| uint32_t operator*() const { return Base::LowestBitSet(); } |
| |
| BitMask begin() const { return *this; } |
| BitMask end() const { return BitMask(0); } |
| |
| private: |
| friend bool operator==(const BitMask& a, const BitMask& b) { |
| return a.mask_ == b.mask_; |
| } |
| friend bool operator!=(const BitMask& a, const BitMask& b) { |
| return a.mask_ != b.mask_; |
| } |
| }; |
| |
| using h2_t = uint8_t; |
| |
| // The values here are selected for maximum performance. See the static asserts |
| // below for details. |
| |
| // A `ctrl_t` is a single control byte, which can have one of four |
| // states: empty, deleted, full (which has an associated seven-bit h2_t value) |
| // and the sentinel. They have the following bit patterns: |
| // |
| // empty: 1 0 0 0 0 0 0 0 |
| // deleted: 1 1 1 1 1 1 1 0 |
| // full: 0 h h h h h h h // h represents the hash bits. |
| // sentinel: 1 1 1 1 1 1 1 1 |
| // |
| // These values are specifically tuned for SSE-flavored SIMD. |
| // The static_asserts below detail the source of these choices. |
| // |
| // We use an enum class so that when strict aliasing is enabled, the compiler |
| // knows ctrl_t doesn't alias other types. |
| enum class ctrl_t : int8_t { |
| kEmpty = -128, // 0b10000000 |
| kDeleted = -2, // 0b11111110 |
| kSentinel = -1, // 0b11111111 |
| }; |
| static_assert( |
| (static_cast<int8_t>(ctrl_t::kEmpty) & |
| static_cast<int8_t>(ctrl_t::kDeleted) & |
| static_cast<int8_t>(ctrl_t::kSentinel) & 0x80) != 0, |
| "Special markers need to have the MSB to make checking for them efficient"); |
| static_assert( |
| ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel, |
| "ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than " |
| "ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient"); |
| static_assert( |
| ctrl_t::kSentinel == static_cast<ctrl_t>(-1), |
| "ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD " |
| "registers (pcmpeqd xmm, xmm)"); |
| static_assert(ctrl_t::kEmpty == static_cast<ctrl_t>(-128), |
| "ctrl_t::kEmpty must be -128 to make the SIMD check for its " |
| "existence efficient (psignb xmm, xmm)"); |
| static_assert( |
| (~static_cast<int8_t>(ctrl_t::kEmpty) & |
| ~static_cast<int8_t>(ctrl_t::kDeleted) & |
| static_cast<int8_t>(ctrl_t::kSentinel) & 0x7F) != 0, |
| "ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not " |
| "shared by ctrl_t::kSentinel to make the scalar test for " |
| "MaskEmptyOrDeleted() efficient"); |
| static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2), |
| "ctrl_t::kDeleted must be -2 to make the implementation of " |
| "ConvertSpecialToEmptyAndFullToDeleted efficient"); |
| |
| // See definition comment for why this is size 32. |
| ABSL_DLL extern const ctrl_t kEmptyGroup[32]; |
| |
| // Returns a pointer to a control byte group that can be used by empty tables. |
| inline ctrl_t* EmptyGroup() { |
| // Const must be cast away here; no uses of this function will actually write |
| // to it because it is only used for empty tables. |
| return const_cast<ctrl_t*>(kEmptyGroup + 16); |
| } |
| |
| // For use in SOO iterators. |
| // TODO(b/289225379): we could potentially get rid of this by adding an is_soo |
| // bit in iterators. This would add branches but reduce cache misses. |
| ABSL_DLL extern const ctrl_t kSooControl[17]; |
| |
| // Returns a pointer to a full byte followed by a sentinel byte. |
| inline ctrl_t* SooControl() { |
| // Const must be cast away here; no uses of this function will actually write |
| // to it because it is only used for SOO iterators. |
| return const_cast<ctrl_t*>(kSooControl); |
| } |
| // Whether ctrl is from the SooControl array. |
| inline bool IsSooControl(const ctrl_t* ctrl) { return ctrl == SooControl(); } |
| |
| // Returns a pointer to a generation to use for an empty hashtable. |
| GenerationType* EmptyGeneration(); |
| |
| // Returns whether `generation` is a generation for an empty hashtable that |
| // could be returned by EmptyGeneration(). |
| inline bool IsEmptyGeneration(const GenerationType* generation) { |
| return *generation == SentinelEmptyGeneration(); |
| } |
| |
| // Mixes a randomly generated per-process seed with `hash` and `ctrl` to |
| // randomize insertion order within groups. |
| bool ShouldInsertBackwardsForDebug(size_t capacity, size_t hash, |
| const ctrl_t* ctrl); |
| |
| ABSL_ATTRIBUTE_ALWAYS_INLINE inline bool ShouldInsertBackwards( |
| ABSL_ATTRIBUTE_UNUSED size_t capacity, ABSL_ATTRIBUTE_UNUSED size_t hash, |
| ABSL_ATTRIBUTE_UNUSED const ctrl_t* ctrl) { |
| #if defined(NDEBUG) |
| return false; |
| #else |
| return ShouldInsertBackwardsForDebug(capacity, hash, ctrl); |
| #endif |
| } |
| |
| // Returns insert position for the given mask. |
| // We want to add entropy even when ASLR is not enabled. |
| // In debug build we will randomly insert in either the front or back of |
| // the group. |
| // TODO(kfm,sbenza): revisit after we do unconditional mixing |
| template <class Mask> |
| ABSL_ATTRIBUTE_ALWAYS_INLINE inline auto GetInsertionOffset( |
| Mask mask, ABSL_ATTRIBUTE_UNUSED size_t capacity, |
| ABSL_ATTRIBUTE_UNUSED size_t hash, |
| ABSL_ATTRIBUTE_UNUSED const ctrl_t* ctrl) { |
| #if defined(NDEBUG) |
| return mask.LowestBitSet(); |
| #else |
| return ShouldInsertBackwardsForDebug(capacity, hash, ctrl) |
| ? mask.HighestBitSet() |
| : mask.LowestBitSet(); |
| #endif |
| } |
| |
| // Returns a per-table, hash salt, which changes on resize. This gets mixed into |
| // H1 to randomize iteration order per-table. |
| // |
| // The seed consists of the ctrl_ pointer, which adds enough entropy to ensure |
| // non-determinism of iteration order in most cases. |
| inline size_t PerTableSalt(const ctrl_t* ctrl) { |
| // The low bits of the pointer have little or no entropy because of |
| // alignment. We shift the pointer to try to use higher entropy bits. A |
| // good number seems to be 12 bits, because that aligns with page size. |
| return reinterpret_cast<uintptr_t>(ctrl) >> 12; |
| } |
| // Extracts the H1 portion of a hash: 57 bits mixed with a per-table salt. |
| inline size_t H1(size_t hash, const ctrl_t* ctrl) { |
| return (hash >> 7) ^ PerTableSalt(ctrl); |
| } |
| |
| // Extracts the H2 portion of a hash: the 7 bits not used for H1. |
| // |
| // These are used as an occupied control byte. |
| inline h2_t H2(size_t hash) { return hash & 0x7F; } |
| |
| // Helpers for checking the state of a control byte. |
| inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; } |
| inline bool IsFull(ctrl_t c) { |
| // Cast `c` to the underlying type instead of casting `0` to `ctrl_t` as `0` |
| // is not a value in the enum. Both ways are equivalent, but this way makes |
| // linters happier. |
| return static_cast<std::underlying_type_t<ctrl_t>>(c) >= 0; |
| } |
| inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; } |
| inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; } |
| |
| #ifdef ABSL_INTERNAL_HAVE_SSE2 |
| // Quick reference guide for intrinsics used below: |
| // |
| // * __m128i: An XMM (128-bit) word. |
| // |
| // * _mm_setzero_si128: Returns a zero vector. |
| // * _mm_set1_epi8: Returns a vector with the same i8 in each lane. |
| // |
| // * _mm_subs_epi8: Saturating-subtracts two i8 vectors. |
| // * _mm_and_si128: Ands two i128s together. |
| // * _mm_or_si128: Ors two i128s together. |
| // * _mm_andnot_si128: And-nots two i128s together. |
| // |
| // * _mm_cmpeq_epi8: Component-wise compares two i8 vectors for equality, |
| // filling each lane with 0x00 or 0xff. |
| // * _mm_cmpgt_epi8: Same as above, but using > rather than ==. |
| // |
| // * _mm_loadu_si128: Performs an unaligned load of an i128. |
| // * _mm_storeu_si128: Performs an unaligned store of an i128. |
| // |
| // * _mm_sign_epi8: Retains, negates, or zeroes each i8 lane of the first |
| // argument if the corresponding lane of the second |
| // argument is positive, negative, or zero, respectively. |
| // * _mm_movemask_epi8: Selects the sign bit out of each i8 lane and produces a |
| // bitmask consisting of those bits. |
| // * _mm_shuffle_epi8: Selects i8s from the first argument, using the low |
| // four bits of each i8 lane in the second argument as |
| // indices. |
| |
| // https://github.com/abseil/abseil-cpp/issues/209 |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853 |
| // _mm_cmpgt_epi8 is broken under GCC with -funsigned-char |
| // Work around this by using the portable implementation of Group |
| // when using -funsigned-char under GCC. |
| inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) { |
| #if defined(__GNUC__) && !defined(__clang__) |
| if (std::is_unsigned<char>::value) { |
| const __m128i mask = _mm_set1_epi8(0x80); |
| const __m128i diff = _mm_subs_epi8(b, a); |
| return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask); |
| } |
| #endif |
| return _mm_cmpgt_epi8(a, b); |
| } |
| |
| struct GroupSse2Impl { |
| static constexpr size_t kWidth = 16; // the number of slots per group |
| |
| explicit GroupSse2Impl(const ctrl_t* pos) { |
| ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos)); |
| } |
| |
| // Returns a bitmask representing the positions of slots that match hash. |
| BitMask<uint16_t, kWidth> Match(h2_t hash) const { |
| auto match = _mm_set1_epi8(static_cast<char>(hash)); |
| BitMask<uint16_t, kWidth> result = BitMask<uint16_t, kWidth>(0); |
| result = BitMask<uint16_t, kWidth>( |
| static_cast<uint16_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)))); |
| return result; |
| } |
| |
| // Returns a bitmask representing the positions of empty slots. |
| NonIterableBitMask<uint16_t, kWidth> MaskEmpty() const { |
| #ifdef ABSL_INTERNAL_HAVE_SSSE3 |
| // This only works because ctrl_t::kEmpty is -128. |
| return NonIterableBitMask<uint16_t, kWidth>( |
| static_cast<uint16_t>(_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl)))); |
| #else |
| auto match = _mm_set1_epi8(static_cast<char>(ctrl_t::kEmpty)); |
| return NonIterableBitMask<uint16_t, kWidth>( |
| static_cast<uint16_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)))); |
| #endif |
| } |
| |
| // Returns a bitmask representing the positions of full slots. |
| // Note: for `is_small()` tables group may contain the "same" slot twice: |
| // original and mirrored. |
| BitMask<uint16_t, kWidth> MaskFull() const { |
| return BitMask<uint16_t, kWidth>( |
| static_cast<uint16_t>(_mm_movemask_epi8(ctrl) ^ 0xffff)); |
| } |
| |
| // Returns a bitmask representing the positions of non full slots. |
| // Note: this includes: kEmpty, kDeleted, kSentinel. |
| // It is useful in contexts when kSentinel is not present. |
| auto MaskNonFull() const { |
| return BitMask<uint16_t, kWidth>( |
| static_cast<uint16_t>(_mm_movemask_epi8(ctrl))); |
| } |
| |
| // Returns a bitmask representing the positions of empty or deleted slots. |
| NonIterableBitMask<uint16_t, kWidth> MaskEmptyOrDeleted() const { |
| auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel)); |
| return NonIterableBitMask<uint16_t, kWidth>(static_cast<uint16_t>( |
| _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)))); |
| } |
| |
| // Returns the number of trailing empty or deleted elements in the group. |
| uint32_t CountLeadingEmptyOrDeleted() const { |
| auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel)); |
| return TrailingZeros(static_cast<uint32_t>( |
| _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1)); |
| } |
| |
| void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { |
| auto msbs = _mm_set1_epi8(static_cast<char>(-128)); |
| auto x126 = _mm_set1_epi8(126); |
| #ifdef ABSL_INTERNAL_HAVE_SSSE3 |
| auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs); |
| #else |
| auto zero = _mm_setzero_si128(); |
| auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl); |
| auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126)); |
| #endif |
| _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res); |
| } |
| |
| __m128i ctrl; |
| }; |
| #endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 |
| |
| #if defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN) |
| struct GroupAArch64Impl { |
| static constexpr size_t kWidth = 8; |
| |
| explicit GroupAArch64Impl(const ctrl_t* pos) { |
| ctrl = vld1_u8(reinterpret_cast<const uint8_t*>(pos)); |
| } |
| |
| auto Match(h2_t hash) const { |
| uint8x8_t dup = vdup_n_u8(hash); |
| auto mask = vceq_u8(ctrl, dup); |
| return BitMask<uint64_t, kWidth, /*Shift=*/3, |
| /*NullifyBitsOnIteration=*/true>( |
| vget_lane_u64(vreinterpret_u64_u8(mask), 0)); |
| } |
| |
| NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const { |
| uint64_t mask = |
| vget_lane_u64(vreinterpret_u64_u8(vceq_s8( |
| vdup_n_s8(static_cast<int8_t>(ctrl_t::kEmpty)), |
| vreinterpret_s8_u8(ctrl))), |
| 0); |
| return NonIterableBitMask<uint64_t, kWidth, 3>(mask); |
| } |
| |
| // Returns a bitmask representing the positions of full slots. |
| // Note: for `is_small()` tables group may contain the "same" slot twice: |
| // original and mirrored. |
| auto MaskFull() const { |
| uint64_t mask = vget_lane_u64( |
| vreinterpret_u64_u8(vcge_s8(vreinterpret_s8_u8(ctrl), |
| vdup_n_s8(static_cast<int8_t>(0)))), |
| 0); |
| return BitMask<uint64_t, kWidth, /*Shift=*/3, |
| /*NullifyBitsOnIteration=*/true>(mask); |
| } |
| |
| // Returns a bitmask representing the positions of non full slots. |
| // Note: this includes: kEmpty, kDeleted, kSentinel. |
| // It is useful in contexts when kSentinel is not present. |
| auto MaskNonFull() const { |
| uint64_t mask = vget_lane_u64( |
| vreinterpret_u64_u8(vclt_s8(vreinterpret_s8_u8(ctrl), |
| vdup_n_s8(static_cast<int8_t>(0)))), |
| 0); |
| return BitMask<uint64_t, kWidth, /*Shift=*/3, |
| /*NullifyBitsOnIteration=*/true>(mask); |
| } |
| |
| NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const { |
| uint64_t mask = |
| vget_lane_u64(vreinterpret_u64_u8(vcgt_s8( |
| vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)), |
| vreinterpret_s8_u8(ctrl))), |
| 0); |
| return NonIterableBitMask<uint64_t, kWidth, 3>(mask); |
| } |
| |
| uint32_t CountLeadingEmptyOrDeleted() const { |
| uint64_t mask = |
| vget_lane_u64(vreinterpret_u64_u8(vcle_s8( |
| vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)), |
| vreinterpret_s8_u8(ctrl))), |
| 0); |
| // Similar to MaskEmptyorDeleted() but we invert the logic to invert the |
| // produced bitfield. We then count number of trailing zeros. |
| // Clang and GCC optimize countr_zero to rbit+clz without any check for 0, |
| // so we should be fine. |
| return static_cast<uint32_t>(countr_zero(mask)) >> 3; |
| } |
| |
| void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { |
| uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0); |
| constexpr uint64_t slsbs = 0x0202020202020202ULL; |
| constexpr uint64_t midbs = 0x7e7e7e7e7e7e7e7eULL; |
| auto x = slsbs & (mask >> 6); |
| auto res = (x + midbs) | kMsbs8Bytes; |
| little_endian::Store64(dst, res); |
| } |
| |
| uint8x8_t ctrl; |
| }; |
| #endif // ABSL_INTERNAL_HAVE_ARM_NEON && ABSL_IS_LITTLE_ENDIAN |
| |
| struct GroupPortableImpl { |
| static constexpr size_t kWidth = 8; |
| |
| explicit GroupPortableImpl(const ctrl_t* pos) |
| : ctrl(little_endian::Load64(pos)) {} |
| |
| BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const { |
| // For the technique, see: |
| // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord |
| // (Determine if a word has a byte equal to n). |
| // |
| // Caveat: there are false positives but: |
| // - they only occur if there is a real match |
| // - they never occur on ctrl_t::kEmpty, ctrl_t::kDeleted, ctrl_t::kSentinel |
| // - they will be handled gracefully by subsequent checks in code |
| // |
| // Example: |
| // v = 0x1716151413121110 |
| // hash = 0x12 |
| // retval = (v - lsbs) & ~v & msbs = 0x0000000080800000 |
| constexpr uint64_t lsbs = 0x0101010101010101ULL; |
| auto x = ctrl ^ (lsbs * hash); |
| return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & kMsbs8Bytes); |
| } |
| |
| NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const { |
| return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & ~(ctrl << 6)) & |
| kMsbs8Bytes); |
| } |
| |
| // Returns a bitmask representing the positions of full slots. |
| // Note: for `is_small()` tables group may contain the "same" slot twice: |
| // original and mirrored. |
| BitMask<uint64_t, kWidth, 3> MaskFull() const { |
| return BitMask<uint64_t, kWidth, 3>((ctrl ^ kMsbs8Bytes) & kMsbs8Bytes); |
| } |
| |
| // Returns a bitmask representing the positions of non full slots. |
| // Note: this includes: kEmpty, kDeleted, kSentinel. |
| // It is useful in contexts when kSentinel is not present. |
| auto MaskNonFull() const { |
| return BitMask<uint64_t, kWidth, 3>(ctrl & kMsbs8Bytes); |
| } |
| |
| NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const { |
| return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & ~(ctrl << 7)) & |
| kMsbs8Bytes); |
| } |
| |
| uint32_t CountLeadingEmptyOrDeleted() const { |
| // ctrl | ~(ctrl >> 7) will have the lowest bit set to zero for kEmpty and |
| // kDeleted. We lower all other bits and count number of trailing zeros. |
| constexpr uint64_t bits = 0x0101010101010101ULL; |
| return static_cast<uint32_t>(countr_zero((ctrl | ~(ctrl >> 7)) & bits) >> |
| 3); |
| } |
| |
| void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { |
| constexpr uint64_t lsbs = 0x0101010101010101ULL; |
| auto x = ctrl & kMsbs8Bytes; |
| auto res = (~x + (x >> 7)) & ~lsbs; |
| little_endian::Store64(dst, res); |
| } |
| |
| uint64_t ctrl; |
| }; |
| |
| #ifdef ABSL_INTERNAL_HAVE_SSE2 |
| using Group = GroupSse2Impl; |
| using GroupFullEmptyOrDeleted = GroupSse2Impl; |
| #elif defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN) |
| using Group = GroupAArch64Impl; |
| // For Aarch64, we use the portable implementation for counting and masking |
| // full, empty or deleted group elements. This is to avoid the latency of moving |
| // between data GPRs and Neon registers when it does not provide a benefit. |
| // Using Neon is profitable when we call Match(), but is not when we don't, |
| // which is the case when we do *EmptyOrDeleted and MaskFull operations. |
| // It is difficult to make a similar approach beneficial on other architectures |
| // such as x86 since they have much lower GPR <-> vector register transfer |
| // latency and 16-wide Groups. |
| using GroupFullEmptyOrDeleted = GroupPortableImpl; |
| #else |
| using Group = GroupPortableImpl; |
| using GroupFullEmptyOrDeleted = GroupPortableImpl; |
| #endif |
| |
| // When there is an insertion with no reserved growth, we rehash with |
| // probability `min(1, RehashProbabilityConstant() / capacity())`. Using a |
| // constant divided by capacity ensures that inserting N elements is still O(N) |
| // in the average case. Using the constant 16 means that we expect to rehash ~8 |
| // times more often than when generations are disabled. We are adding expected |
| // rehash_probability * #insertions/capacity_growth = 16/capacity * ((7/8 - |
| // 7/16) * capacity)/capacity_growth = ~7 extra rehashes per capacity growth. |
| inline size_t RehashProbabilityConstant() { return 16; } |
| |
| class CommonFieldsGenerationInfoEnabled { |
| // A sentinel value for reserved_growth_ indicating that we just ran out of |
| // reserved growth on the last insertion. When reserve is called and then |
| // insertions take place, reserved_growth_'s state machine is N, ..., 1, |
| // kReservedGrowthJustRanOut, 0. |
| static constexpr size_t kReservedGrowthJustRanOut = |
| (std::numeric_limits<size_t>::max)(); |
| |
| public: |
| CommonFieldsGenerationInfoEnabled() = default; |
| CommonFieldsGenerationInfoEnabled(CommonFieldsGenerationInfoEnabled&& that) |
| : reserved_growth_(that.reserved_growth_), |
| reservation_size_(that.reservation_size_), |
| generation_(that.generation_) { |
| that.reserved_growth_ = 0; |
| that.reservation_size_ = 0; |
| that.generation_ = EmptyGeneration(); |
| } |
| CommonFieldsGenerationInfoEnabled& operator=( |
| CommonFieldsGenerationInfoEnabled&&) = default; |
| |
| // Whether we should rehash on insert in order to detect bugs of using invalid |
| // references. We rehash on the first insertion after reserved_growth_ reaches |
| // 0 after a call to reserve. We also do a rehash with low probability |
| // whenever reserved_growth_ is zero. |
| bool should_rehash_for_bug_detection_on_insert(const ctrl_t* ctrl, |
| size_t capacity) const; |
| // Similar to above, except that we don't depend on reserved_growth_. |
| bool should_rehash_for_bug_detection_on_move(const ctrl_t* ctrl, |
| size_t capacity) const; |
| void maybe_increment_generation_on_insert() { |
| if (reserved_growth_ == kReservedGrowthJustRanOut) reserved_growth_ = 0; |
| |
| if (reserved_growth_ > 0) { |
| if (--reserved_growth_ == 0) reserved_growth_ = kReservedGrowthJustRanOut; |
| } else { |
| increment_generation(); |
| } |
| } |
| void increment_generation() { *generation_ = NextGeneration(*generation_); } |
| void reset_reserved_growth(size_t reservation, size_t size) { |
| reserved_growth_ = reservation - size; |
| } |
| size_t reserved_growth() const { return reserved_growth_; } |
| void set_reserved_growth(size_t r) { reserved_growth_ = r; } |
| size_t reservation_size() const { return reservation_size_; } |
| void set_reservation_size(size_t r) { reservation_size_ = r; } |
| GenerationType generation() const { return *generation_; } |
| void set_generation(GenerationType g) { *generation_ = g; } |
| GenerationType* generation_ptr() const { return generation_; } |
| void set_generation_ptr(GenerationType* g) { generation_ = g; } |
| |
| private: |
| // The number of insertions remaining that are guaranteed to not rehash due to |
| // a prior call to reserve. Note: we store reserved growth in addition to |
| // reservation size because calls to erase() decrease size_ but don't decrease |
| // reserved growth. |
| size_t reserved_growth_ = 0; |
| // The maximum argument to reserve() since the container was cleared. We need |
| // to keep track of this, in addition to reserved growth, because we reset |
| // reserved growth to this when erase(begin(), end()) is called. |
| size_t reservation_size_ = 0; |
| // Pointer to the generation counter, which is used to validate iterators and |
| // is stored in the backing array between the control bytes and the slots. |
| // Note that we can't store the generation inside the container itself and |
| // keep a pointer to the container in the iterators because iterators must |
| // remain valid when the container is moved. |
| // Note: we could derive this pointer from the control pointer, but it makes |
| // the code more complicated, and there's a benefit in having the sizes of |
| // raw_hash_set in sanitizer mode and non-sanitizer mode a bit more different, |
| // which is that tests are less likely to rely on the size remaining the same. |
| GenerationType* generation_ = EmptyGeneration(); |
| }; |
| |
| class CommonFieldsGenerationInfoDisabled { |
| public: |
| CommonFieldsGenerationInfoDisabled() = default; |
| CommonFieldsGenerationInfoDisabled(CommonFieldsGenerationInfoDisabled&&) = |
| default; |
| CommonFieldsGenerationInfoDisabled& operator=( |
| CommonFieldsGenerationInfoDisabled&&) = default; |
| |
| bool should_rehash_for_bug_detection_on_insert(const ctrl_t*, size_t) const { |
| return false; |
| } |
| bool should_rehash_for_bug_detection_on_move(const ctrl_t*, size_t) const { |
| return false; |
| } |
| void maybe_increment_generation_on_insert() {} |
| void increment_generation() {} |
| void reset_reserved_growth(size_t, size_t) {} |
| size_t reserved_growth() const { return 0; } |
| void set_reserved_growth(size_t) {} |
| size_t reservation_size() const { return 0; } |
| void set_reservation_size(size_t) {} |
| GenerationType generation() const { return 0; } |
| void set_generation(GenerationType) {} |
| GenerationType* generation_ptr() const { return nullptr; } |
| void set_generation_ptr(GenerationType*) {} |
| }; |
| |
| class HashSetIteratorGenerationInfoEnabled { |
| public: |
| HashSetIteratorGenerationInfoEnabled() = default; |
| explicit HashSetIteratorGenerationInfoEnabled( |
| const GenerationType* generation_ptr) |
| : generation_ptr_(generation_ptr), generation_(*generation_ptr) {} |
| |
| GenerationType generation() const { return generation_; } |
| void reset_generation() { generation_ = *generation_ptr_; } |
| const GenerationType* generation_ptr() const { return generation_ptr_; } |
| void set_generation_ptr(const GenerationType* ptr) { generation_ptr_ = ptr; } |
| |
| private: |
| const GenerationType* generation_ptr_ = EmptyGeneration(); |
| GenerationType generation_ = *generation_ptr_; |
| }; |
| |
| class HashSetIteratorGenerationInfoDisabled { |
| public: |
| HashSetIteratorGenerationInfoDisabled() = default; |
| explicit HashSetIteratorGenerationInfoDisabled(const GenerationType*) {} |
| |
| GenerationType generation() const { return 0; } |
| void reset_generation() {} |
| const GenerationType* generation_ptr() const { return nullptr; } |
| void set_generation_ptr(const GenerationType*) {} |
| }; |
| |
| #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS |
| using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoEnabled; |
| using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoEnabled; |
| #else |
| using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoDisabled; |
| using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoDisabled; |
| #endif |
| |
| // Stored the information regarding number of slots we can still fill |
| // without needing to rehash. |
| // |
| // We want to ensure sufficient number of empty slots in the table in order |
| // to keep probe sequences relatively short. Empty slot in the probe group |
| // is required to stop probing. |
| // |
| // Tombstones (kDeleted slots) are not included in the growth capacity, |
| // because we'd like to rehash when the table is filled with tombstones and/or |
| // full slots. |
| // |
| // GrowthInfo also stores a bit that encodes whether table may have any |
| // deleted slots. |
| // Most of the tables (>95%) have no deleted slots, so some functions can |
| // be more efficient with this information. |
| // |
| // Callers can also force a rehash via the standard `rehash(0)`, |
| // which will recompute this value as a side-effect. |
| // |
| // See also `CapacityToGrowth()`. |
| class GrowthInfo { |
| public: |
| // Leaves data member uninitialized. |
| GrowthInfo() = default; |
| |
| // Initializes the GrowthInfo assuming we can grow `growth_left` elements |
| // and there are no kDeleted slots in the table. |
| void InitGrowthLeftNoDeleted(size_t growth_left) { |
| growth_left_info_ = growth_left; |
| } |
| |
| // Overwrites single full slot with an empty slot. |
| void OverwriteFullAsEmpty() { ++growth_left_info_; } |
| |
| // Overwrites single empty slot with a full slot. |
| void OverwriteEmptyAsFull() { |
| assert(GetGrowthLeft() > 0); |
| --growth_left_info_; |
| } |
| |
| // Overwrites several empty slots with full slots. |
| void OverwriteManyEmptyAsFull(size_t cnt) { |
| assert(GetGrowthLeft() >= cnt); |
| growth_left_info_ -= cnt; |
| } |
| |
| // Overwrites specified control element with full slot. |
| void OverwriteControlAsFull(ctrl_t ctrl) { |
| assert(GetGrowthLeft() >= static_cast<size_t>(IsEmpty(ctrl))); |
| growth_left_info_ -= static_cast<size_t>(IsEmpty(ctrl)); |
| } |
| |
| // Overwrites single full slot with a deleted slot. |
| void OverwriteFullAsDeleted() { growth_left_info_ |= kDeletedBit; } |
| |
| // Returns true if table satisfies two properties: |
| // 1. Guaranteed to have no kDeleted slots. |
| // 2. There is a place for at least one element to grow. |
| bool HasNoDeletedAndGrowthLeft() const { |
| return static_cast<std::make_signed_t<size_t>>(growth_left_info_) > 0; |
| } |
| |
| // Returns true if the table satisfies two properties: |
| // 1. Guaranteed to have no kDeleted slots. |
| // 2. There is no growth left. |
| bool HasNoGrowthLeftAndNoDeleted() const { |
| return growth_left_info_ == 0; |
| } |
| |
| // Returns true if table guaranteed to have no k |
| bool HasNoDeleted() const { |
| return static_cast<std::make_signed_t<size_t>>(growth_left_info_) >= 0; |
| } |
| |
| // Returns the number of elements left to grow. |
| size_t GetGrowthLeft() const { |
| return growth_left_info_ & kGrowthLeftMask; |
| } |
| |
| private: |
| static constexpr size_t kGrowthLeftMask = ((~size_t{}) >> 1); |
| static constexpr size_t kDeletedBit = ~kGrowthLeftMask; |
| // Topmost bit signal whenever there are deleted slots. |
| size_t growth_left_info_; |
| }; |
| |
| static_assert(sizeof(GrowthInfo) == sizeof(size_t), ""); |
| static_assert(alignof(GrowthInfo) == alignof(size_t), ""); |
| |
| // Returns whether `n` is a valid capacity (i.e., number of slots). |
| // |
| // A valid capacity is a non-zero integer `2^m - 1`. |
| inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; } |
| |
| // Returns the number of "cloned control bytes". |
| // |
| // This is the number of control bytes that are present both at the beginning |
| // of the control byte array and at the end, such that we can create a |
| // `Group::kWidth`-width probe window starting from any control byte. |
| constexpr size_t NumClonedBytes() { return Group::kWidth - 1; } |
| |
| // Returns the number of control bytes including cloned. |
| constexpr size_t NumControlBytes(size_t capacity) { |
| return capacity + 1 + NumClonedBytes(); |
| } |
| |
| // Computes the offset from the start of the backing allocation of control. |
| // infoz and growth_info are stored at the beginning of the backing array. |
| inline static size_t ControlOffset(bool has_infoz) { |
| return (has_infoz ? sizeof(HashtablezInfoHandle) : 0) + sizeof(GrowthInfo); |
| } |
| |
| // Helper class for computing offsets and allocation size of hash set fields. |
| class RawHashSetLayout { |
| public: |
| explicit RawHashSetLayout(size_t capacity, size_t slot_align, bool has_infoz) |
| : capacity_(capacity), |
| control_offset_(ControlOffset(has_infoz)), |
| generation_offset_(control_offset_ + NumControlBytes(capacity)), |
| slot_offset_( |
| (generation_offset_ + NumGenerationBytes() + slot_align - 1) & |
| (~slot_align + 1)) { |
| assert(IsValidCapacity(capacity)); |
| } |
| |
| // Returns the capacity of a table. |
| size_t capacity() const { return capacity_; } |
| |
| // Returns precomputed offset from the start of the backing allocation of |
| // control. |
| size_t control_offset() const { return control_offset_; } |
| |
| // Given the capacity of a table, computes the offset (from the start of the |
| // backing allocation) of the generation counter (if it exists). |
| size_t generation_offset() const { return generation_offset_; } |
| |
| // Given the capacity of a table, computes the offset (from the start of the |
| // backing allocation) at which the slots begin. |
| size_t slot_offset() const { return slot_offset_; } |
| |
| // Given the capacity of a table, computes the total size of the backing |
| // array. |
| size_t alloc_size(size_t slot_size) const { |
| return slot_offset_ + capacity_ * slot_size; |
| } |
| |
| private: |
| size_t capacity_; |
| size_t control_offset_; |
| size_t generation_offset_; |
| size_t slot_offset_; |
| }; |
| |
| // We only allow a maximum of 1 SOO element, which makes the implementation |
| // much simpler. Complications with multiple SOO elements include: |
| // - Satisfying the guarantee that erasing one element doesn't invalidate |
| // iterators to other elements means we would probably need actual SOO |
| // control bytes. |
| // - In order to prevent user code from depending on iteration order for small |
| // tables, we would need to randomize the iteration order somehow. |
| constexpr size_t SooCapacity() { return 1; } |
| // Sentinel type to indicate SOO CommonFields construction. |
| struct soo_tag_t {}; |
| // Sentinel type to indicate SOO CommonFields construction with full size. |
| struct full_soo_tag_t {}; |
| |
| // Suppress erroneous uninitialized memory errors on GCC. For example, GCC |
| // thinks that the call to slot_array() in find_or_prepare_insert() is reading |
| // uninitialized memory, but slot_array is only called there when the table is |
| // non-empty and this memory is initialized when the table is non-empty. |
| #if !defined(__clang__) && defined(__GNUC__) |
| #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(x) \ |
| _Pragma("GCC diagnostic push") \ |
| _Pragma("GCC diagnostic ignored \"-Wmaybe-uninitialized\"") \ |
| _Pragma("GCC diagnostic ignored \"-Wuninitialized\"") x; \ |
| _Pragma("GCC diagnostic pop") |
| #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(x) \ |
| ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(return x) |
| #else |
| #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(x) x |
| #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(x) return x |
| #endif |
| |
| // This allows us to work around an uninitialized memory warning when |
| // constructing begin() iterators in empty hashtables. |
| union MaybeInitializedPtr { |
| void* get() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(p); } |
| void set(void* ptr) { p = ptr; } |
| |
| void* p; |
| }; |
| |
| struct HeapPtrs { |
| HeapPtrs() = default; |
| explicit HeapPtrs(ctrl_t* c) : control(c) {} |
| |
| // The control bytes (and, also, a pointer near to the base of the backing |
| // array). |
| // |
| // This contains `capacity + 1 + NumClonedBytes()` entries, even |
| // when the table is empty (hence EmptyGroup). |
| // |
| // Note that growth_info is stored immediately before this pointer. |
| // May be uninitialized for SOO tables. |
| ctrl_t* control; |
| |
| // The beginning of the slots, located at `SlotOffset()` bytes after |
| // `control`. May be uninitialized for empty tables. |
| // Note: we can't use `slots` because Qt defines "slots" as a macro. |
| MaybeInitializedPtr slot_array; |
| }; |
| |
| // Manages the backing array pointers or the SOO slot. When raw_hash_set::is_soo |
| // is true, the SOO slot is stored in `soo_data`. Otherwise, we use `heap`. |
| union HeapOrSoo { |
| HeapOrSoo() = default; |
| explicit HeapOrSoo(ctrl_t* c) : heap(c) {} |
| |
| ctrl_t*& control() { |
| ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.control); |
| } |
| ctrl_t* control() const { |
| ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.control); |
| } |
| MaybeInitializedPtr& slot_array() { |
| ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.slot_array); |
| } |
| MaybeInitializedPtr slot_array() const { |
| ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.slot_array); |
| } |
| void* get_soo_data() { |
| ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(soo_data); |
| } |
| const void* get_soo_data() const { |
| ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(soo_data); |
| } |
| |
| HeapPtrs heap; |
| unsigned char soo_data[sizeof(HeapPtrs)]; |
| }; |
| |
| // CommonFields hold the fields in raw_hash_set that do not depend |
| // on template parameters. This allows us to conveniently pass all |
| // of this state to helper functions as a single argument. |
| class CommonFields : public CommonFieldsGenerationInfo { |
| public: |
| CommonFields() : capacity_(0), size_(0), heap_or_soo_(EmptyGroup()) {} |
| explicit CommonFields(soo_tag_t) : capacity_(SooCapacity()), size_(0) {} |
| explicit CommonFields(full_soo_tag_t) |
| : capacity_(SooCapacity()), size_(size_t{1} << HasInfozShift()) {} |
| |
| // Not copyable |
| CommonFields(const CommonFields&) = delete; |
| CommonFields& operator=(const CommonFields&) = delete; |
| |
| // Movable |
| CommonFields(CommonFields&& that) = default; |
| CommonFields& operator=(CommonFields&&) = default; |
| |
| template <bool kSooEnabled> |
| static CommonFields CreateDefault() { |
| return kSooEnabled ? CommonFields{soo_tag_t{}} : CommonFields{}; |
| } |
| |
| // The inline data for SOO is written on top of control_/slots_. |
| const void* soo_data() const { return heap_or_soo_.get_soo_data(); } |
| void* soo_data() { return heap_or_soo_.get_soo_data(); } |
| |
| HeapOrSoo heap_or_soo() const { return heap_or_soo_; } |
| const HeapOrSoo& heap_or_soo_ref() const { return heap_or_soo_; } |
| |
| ctrl_t* control() const { return heap_or_soo_.control(); } |
| void set_control(ctrl_t* c) { heap_or_soo_.control() = c; } |
| void* backing_array_start() const { |
| // growth_info (and maybe infoz) is stored before control bytes. |
| assert(reinterpret_cast<uintptr_t>(control()) % alignof(size_t) == 0); |
| return control() - ControlOffset(has_infoz()); |
| } |
| |
| // Note: we can't use slots() because Qt defines "slots" as a macro. |
| void* slot_array() const { return heap_or_soo_.slot_array().get(); } |
| MaybeInitializedPtr slots_union() const { return heap_or_soo_.slot_array(); } |
| void set_slots(void* s) { heap_or_soo_.slot_array().set(s); } |
| |
| // The number of filled slots. |
| size_t size() const { return size_ >> HasInfozShift(); } |
| void set_size(size_t s) { |
| size_ = (s << HasInfozShift()) | (size_ & HasInfozMask()); |
| } |
| void set_empty_soo() { |
| AssertInSooMode(); |
| size_ = 0; |
| } |
| void set_full_soo() { |
| AssertInSooMode(); |
| size_ = size_t{1} << HasInfozShift(); |
| } |
| void increment_size() { |
| assert(size() < capacity()); |
| size_ += size_t{1} << HasInfozShift(); |
| } |
| void decrement_size() { |
| assert(size() > 0); |
| size_ -= size_t{1} << HasInfozShift(); |
| } |
| |
| // The total number of available slots. |
| size_t capacity() const { return capacity_; } |
| void set_capacity(size_t c) { |
| assert(c == 0 || IsValidCapacity(c)); |
| capacity_ = c; |
| } |
| |
| // The number of slots we can still fill without needing to rehash. |
| // This is stored in the heap allocation before the control bytes. |
| // TODO(b/289225379): experiment with moving growth_info back inline to |
| // increase room for SOO. |
| size_t growth_left() const { return growth_info().GetGrowthLeft(); } |
| |
| GrowthInfo& growth_info() { |
| auto* gl_ptr = reinterpret_cast<GrowthInfo*>(control()) - 1; |
| assert(reinterpret_cast<uintptr_t>(gl_ptr) % alignof(GrowthInfo) == 0); |
| return *gl_ptr; |
| } |
| GrowthInfo growth_info() const { |
| return const_cast<CommonFields*>(this)->growth_info(); |
| } |
| |
| bool has_infoz() const { |
| return ABSL_PREDICT_FALSE((size_ & HasInfozMask()) != 0); |
| } |
| void set_has_infoz(bool has_infoz) { |
| size_ = (size() << HasInfozShift()) | static_cast<size_t>(has_infoz); |
| } |
| |
| HashtablezInfoHandle infoz() { |
| return has_infoz() |
| ? *reinterpret_cast<HashtablezInfoHandle*>(backing_array_start()) |
| : HashtablezInfoHandle(); |
| } |
| void set_infoz(HashtablezInfoHandle infoz) { |
| assert(has_infoz()); |
| *reinterpret_cast<HashtablezInfoHandle*>(backing_array_start()) = infoz; |
| } |
| |
| bool should_rehash_for_bug_detection_on_insert() const { |
| return CommonFieldsGenerationInfo:: |
| should_rehash_for_bug_detection_on_insert(control(), capacity()); |
| } |
| bool should_rehash_for_bug_detection_on_move() const { |
| return CommonFieldsGenerationInfo:: |
| should_rehash_for_bug_detection_on_move(control(), capacity()); |
| } |
| void reset_reserved_growth(size_t reservation) { |
| CommonFieldsGenerationInfo::reset_reserved_growth(reservation, size()); |
| } |
| |
| // The size of the backing array allocation. |
| size_t alloc_size(size_t slot_size, size_t slot_align) const { |
| return RawHashSetLayout(capacity(), slot_align, has_infoz()) |
| .alloc_size(slot_size); |
| } |
| |
| // Move fields other than heap_or_soo_. |
| void move_non_heap_or_soo_fields(CommonFields& that) { |
| static_cast<CommonFieldsGenerationInfo&>(*this) = |
| std::move(static_cast<CommonFieldsGenerationInfo&>(that)); |
| capacity_ = that.capacity_; |
| size_ = that.size_; |
| } |
| |
| // Returns the number of control bytes set to kDeleted. For testing only. |
| size_t TombstonesCount() const { |
| return static_cast<size_t>( |
| std::count(control(), control() + capacity(), ctrl_t::kDeleted)); |
| } |
| |
| private: |
| // We store the has_infoz bit in the lowest bit of size_. |
| static constexpr size_t HasInfozShift() { return 1; } |
| static constexpr size_t HasInfozMask() { |
| return (size_t{1} << HasInfozShift()) - 1; |
| } |
| |
| // We can't assert that SOO is enabled because we don't have SooEnabled(), but |
| // we assert what we can. |
| void AssertInSooMode() const { |
| assert(capacity() == SooCapacity()); |
| assert(!has_infoz()); |
| } |
| |
| // The number of slots in the backing array. This is always 2^N-1 for an |
| // integer N. NOTE: we tried experimenting with compressing the capacity and |
| // storing it together with size_: (a) using 6 bits to store the corresponding |
| // power (N in 2^N-1), and (b) storing 2^N as the most significant bit of |
| // size_ and storing size in the low bits. Both of these experiments were |
| // regressions, presumably because we need capacity to do find operations. |
| size_t capacity_; |
| |
| // The size and also has one bit that stores whether we have infoz. |
| // TODO(b/289225379): we could put size_ into HeapOrSoo and make capacity_ |
| // encode the size in SOO case. We would be making size()/capacity() more |
| // expensive in order to have more SOO space. |
| size_t size_; |
| |
| // Either the control/slots pointers or the SOO slot. |
| HeapOrSoo heap_or_soo_; |
| }; |
| |
| template <class Policy, class Hash, class Eq, class Alloc> |
| class raw_hash_set; |
| |
| // Returns the next valid capacity after `n`. |
| inline size_t NextCapacity(size_t n) { |
| assert(IsValidCapacity(n) || n == 0); |
| return n * 2 + 1; |
| } |
| |
| // Applies the following mapping to every byte in the control array: |
| // * kDeleted -> kEmpty |
| // * kEmpty -> kEmpty |
| // * _ -> kDeleted |
| // PRECONDITION: |
| // IsValidCapacity(capacity) |
| // ctrl[capacity] == ctrl_t::kSentinel |
| // ctrl[i] != ctrl_t::kSentinel for all i < capacity |
| void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity); |
| |
| // Converts `n` into the next valid capacity, per `IsValidCapacity`. |
| inline size_t NormalizeCapacity(size_t n) { |
| return n ? ~size_t{} >> countl_zero(n) : 1; |
| } |
| |
| // General notes on capacity/growth methods below: |
| // - We use 7/8th as maximum load factor. For 16-wide groups, that gives an |
| // average of two empty slots per group. |
| // - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity. |
| // - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we |
| // never need to probe (the whole table fits in one group) so we don't need a |
| // load factor less than 1. |
| |
| // Given `capacity`, applies the load factor; i.e., it returns the maximum |
| // number of values we should put into the table before a resizing rehash. |
| inline size_t CapacityToGrowth(size_t capacity) { |
| assert(IsValidCapacity(capacity)); |
| // `capacity*7/8` |
| if (Group::kWidth == 8 && capacity == 7) { |
| // x-x/8 does not work when x==7. |
| return 6; |
| } |
| return capacity - capacity / 8; |
| } |
| |
| // Given `growth`, "unapplies" the load factor to find how large the capacity |
| // should be to stay within the load factor. |
| // |
| // This might not be a valid capacity and `NormalizeCapacity()` should be |
| // called on this. |
| inline size_t GrowthToLowerboundCapacity(size_t growth) { |
| // `growth*8/7` |
| if (Group::kWidth == 8 && growth == 7) { |
| // x+(x-1)/7 does not work when x==7. |
| return 8; |
| } |
| return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7); |
| } |
| |
| template <class InputIter> |
| size_t SelectBucketCountForIterRange(InputIter first, InputIter last, |
| size_t bucket_count) { |
| if (bucket_count != 0) { |
| return bucket_count; |
| } |
| using InputIterCategory = |
| typename std::iterator_traits<InputIter>::iterator_category; |
| if (std::is_base_of<std::random_access_iterator_tag, |
| InputIterCategory>::value) { |
| return GrowthToLowerboundCapacity( |
| static_cast<size_t>(std::distance(first, last))); |
| } |
| return 0; |
| } |
| |
| constexpr bool SwisstableDebugEnabled() { |
| #if defined(ABSL_SWISSTABLE_ENABLE_GENERATIONS) || \ |
| ABSL_OPTION_HARDENED == 1 || !defined(NDEBUG) |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| inline void AssertIsFull(const ctrl_t* ctrl, GenerationType generation, |
| const GenerationType* generation_ptr, |
| const char* operation) { |
| if (!SwisstableDebugEnabled()) return; |
| // `SwisstableDebugEnabled()` is also true for release builds with hardening |
| // enabled. To minimize their impact in those builds: |
| // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout |
| // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve |
| // the chances that the hot paths will be inlined. |
| if (ABSL_PREDICT_FALSE(ctrl == nullptr)) { |
| ABSL_RAW_LOG(FATAL, "%s called on end() iterator.", operation); |
| } |
| if (ABSL_PREDICT_FALSE(ctrl == EmptyGroup())) { |
| ABSL_RAW_LOG(FATAL, "%s called on default-constructed iterator.", |
| operation); |
| } |
| if (SwisstableGenerationsEnabled()) { |
| if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) { |
| ABSL_RAW_LOG(FATAL, |
| "%s called on invalid iterator. The table could have " |
| "rehashed or moved since this iterator was initialized.", |
| operation); |
| } |
| if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) { |
| ABSL_RAW_LOG( |
| FATAL, |
| "%s called on invalid iterator. The element was likely erased.", |
| operation); |
| } |
| } else { |
| if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) { |
| ABSL_RAW_LOG( |
| FATAL, |
| "%s called on invalid iterator. The element might have been erased " |
| "or the table might have rehashed. Consider running with " |
| "--config=asan to diagnose rehashing issues.", |
| operation); |
| } |
| } |
| } |
| |
| // Note that for comparisons, null/end iterators are valid. |
| inline void AssertIsValidForComparison(const ctrl_t* ctrl, |
| GenerationType generation, |
| const GenerationType* generation_ptr) { |
| if (!SwisstableDebugEnabled()) return; |
| const bool ctrl_is_valid_for_comparison = |
| ctrl == nullptr || ctrl == EmptyGroup() || IsFull(*ctrl); |
| if (SwisstableGenerationsEnabled()) { |
| if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) { |
| ABSL_RAW_LOG(FATAL, |
| "Invalid iterator comparison. The table could have rehashed " |
| "or moved since this iterator was initialized."); |
| } |
| if (ABSL_PREDICT_FALSE(!ctrl_is_valid_for_comparison)) { |
| ABSL_RAW_LOG( |
| FATAL, "Invalid iterator comparison. The element was likely erased."); |
| } |
| } else { |
| ABSL_HARDENING_ASSERT( |
| ctrl_is_valid_for_comparison && |
| "Invalid iterator comparison. The element might have been erased or " |
| "the table might have rehashed. Consider running with --config=asan to " |
| "diagnose rehashing issues."); |
| } |
| } |
| |
| // If the two iterators come from the same container, then their pointers will |
| // interleave such that ctrl_a <= ctrl_b < slot_a <= slot_b or vice/versa. |
| // Note: we take slots by reference so that it's not UB if they're uninitialized |
| // as long as we don't read them (when ctrl is null). |
| inline bool AreItersFromSameContainer(const ctrl_t* ctrl_a, |
| const ctrl_t* ctrl_b, |
| const void* const& slot_a, |
| const void* const& slot_b) { |
| // If either control byte is null, then we can't tell. |
| if (ctrl_a == nullptr || ctrl_b == nullptr) return true; |
| const bool a_is_soo = IsSooControl(ctrl_a); |
| if (a_is_soo != IsSooControl(ctrl_b)) return false; |
| if (a_is_soo) return slot_a == slot_b; |
| |
| const void* low_slot = slot_a; |
| const void* hi_slot = slot_b; |
| if (ctrl_a > ctrl_b) { |
| std::swap(ctrl_a, ctrl_b); |
| std::swap(low_slot, hi_slot); |
| } |
| return ctrl_b < low_slot && low_slot <= hi_slot; |
| } |
| |
| // Asserts that two iterators come from the same container. |
| // Note: we take slots by reference so that it's not UB if they're uninitialized |
| // as long as we don't read them (when ctrl is null). |
| inline void AssertSameContainer(const ctrl_t* ctrl_a, const ctrl_t* ctrl_b, |
| const void* const& slot_a, |
| const void* const& slot_b, |
| const GenerationType* generation_ptr_a, |
| const GenerationType* generation_ptr_b) { |
| if (!SwisstableDebugEnabled()) return; |
| // `SwisstableDebugEnabled()` is also true for release builds with hardening |
| // enabled. To minimize their impact in those builds: |
| // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout |
| // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve |
| // the chances that the hot paths will be inlined. |
| |
| // fail_if(is_invalid, message) crashes when is_invalid is true and provides |
| // an error message based on `message`. |
| const auto fail_if = [](bool is_invalid, const char* message) { |
| if (ABSL_PREDICT_FALSE(is_invalid)) { |
| ABSL_RAW_LOG(FATAL, "Invalid iterator comparison. %s", message); |
| } |
| }; |
| |
| const bool a_is_default = ctrl_a == EmptyGroup(); |
| const bool b_is_default = ctrl_b == EmptyGroup(); |
| if (a_is_default && b_is_default) return; |
| fail_if(a_is_default != b_is_default, |
| "Comparing default-constructed hashtable iterator with a " |
| "non-default-constructed hashtable iterator."); |
| |
| if (SwisstableGenerationsEnabled()) { |
| if (ABSL_PREDICT_TRUE(generation_ptr_a == generation_ptr_b)) return; |
| // Users don't need to know whether the tables are SOO so don't mention SOO |
| // in the debug message. |
| const bool a_is_soo = IsSooControl(ctrl_a); |
| const bool b_is_soo = IsSooControl(ctrl_b); |
| fail_if(a_is_soo != b_is_soo || (a_is_soo && b_is_soo), |
| "Comparing iterators from different hashtables."); |
| |
| const bool a_is_empty = IsEmptyGeneration(generation_ptr_a); |
| const bool b_is_empty = IsEmptyGeneration(generation_ptr_b); |
| fail_if(a_is_empty != b_is_empty, |
| "Comparing an iterator from an empty hashtable with an iterator " |
| "from a non-empty hashtable."); |
| fail_if(a_is_empty && b_is_empty, |
| "Comparing iterators from different empty hashtables."); |
| |
| const bool a_is_end = ctrl_a == nullptr; |
| const bool b_is_end = ctrl_b == nullptr; |
| fail_if(a_is_end || b_is_end, |
| "Comparing iterator with an end() iterator from a different " |
| "hashtable."); |
| fail_if(true, "Comparing non-end() iterators from different hashtables."); |
| } else { |
| ABSL_HARDENING_ASSERT( |
| AreItersFromSameContainer(ctrl_a, ctrl_b, slot_a, slot_b) && |
| "Invalid iterator comparison. The iterators may be from different " |
| "containers or the container might have rehashed or moved. Consider " |
| "running with --config=asan to diagnose issues."); |
| } |
| } |
| |
| struct FindInfo { |
| size_t offset; |
| size_t probe_length; |
| }; |
| |
| // Whether a table is "small". A small table fits entirely into a probing |
| // group, i.e., has a capacity < `Group::kWidth`. |
| // |
| // In small mode we are able to use the whole capacity. The extra control |
| // bytes give us at least one "empty" control byte to stop the iteration. |
| // This is important to make 1 a valid capacity. |
| // |
| // In small mode only the first `capacity` control bytes after the sentinel |
| // are valid. The rest contain dummy ctrl_t::kEmpty values that do not |
| // represent a real slot. This is important to take into account on |
| // `find_first_non_full()`, where we never try |
| // `ShouldInsertBackwards()` for small tables. |
| inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; } |
| |
| // Whether a table fits entirely into a probing group. |
| // Arbitrary order of elements in such tables is correct. |
| inline bool is_single_group(size_t capacity) { |
| return capacity <= Group::kWidth; |
| } |
| |
| // Begins a probing operation on `common.control`, using `hash`. |
| inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, const size_t capacity, |
| size_t hash) { |
| return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity); |
| } |
| inline probe_seq<Group::kWidth> probe(const CommonFields& common, size_t hash) { |
| return probe(common.control(), common.capacity(), hash); |
| } |
| |
| // Probes an array of control bits using a probe sequence derived from `hash`, |
| // and returns the offset corresponding to the first deleted or empty slot. |
| // |
| // Behavior when the entire table is full is undefined. |
| // |
| // NOTE: this function must work with tables having both empty and deleted |
| // slots in the same group. Such tables appear during `erase()`. |
| template <typename = void> |
| inline FindInfo find_first_non_full(const CommonFields& common, size_t hash) { |
| auto seq = probe(common, hash); |
| const ctrl_t* ctrl = common.control(); |
| if (IsEmptyOrDeleted(ctrl[seq.offset()]) && |
| !ShouldInsertBackwards(common.capacity(), hash, ctrl)) { |
| return {seq.offset(), /*probe_length=*/0}; |
| } |
| while (true) { |
| GroupFullEmptyOrDeleted g{ctrl + seq.offset()}; |
| auto mask = g.MaskEmptyOrDeleted(); |
| if (mask) { |
| return { |
| seq.offset(GetInsertionOffset(mask, common.capacity(), hash, ctrl)), |
| seq.index()}; |
| } |
| seq.next(); |
| assert(seq.index() <= common.capacity() && "full table!"); |
| } |
| } |
| |
| // Extern template for inline function keep possibility of inlining. |
| // When compiler decided to not inline, no symbols will be added to the |
| // corresponding translation unit. |
| extern template FindInfo find_first_non_full(const CommonFields&, size_t); |
| |
| // Non-inlined version of find_first_non_full for use in less |
| // performance critical routines. |
| FindInfo find_first_non_full_outofline(const CommonFields&, size_t); |
| |
| inline void ResetGrowthLeft(CommonFields& common) { |
| common.growth_info().InitGrowthLeftNoDeleted( |
| CapacityToGrowth(common.capacity()) - common.size()); |
| } |
| |
| // Sets `ctrl` to `{kEmpty, kSentinel, ..., kEmpty}`, marking the entire |
| // array as marked as empty. |
| inline void ResetCtrl(CommonFields& common, size_t slot_size) { |
| const size_t capacity = common.capacity(); |
| ctrl_t* ctrl = common.control(); |
| std::memset(ctrl, static_cast<int8_t>(ctrl_t::kEmpty), |
| capacity + 1 + NumClonedBytes()); |
| ctrl[capacity] = ctrl_t::kSentinel; |
| SanitizerPoisonMemoryRegion(common.slot_array(), slot_size * capacity); |
| } |
| |
| // Sets sanitizer poisoning for slot corresponding to control byte being set. |
| inline void DoSanitizeOnSetCtrl(const CommonFields& c, size_t i, ctrl_t h, |
| size_t slot_size) { |
| assert(i < c.capacity()); |
| auto* slot_i = static_cast<const char*>(c.slot_array()) + i * slot_size; |
| if (IsFull(h)) { |
| SanitizerUnpoisonMemoryRegion(slot_i, slot_size); |
| } else { |
| SanitizerPoisonMemoryRegion(slot_i, slot_size); |
| } |
| } |
| |
| // Sets `ctrl[i]` to `h`. |
| // |
| // Unlike setting it directly, this function will perform bounds checks and |
| // mirror the value to the cloned tail if necessary. |
| inline void SetCtrl(const CommonFields& c, size_t i, ctrl_t h, |
| size_t slot_size) { |
| DoSanitizeOnSetCtrl(c, i, h, slot_size); |
| ctrl_t* ctrl = c.control(); |
| ctrl[i] = h; |
| ctrl[((i - NumClonedBytes()) & c.capacity()) + |
| (NumClonedBytes() & c.capacity())] = h; |
| } |
| // Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`. |
| inline void SetCtrl(const CommonFields& c, size_t i, h2_t h, size_t slot_size) { |
| SetCtrl(c, i, static_cast<ctrl_t>(h), slot_size); |
| } |
| |
| // Like SetCtrl, but in a single group table, we can save some operations when |
| // setting the cloned control byte. |
| inline void SetCtrlInSingleGroupTable(const CommonFields& c, size_t i, ctrl_t h, |
| size_t slot_size) { |
| assert(is_single_group(c.capacity())); |
| DoSanitizeOnSetCtrl(c, i, h, slot_size); |
| ctrl_t* ctrl = c.control(); |
| ctrl[i] = h; |
| ctrl[i + c.capacity() + 1] = h; |
| } |
| // Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`. |
| inline void SetCtrlInSingleGroupTable(const CommonFields& c, size_t i, h2_t h, |
| size_t slot_size) { |
| SetCtrlInSingleGroupTable(c, i, static_cast<ctrl_t>(h), slot_size); |
| } |
| |
| // growth_info (which is a size_t) is stored with the backing array. |
| constexpr size_t BackingArrayAlignment(size_t align_of_slot) { |
| return (std::max)(align_of_slot, alignof(GrowthInfo)); |
| } |
| |
| // Returns the address of the ith slot in slots where each slot occupies |
| // slot_size. |
| inline void* SlotAddress(void* slot_array, size_t slot, size_t slot_size) { |
| return reinterpret_cast<void*>(reinterpret_cast<char*>(slot_array) + |
| (slot * slot_size)); |
| } |
| |
| // Iterates over all full slots and calls `cb(const ctrl_t*, SlotType*)`. |
| // NOTE: no erasure from this table allowed during Callback call. |
| template <class SlotType, class Callback> |
| ABSL_ATTRIBUTE_ALWAYS_INLINE inline void IterateOverFullSlots( |
| const CommonFields& c, SlotType* slot, Callback cb) { |
| const size_t cap = c.capacity(); |
| const ctrl_t* ctrl = c.control(); |
| if (is_small(cap)) { |
| // Mirrored/cloned control bytes in small table are also located in the |
| // first group (starting from position 0). We are taking group from position |
| // `capacity` in order to avoid duplicates. |
| |
| // Small tables capacity fits into portable group, where |
| // GroupPortableImpl::MaskFull is more efficient for the |
| // capacity <= GroupPortableImpl::kWidth. |
| assert(cap <= GroupPortableImpl::kWidth && |
| "unexpectedly large small capacity"); |
| static_assert(Group::kWidth >= GroupPortableImpl::kWidth, |
| "unexpected group width"); |
| // Group starts from kSentinel slot, so indices in the mask will |
| // be increased by 1. |
| const auto mask = GroupPortableImpl(ctrl + cap).MaskFull(); |
| --ctrl; |
| --slot; |
| for (uint32_t i : mask) { |
| cb(ctrl + i, slot + i); |
| } |
| return; |
| } |
| size_t remaining = c.size(); |
| while (remaining != 0) { |
| for (uint32_t i : GroupFullEmptyOrDeleted(ctrl).MaskFull()) { |
| cb(ctrl + i, slot + i); |
| --remaining; |
| } |
| slot += Group::kWidth; |
| ctrl += Group::kWidth; |
| } |
| } |
| |
| template <typename CharAlloc> |
| constexpr bool ShouldSampleHashtablezInfo() { |
| // Folks with custom allocators often make unwarranted assumptions about the |
| // behavior of their classes vis-a-vis trivial destructability and what |
| // calls they will or won't make. Avoid sampling for people with custom |
| // allocators to get us out of this mess. This is not a hard guarantee but |
| // a workaround while we plan the exact guarantee we want to provide. |
| return std::is_same<CharAlloc, std::allocator<char>>::value; |
| } |
| |
| template <bool kSooEnabled> |
| HashtablezInfoHandle SampleHashtablezInfo(size_t sizeof_slot, size_t sizeof_key, |
| size_t sizeof_value, |
| size_t old_capacity, bool was_soo, |
| HashtablezInfoHandle forced_infoz, |
| CommonFields& c) { |
| if (forced_infoz.IsSampled()) return forced_infoz; |
| // In SOO, we sample on the first insertion so if this is an empty SOO case |
| // (e.g. when reserve is called), then we still need to sample. |
| if (kSooEnabled && was_soo && c.size() == 0) { |
| return Sample(sizeof_slot, sizeof_key, sizeof_value, SooCapacity()); |
| } |
| // For non-SOO cases, we sample whenever the capacity is increasing from zero |
| // to non-zero. |
| if (!kSooEnabled && old_capacity == 0) { |
| return Sample(sizeof_slot, sizeof_key, sizeof_value, 0); |
| } |
| return c.infoz(); |
| } |
| |
| // Helper class to perform resize of the hash set. |
| // |
| // It contains special optimizations for small group resizes. |
| // See GrowIntoSingleGroupShuffleControlBytes for details. |
| class HashSetResizeHelper { |
| public: |
| explicit HashSetResizeHelper(CommonFields& c, bool was_soo, bool had_soo_slot, |
| HashtablezInfoHandle forced_infoz) |
| : old_capacity_(c.capacity()), |
| had_infoz_(c.has_infoz()), |
| was_soo_(was_soo), |
| had_soo_slot_(had_soo_slot), |
| forced_infoz_(forced_infoz) {} |
| |
| // Optimized for small groups version of `find_first_non_full`. |
| // Beneficial only right after calling `raw_hash_set::resize`. |
| // It is safe to call in case capacity is big or was not changed, but there |
| // will be no performance benefit. |
| // It has implicit assumption that `resize` will call |
| // `GrowSizeIntoSingleGroup*` in case `IsGrowingIntoSingleGroupApplicable`. |
| // Falls back to `find_first_non_full` in case of big groups. |
| static FindInfo FindFirstNonFullAfterResize(const CommonFields& c, |
| size_t old_capacity, |
| size_t hash) { |
| if (!IsGrowingIntoSingleGroupApplicable(old_capacity, c.capacity())) { |
| return find_first_non_full(c, hash); |
| } |
| // Find a location for the new element non-deterministically. |
| // Note that any position is correct. |
| // It will located at `half_old_capacity` or one of the other |
| // empty slots with approximately 50% probability each. |
| size_t offset = probe(c, hash).offset(); |
| |
| // Note that we intentionally use unsigned int underflow. |
| if (offset - (old_capacity + 1) >= old_capacity) { |
| // Offset fall on kSentinel or into the mostly occupied first half. |
| offset = old_capacity / 2; |
| } |
| assert(IsEmpty(c.control()[offset])); |
| return FindInfo{offset, 0}; |
| } |
| |
| HeapOrSoo& old_heap_or_soo() { return old_heap_or_soo_; } |
| void* old_soo_data() { return old_heap_or_soo_.get_soo_data(); } |
| ctrl_t* old_ctrl() const { |
| assert(!was_soo_); |
| return old_heap_or_soo_.control(); |
| } |
| void* old_slots() const { |
| assert(!was_soo_); |
| return old_heap_or_soo_.slot_array().get(); |
| } |
| size_t old_capacity() const { return old_capacity_; } |
| |
| // Returns the index of the SOO slot when growing from SOO to non-SOO in a |
| // single group. See also InitControlBytesAfterSoo(). It's important to use |
| // index 1 so that when resizing from capacity 1 to 3, we can still have |
| // random iteration order between the first two inserted elements. |
| // I.e. it allows inserting the second element at either index 0 or 2. |
| static size_t SooSlotIndex() { return 1; } |
| |
| // Allocates a backing array for the hashtable. |
| // Reads `capacity` and updates all other fields based on the result of |
| // the allocation. |
| // |
| // It also may do the following actions: |
| // 1. initialize control bytes |
| // 2. initialize slots |
| // 3. deallocate old slots. |
| // |
| // We are bundling a lot of functionality |
| // in one ABSL_ATTRIBUTE_NOINLINE function in order to minimize binary code |
| // duplication in raw_hash_set<>::resize. |
| // |
| // `c.capacity()` must be nonzero. |
| // POSTCONDITIONS: |
| // 1. CommonFields is initialized. |
| // |
| // if IsGrowingIntoSingleGroupApplicable && TransferUsesMemcpy |
| // Both control bytes and slots are fully initialized. |
| // old_slots are deallocated. |
| // infoz.RecordRehash is called. |
| // |
| // if IsGrowingIntoSingleGroupApplicable && !TransferUsesMemcpy |
| // Control bytes are fully initialized. |
| // infoz.RecordRehash is called. |
| // GrowSizeIntoSingleGroup must be called to finish slots initialization. |
| // |
| // if !IsGrowingIntoSingleGroupApplicable |
| // Control bytes are initialized to empty table via ResetCtrl. |
| // raw_hash_set<>::resize must insert elements regularly. |
| // infoz.RecordRehash is called if old_capacity == 0. |
| // |
| // Returns IsGrowingIntoSingleGroupApplicable result to avoid recomputation. |
| template <typename Alloc, size_t SizeOfSlot, bool TransferUsesMemcpy, |
| bool SooEnabled, size_t AlignOfSlot> |
| ABSL_ATTRIBUTE_NOINLINE bool InitializeSlots(CommonFields& c, Alloc alloc, |
| ctrl_t soo_slot_h2, |
| size_t key_size, |
| size_t value_size) { |
| assert(c.capacity()); |
| HashtablezInfoHandle infoz = |
| ShouldSampleHashtablezInfo<Alloc>() |
| ? SampleHashtablezInfo<SooEnabled>(SizeOfSlot, key_size, value_size, |
| old_capacity_, was_soo_, |
| forced_infoz_, c) |
| : HashtablezInfoHandle{}; |
| |
| const bool has_infoz = infoz.IsSampled(); |
| RawHashSetLayout layout(c.capacity(), AlignOfSlot, has_infoz); |
| char* mem = static_cast<char*>(Allocate<BackingArrayAlignment(AlignOfSlot)>( |
| &alloc, layout.alloc_size(SizeOfSlot))); |
| const GenerationType old_generation = c.generation(); |
| c.set_generation_ptr( |
| reinterpret_cast<GenerationType*>(mem + layout.generation_offset())); |
| c.set_generation(NextGeneration(old_generation)); |
| c.set_control(reinterpret_cast<ctrl_t*>(mem + layout.control_offset())); |
| c.set_slots(mem + layout.slot_offset()); |
| ResetGrowthLeft(c); |
| |
| const bool grow_single_group = |
| IsGrowingIntoSingleGroupApplicable(old_capacity_, layout.capacity()); |
| if (SooEnabled && was_soo_ && grow_single_group) { |
| InitControlBytesAfterSoo(c.control(), soo_slot_h2, layout.capacity()); |
| if (TransferUsesMemcpy && had_soo_slot_) { |
| TransferSlotAfterSoo(c, SizeOfSlot); |
| } |
| // SooEnabled implies that old_capacity_ != 0. |
| } else if ((SooEnabled || old_capacity_ != 0) && grow_single_group) { |
| if (TransferUsesMemcpy) { |
| GrowSizeIntoSingleGroupTransferable(c, SizeOfSlot); |
| DeallocateOld<AlignOfSlot>(alloc, SizeOfSlot); |
| } else { |
| GrowIntoSingleGroupShuffleControlBytes(c.control(), layout.capacity()); |
| } |
| } else { |
| ResetCtrl(c, SizeOfSlot); |
| } |
| |
| c.set_has_infoz(has_infoz); |
| if (has_infoz) { |
| infoz.RecordStorageChanged(c.size(), layout.capacity()); |
| if ((SooEnabled && was_soo_) || grow_single_group || old_capacity_ == 0) { |
| infoz.RecordRehash(0); |
| } |
| c.set_infoz(infoz); |
| } |
| return grow_single_group; |
| } |
| |
| // Relocates slots into new single group consistent with |
| // GrowIntoSingleGroupShuffleControlBytes. |
| // |
| // PRECONDITIONS: |
| // 1. GrowIntoSingleGroupShuffleControlBytes was already called. |
| template <class PolicyTraits, class Alloc> |
| void GrowSizeIntoSingleGroup(CommonFields& c, Alloc& alloc_ref) { |
| assert(old_capacity_ < Group::kWidth / 2); |
| assert(IsGrowingIntoSingleGroupApplicable(old_capacity_, c.capacity())); |
| using slot_type = typename PolicyTraits::slot_type; |
| assert(is_single_group(c.capacity())); |
| |
| auto* new_slots = reinterpret_cast<slot_type*>(c.slot_array()); |
| auto* old_slots_ptr = reinterpret_cast<slot_type*>(old_slots()); |
| |
| size_t shuffle_bit = old_capacity_ / 2 + 1; |
| for (size_t i = 0; i < old_capacity_; ++i) { |
| if (IsFull(old_ctrl()[i])) { |
| size_t new_i = i ^ shuffle_bit; |
| SanitizerUnpoisonMemoryRegion(new_slots + new_i, sizeof(slot_type)); |
| PolicyTraits::transfer(&alloc_ref, new_slots + new_i, |
| old_slots_ptr + i); |
| } |
| } |
| PoisonSingleGroupEmptySlots(c, sizeof(slot_type)); |
| } |
| |
| // Deallocates old backing array. |
| template <size_t AlignOfSlot, class CharAlloc> |
| void DeallocateOld(CharAlloc alloc_ref, size_t slot_size) { |
| SanitizerUnpoisonMemoryRegion(old_slots(), slot_size * old_capacity_); |
| auto layout = RawHashSetLayout(old_capacity_, AlignOfSlot, had_infoz_); |
| Deallocate<BackingArrayAlignment(AlignOfSlot)>( |
| &alloc_ref, old_ctrl() - layout.control_offset(), |
| layout.alloc_size(slot_size)); |
| } |
| |
| private: |
| // Returns true if `GrowSizeIntoSingleGroup` can be used for resizing. |
| static bool IsGrowingIntoSingleGroupApplicable(size_t old_capacity, |
| size_t new_capacity) { |
| // NOTE that `old_capacity < new_capacity` in order to have |
| // `old_capacity < Group::kWidth / 2` to make faster copies of 8 bytes. |
| return is_single_group(new_capacity) && old_capacity < new_capacity; |
| } |
| |
| // Relocates control bytes and slots into new single group for |
| // transferable objects. |
| // Must be called only if IsGrowingIntoSingleGroupApplicable returned true. |
| void GrowSizeIntoSingleGroupTransferable(CommonFields& c, size_t slot_size); |
| |
| // If there was an SOO slot and slots are transferable, transfers the SOO slot |
| // into the new heap allocation. Must be called only if |
| // IsGrowingIntoSingleGroupApplicable returned true. |
| void TransferSlotAfterSoo(CommonFields& c, size_t slot_size); |
| |
| // Shuffle control bits deterministically to the next capacity. |
| // Returns offset for newly added element with given hash. |
| // |
| // PRECONDITIONs: |
| // 1. new_ctrl is allocated for new_capacity, |
| // but not initialized. |
| // 2. new_capacity is a single group. |
| // |
| // All elements are transferred into the first `old_capacity + 1` positions |
| // of the new_ctrl. Elements are rotated by `old_capacity_ / 2 + 1` positions |
| // in order to change an order and keep it non deterministic. |
| // Although rotation itself deterministic, position of the new added element |
| // will be based on `H1` and is not deterministic. |
| // |
| // Examples: |
| // S = kSentinel, E = kEmpty |
| // |
| // old_ctrl = SEEEEEEEE... |
| // new_ctrl = ESEEEEEEE... |
| // |
| // old_ctrl = 0SEEEEEEE... |
| // new_ctrl = E0ESE0EEE... |
| // |
| // old_ctrl = 012S012EEEEEEEEE... |
| // new_ctrl = 2E01EEES2E01EEE... |
| // |
| // old_ctrl = 0123456S0123456EEEEEEEEEEE... |
| // new_ctrl = 456E0123EEEEEES456E0123EEE... |
| void GrowIntoSingleGroupShuffleControlBytes(ctrl_t* new_ctrl, |
| size_t new_capacity) const; |
| |
| // If the table was SOO, initializes new control bytes. `h2` is the control |
| // byte corresponding to the full slot. Must be called only if |
| // IsGrowingIntoSingleGroupApplicable returned true. |
| // Requires: `had_soo_slot_ || h2 == ctrl_t::kEmpty`. |
| void InitControlBytesAfterSoo(ctrl_t* new_ctrl, ctrl_t h2, |
| size_t new_capacity); |
| |
| // Shuffle trivially transferable slots in the way consistent with |
| // GrowIntoSingleGroupShuffleControlBytes. |
| // |
| // PRECONDITIONs: |
| // 1. old_capacity must be non-zero. |
| // 2. new_ctrl is fully initialized using |
| // GrowIntoSingleGroupShuffleControlBytes. |
| // 3. new_slots is allocated and *not* poisoned. |
| // |
| // POSTCONDITIONS: |
| // 1. new_slots are transferred from old_slots_ consistent with |
| // GrowIntoSingleGroupShuffleControlBytes. |
| // 2. Empty new_slots are *not* poisoned. |
| void GrowIntoSingleGroupShuffleTransferableSlots(void* new_slots, |
| size_t slot_size) const; |
| |
| // Poison empty slots that were transferred using the deterministic algorithm |
| // described above. |
| // PRECONDITIONs: |
| // 1. new_ctrl is fully initialized using |
| // GrowIntoSingleGroupShuffleControlBytes. |
| // 2. new_slots is fully initialized consistent with |
| // GrowIntoSingleGroupShuffleControlBytes. |
| void PoisonSingleGroupEmptySlots(CommonFields& c, size_t slot_size) const { |
| // poison non full items |
| for (size_t i = 0; i < c.capacity(); ++i) { |
| if (!IsFull(c.control()[i])) { |
| SanitizerPoisonMemoryRegion(SlotAddress(c.slot_array(), i, slot_size), |
| slot_size); |
| } |
| } |
| } |
| |
| HeapOrSoo old_heap_or_soo_; |
| size_t old_capacity_; |
| bool had_infoz_; |
| bool was_soo_; |
| bool had_soo_slot_; |
| // Either null infoz or a pre-sampled forced infoz for SOO tables. |
| HashtablezInfoHandle forced_infoz_; |
| }; |
| |
| inline void PrepareInsertCommon(CommonFields& common) { |
| common.increment_size(); |
| common.maybe_increment_generation_on_insert(); |
| } |
| |
| // Like prepare_insert, but for the case of inserting into a full SOO table. |
| size_t PrepareInsertAfterSoo(size_t hash, size_t slot_size, |
| CommonFields& common); |
| |
| // PolicyFunctions bundles together some information for a particular |
| // raw_hash_set<T, ...> instantiation. This information is passed to |
| // type-erased functions that want to do small amounts of type-specific |
| // work. |
| struct PolicyFunctions { |
| size_t slot_size; |
| |
| // Returns the pointer to the hash function stored in the set. |
| const void* (*hash_fn)(const CommonFields& common); |
| |
| // Returns the hash of the pointed-to slot. |
| size_t (*hash_slot)(const void* hash_fn, void* slot); |
| |
| // Transfers the contents of src_slot to dst_slot. |
| void (*transfer)(void* set, void* dst_slot, void* src_slot); |
| |
| // Deallocates the backing store from common. |
| void (*dealloc)(CommonFields& common, const PolicyFunctions& policy); |
| |
| // Resizes set to the new capacity. |
| // Arguments are used as in raw_hash_set::resize_impl. |
| void (*resize)(CommonFields& common, size_t new_capacity, |
| HashtablezInfoHandle forced_infoz); |
| }; |
| |
| // ClearBackingArray clears the backing array, either modifying it in place, |
| // or creating a new one based on the value of "reuse". |
| // REQUIRES: c.capacity > 0 |
| void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy, |
| bool reuse, bool soo_enabled); |
| |
| // Type-erased version of raw_hash_set::erase_meta_only. |
| void EraseMetaOnly(CommonFields& c, size_t index, size_t slot_size); |
| |
| // Function to place in PolicyFunctions::dealloc for raw_hash_sets |
| // that are using std::allocator. This allows us to share the same |
| // function body for raw_hash_set instantiations that have the |
| // same slot alignment. |
| template <size_t AlignOfSlot> |
| ABSL_ATTRIBUTE_NOINLINE void DeallocateStandard(CommonFields& common, |
| const PolicyFunctions& policy) { |
| // Unpoison before returning the memory to the allocator. |
| SanitizerUnpoisonMemoryRegion(common.slot_array(), |
| policy.slot_size * common.capacity()); |
| |
| std::allocator<char> alloc; |
| common.infoz().Unregister(); |
| Deallocate<BackingArrayAlignment(AlignOfSlot)>( |
| &alloc, common.backing_array_start(), |
| common.alloc_size(policy.slot_size, AlignOfSlot)); |
| } |
| |
| // For trivially relocatable types we use memcpy directly. This allows us to |
| // share the same function body for raw_hash_set instantiations that have the |
| // same slot size as long as they are relocatable. |
| template <size_t SizeOfSlot> |
| ABSL_ATTRIBUTE_NOINLINE void TransferRelocatable(void*, void* dst, void* src) { |
| memcpy(dst, src, SizeOfSlot); |
| } |
| |
| // Type erased raw_hash_set::get_hash_ref_fn for the empty hash function case. |
| const void* GetHashRefForEmptyHasher(const CommonFields& common); |
| |
| // Given the hash of a value not currently in the table and the first empty |
| // slot in the probe sequence, finds a viable slot index to insert it at. |
| // |
| // In case there's no space left, the table can be resized or rehashed |
| // (for tables with deleted slots, see FindInsertPositionWithGrowthOrRehash). |
| // |
| // In the case of absence of deleted slots and positive growth_left, the element |
| // can be inserted in the provided `target` position. |
| // |
| // When the table has deleted slots (according to GrowthInfo), the target |
| // position will be searched one more time using `find_first_non_full`. |
| // |
| // REQUIRES: Table is not SOO. |
| // REQUIRES: At least one non-full slot available. |
| // REQUIRES: `target` is a valid empty position to insert. |
| size_t PrepareInsertNonSoo(CommonFields& common, size_t hash, FindInfo target, |
| const PolicyFunctions& policy); |
| |
| // A SwissTable. |
| // |
| // Policy: a policy defines how to perform different operations on |
| // the slots of the hashtable (see hash_policy_traits.h for the full interface |
| // of policy). |
| // |
| // Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The |
| // functor should accept a key and return size_t as hash. For best performance |
| // it is important that the hash function provides high entropy across all bits |
| // of the hash. |
| // |
| // Eq: a (possibly polymorphic) functor that compares two keys for equality. It |
| // should accept two (of possibly different type) keys and return a bool: true |
| // if they are equal, false if they are not. If two keys compare equal, then |
| // their hash values as defined by Hash MUST be equal. |
| // |
| // Allocator: an Allocator |
| // [https://en.cppreference.com/w/cpp/named_req/Allocator] with which |
| // the storage of the hashtable will be allocated and the elements will be |
| // constructed and destroyed. |
| template <class Policy, class Hash, class Eq, class Alloc> |
| class raw_hash_set { |
| using PolicyTraits = hash_policy_traits<Policy>; |
| using KeyArgImpl = |
| KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>; |
| |
| public: |
| using init_type = typename PolicyTraits::init_type; |
| using key_type = typename PolicyTraits::key_type; |
| // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user |
| // code fixes! |
| using slot_type = typename PolicyTraits::slot_type; |
| using allocator_type = Alloc; |
| using size_type = size_t; |
| using difference_type = ptrdiff_t; |
| using hasher = Hash; |
| using key_equal = Eq; |
| using policy_type = Policy; |
| using value_type = typename PolicyTraits::value_type; |
| using reference = value_type&; |
| using const_reference = const value_type&; |
| using pointer = typename absl::allocator_traits< |
| allocator_type>::template rebind_traits<value_type>::pointer; |
| using const_pointer = typename absl::allocator_traits< |
| allocator_type>::template rebind_traits<value_type>::const_pointer; |
| |
| // Alias used for heterogeneous lookup functions. |
| // `key_arg<K>` evaluates to `K` when the functors are transparent and to |
| // `key_type` otherwise. It permits template argument deduction on `K` for the |
| // transparent case. |
| template <class K> |
| using key_arg = typename KeyArgImpl::template type<K, key_type>; |
| |
| private: |
| // TODO(b/289225379): we could add extra SOO space inside raw_hash_set |
| // after CommonFields to allow inlining larger slot_types (e.g. std::string), |
| // but it's a bit complicated if we want to support incomplete mapped_type in |
| // flat_hash_map. We could potentially do this for flat_hash_set and for an |
| // allowlist of `mapped_type`s of flat_hash_map that includes e.g. arithmetic |
| // types, strings, cords, and pairs/tuples of allowlisted types. |
| constexpr static bool SooEnabled() { |
| return PolicyTraits::soo_enabled() && |
| sizeof(slot_type) <= sizeof(HeapOrSoo) && |
| alignof(slot_type) <= alignof(HeapOrSoo); |
| } |
| |
| // Whether `size` fits in the SOO capacity of this table. |
| bool fits_in_soo(size_t size) const { |
| return SooEnabled() && size <= SooCapacity(); |
| } |
| // Whether this table is in SOO mode or non-SOO mode. |
| bool is_soo() const { return fits_in_soo(capacity()); } |
| bool is_full_soo() const { return is_soo() && !empty(); } |
| |
| // Give an early error when key_type is not hashable/eq. |
| auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k)); |
| auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k)); |
| |
| using AllocTraits = absl::allocator_traits<allocator_type>; |
| using SlotAlloc = typename absl::allocator_traits< |
| allocator_type>::template rebind_alloc<slot_type>; |
| // People are often sloppy with the exact type of their allocator (sometimes |
| // it has an extra const or is missing the pair, but rebinds made it work |
| // anyway). |
| using CharAlloc = |
| typename absl::allocator_traits<Alloc>::template rebind_alloc<char>; |
| using SlotAllocTraits = typename absl::allocator_traits< |
| allocator_type>::template rebind_traits<slot_type>; |
| |
| static_assert(std::is_lvalue_reference<reference>::value, |
| "Policy::element() must return a reference"); |
| |
| template <typename T> |
| struct SameAsElementReference |
| : std::is_same<typename std::remove_cv< |
| typename std::remove_reference<reference>::type>::type, |
| typename std::remove_cv< |
| typename std::remove_reference<T>::type>::type> {}; |
| |
| // An enabler for insert(T&&): T must be convertible to init_type or be the |
| // same as [cv] value_type [ref]. |
| // Note: we separate SameAsElementReference into its own type to avoid using |
| // reference unless we need to. MSVC doesn't seem to like it in some |
| // cases. |
| template <class T> |
| using RequiresInsertable = typename std::enable_if< |
| absl::disjunction<std::is_convertible<T, init_type>, |
| SameAsElementReference<T>>::value, |
| int>::type; |
| |
| // RequiresNotInit is a workaround for gcc prior to 7.1. |
| // See https://godbolt.org/g/Y4xsUh. |
| template <class T> |
| using RequiresNotInit = |
| typename std::enable_if<!std::is_same<T, init_type>::value, int>::type; |
| |
| template <class... Ts> |
| using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>; |
| |
| public: |
| static_assert(std::is_same<pointer, value_type*>::value, |
| "Allocators with custom pointer types are not supported"); |
| static_assert(std::is_same<const_pointer, const value_type*>::value, |
| "Allocators with custom pointer types are not supported"); |
| |
| class iterator : private HashSetIteratorGenerationInfo { |
| friend class raw_hash_set; |
| |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = typename raw_hash_set::value_type; |
| using reference = |
| absl::conditional_t<PolicyTraits::constant_iterators::value, |
| const value_type&, value_type&>; |
| using pointer = absl::remove_reference_t<reference>*; |
| using difference_type = typename raw_hash_set::difference_type; |
| |
| iterator() {} |
| |
| // PRECONDITION: not an end() iterator. |
| reference operator*() const { |
| AssertIsFull(ctrl_, generation(), generation_ptr(), "operator*()"); |
| return unchecked_deref(); |
| } |
| |
| // PRECONDITION: not an end() iterator. |
| pointer operator->() const { |
| AssertIsFull(ctrl_, generation(), generation_ptr(), "operator->"); |
| return &operator*(); |
| } |
| |
| // PRECONDITION: not an end() iterator. |
| iterator& operator++() { |
| AssertIsFull(ctrl_, generation(), generation_ptr(), "operator++"); |
| ++ctrl_; |
| ++slot_; |
| skip_empty_or_deleted(); |
| if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr; |
| return *this; |
| } |
| // PRECONDITION: not an end() iterator. |
| iterator operator++(int) { |
| auto tmp = *this; |
| ++*this; |
| return tmp; |
| } |
| |
| friend bool operator==(const iterator& a, const iterator& b) { |
| AssertIsValidForComparison(a.ctrl_, a.generation(), a.generation_ptr()); |
| AssertIsValidForComparison(b.ctrl_, b.generation(), b.generation_ptr()); |
| AssertSameContainer(a.ctrl_, b.ctrl_, a.slot_, b.slot_, |
| a.generation_ptr(), b.generation_ptr()); |
| return a.ctrl_ == b.ctrl_; |
| } |
| friend bool operator!=(const iterator& a, const iterator& b) { |
| return !(a == b); |
| } |
| |
| private: |
| iterator(ctrl_t* ctrl, slot_type* slot, |
| const GenerationType* generation_ptr) |
| : HashSetIteratorGenerationInfo(generation_ptr), |
| ctrl_(ctrl), |
| slot_(slot) { |
| // This assumption helps the compiler know that any non-end iterator is |
| // not equal to any end iterator. |
| ABSL_ASSUME(ctrl != nullptr); |
| } |
| // This constructor is used in begin() to avoid an MSan |
| // use-of-uninitialized-value error. Delegating from this constructor to |
| // the previous one doesn't avoid the error. |
| iterator(ctrl_t* ctrl, MaybeInitializedPtr slot, |
| const GenerationType* generation_ptr) |
| : HashSetIteratorGenerationInfo(generation_ptr), |
| ctrl_(ctrl), |
| slot_(to_slot(slot.get())) { |
| // This assumption helps the compiler know that any non-end iterator is |
| // not equal to any end iterator. |
| ABSL_ASSUME(ctrl != nullptr); |
| } |
| // For end() iterators. |
| explicit iterator(const GenerationType* generation_ptr) |
| : HashSetIteratorGenerationInfo(generation_ptr), ctrl_(nullptr) {} |
| |
| // Fixes up `ctrl_` to point to a full or sentinel by advancing `ctrl_` and |
| // `slot_` until they reach one. |
| void skip_empty_or_deleted() { |
| while (IsEmptyOrDeleted(*ctrl_)) { |
| uint32_t shift = |
| GroupFullEmptyOrDeleted{ctrl_}.CountLeadingEmptyOrDeleted(); |
| ctrl_ += shift; |
| slot_ += shift; |
| } |
| } |
| |
| ctrl_t* control() const { return ctrl_; } |
| slot_type* slot() const { return slot_; } |
| |
| // We use EmptyGroup() for default-constructed iterators so that they can |
| // be distinguished from end iterators, which have nullptr ctrl_. |
| ctrl_t* ctrl_ = EmptyGroup(); |
| // To avoid uninitialized member warnings, put slot_ in an anonymous union. |
| // The member is not initialized on singleton and end iterators. |
| union { |
| slot_type* slot_; |
| }; |
| |
| // An equality check which skips ABSL Hardening iterator invalidation |
| // checks. |
| // Should be used when the lifetimes of the iterators are well-enough |
| // understood to prove that they cannot be invalid. |
| bool unchecked_equals(const iterator& b) { return ctrl_ == b.control(); } |
| |
| // Dereferences the iterator without ABSL Hardening iterator invalidation |
| // checks. |
| reference unchecked_deref() const { return PolicyTraits::element(slot_); } |
| }; |
| |
| class const_iterator { |
| friend class raw_hash_set; |
| template <class Container, typename Enabler> |
| friend struct absl::container_internal::hashtable_debug_internal:: |
| HashtableDebugAccess; |
| |
| public: |
| using iterator_category = typename iterator::iterator_category; |
| using value_type = typename raw_hash_set::value_type; |
| using reference = typename raw_hash_set::const_reference; |
| using pointer = typename raw_hash_set::const_pointer; |
| using difference_type = typename raw_hash_set::difference_type; |
| |
| const_iterator() = default; |
| // Implicit construction from iterator. |
| const_iterator(iterator i) : inner_(std::move(i)) {} // NOLINT |
| |
| reference operator*() const { return *inner_; } |
| pointer operator->() const { return inner_.operator->(); } |
| |
| const_iterator& operator++() { |
| ++inner_; |
| return *this; |
| } |
| const_iterator operator++(int) { return inner_++; } |
| |
| friend bool operator==(const const_iterator& a, const const_iterator& b) { |
| return a.inner_ == b.inner_; |
| } |
| friend bool operator!=(const const_iterator& a, const const_iterator& b) { |
| return !(a == b); |
| } |
| |
| private: |
| const_iterator(const ctrl_t* ctrl, const slot_type* slot, |
| const GenerationType* gen) |
| : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot), gen) { |
| } |
| ctrl_t* control() const { return inner_.control(); } |
| slot_type* slot() const { return inner_.slot(); } |
| |
| iterator inner_; |
| |
| bool unchecked_equals(const const_iterator& b) { |
| return inner_.unchecked_equals(b.inner_); |
| } |
| }; |
| |
| using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>; |
| using insert_return_type = InsertReturnType<iterator, node_type>; |
| |
| // Note: can't use `= default` due to non-default noexcept (causes |
| // problems for some compilers). NOLINTNEXTLINE |
| raw_hash_set() noexcept( |
| std::is_nothrow_default_constructible<hasher>::value && |
| std::is_nothrow_default_constructible<key_equal>::value && |
| std::is_nothrow_default_constructible<allocator_type>::value) {} |
| |
| ABSL_ATTRIBUTE_NOINLINE explicit raw_hash_set( |
| size_t bucket_count, const hasher& hash = hasher(), |
| const key_equal& eq = key_equal(), |
| const allocator_type& alloc = allocator_type()) |
| : settings_(CommonFields::CreateDefault<SooEnabled()>(), hash, eq, |
| alloc) { |
| if (bucket_count > (SooEnabled() ? SooCapacity() : 0)) { |
| resize(NormalizeCapacity(bucket_count)); |
| } |
| } |
| |
| raw_hash_set(size_t bucket_count, const hasher& hash, |
| const allocator_type& alloc) |
| : raw_hash_set(bucket_count, hash, key_equal(), alloc) {} |
| |
| raw_hash_set(size_t bucket_count, const allocator_type& alloc) |
| : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {} |
| |
| explicit raw_hash_set(const allocator_type& alloc) |
| : raw_hash_set(0, hasher(), key_equal(), alloc) {} |
| |
| template <class InputIter> |
| raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0, |
| const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
| const allocator_type& alloc = allocator_type()) |
| : raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count), |
| hash, eq, alloc) { |
| insert(first, last); |
| } |
| |
| template <class InputIter> |
| raw_hash_set(InputIter first, InputIter last, size_t bucket_count, |
| const hasher& hash, const allocator_type& alloc) |
| : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {} |
| |
| template <class InputIter> |
| raw_hash_set(InputIter first, InputIter last, size_t bucket_count, |
| const allocator_type& alloc) |
| : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {} |
| |
| template <class InputIter> |
| raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc) |
| : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {} |
| |
| // Instead of accepting std::initializer_list<value_type> as the first |
| // argument like std::unordered_set<value_type> does, we have two overloads |
| // that accept std::initializer_list<T> and std::initializer_list<init_type>. |
| // This is advantageous for performance. |
| // |
| // // Turns {"abc", "def"} into std::initializer_list<std::string>, then |
| // // copies the strings into the set. |
| // std::unordered_set<std::string> s = {"abc", "def"}; |
| // |
| // // Turns {"abc", "def"} into std::initializer_list<const char*>, then |
| // // copies the strings into the set. |
| // absl::flat_hash_set<std::string> s = {"abc", "def"}; |
| // |
| // The same trick is used in insert(). |
| // |
| // The enabler is necessary to prevent this constructor from triggering where |
| // the copy constructor is meant to be called. |
| // |
| // absl::flat_hash_set<int> a, b{a}; |
| // |
| // RequiresNotInit<T> is a workaround for gcc prior to 7.1. |
| template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
| raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0, |
| const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
| const allocator_type& alloc = allocator_type()) |
| : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} |
| |
| raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0, |
| const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
| const allocator_type& alloc = allocator_type()) |
| : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} |
| |
| template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
| raw_hash_set(std::initializer_list<T> init, size_t bucket_count, |
| const hasher& hash, const allocator_type& alloc) |
| : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} |
| |
| raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, |
| const hasher& hash, const allocator_type& alloc) |
| : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} |
| |
| template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
| raw_hash_set(std::initializer_list<T> init, size_t bucket_count, |
| const allocator_type& alloc) |
| : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} |
| |
| raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, |
| const allocator_type& alloc) |
| : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} |
| |
| template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
| raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc) |
| : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} |
| |
| raw_hash_set(std::initializer_list<init_type> init, |
| const allocator_type& alloc) |
| : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} |
| |
| raw_hash_set(const raw_hash_set& that) |
| : raw_hash_set(that, AllocTraits::select_on_container_copy_construction( |
| that.alloc_ref())) {} |
| |
| raw_hash_set(const raw_hash_set& that, const allocator_type& a) |
| : raw_hash_set(GrowthToLowerboundCapacity(that.size()), that.hash_ref(), |
| that.eq_ref(), a) { |
| const size_t size = that.size(); |
| if (size == 0) { |
| return; |
| } |
| // We don't use `that.is_soo()` here because `that` can have non-SOO |
| // capacity but have a size that fits into SOO capacity. |
| if (fits_in_soo(size)) { |
| assert(size == 1); |
| common().set_full_soo(); |
| emplace_at(soo_iterator(), *that.begin()); |
| const HashtablezInfoHandle infoz = try_sample_soo(); |
| if (infoz.IsSampled()) resize_with_soo_infoz(infoz); |
| return; |
| } |
| assert(!that.is_soo()); |
| const size_t cap = capacity(); |
| // Note about single group tables: |
| // 1. It is correct to have any order of elements. |
| // 2. Order has to be non deterministic. |
| // 3. We are assigning elements with arbitrary `shift` starting from |
| // `capacity + shift` position. |
| // 4. `shift` must be coprime with `capacity + 1` in order to be able to use |
| // modular arithmetic to traverse all positions, instead if cycling |
| // through a subset of positions. Odd numbers are coprime with any |
| // `capacity + 1` (2^N). |
| size_t offset = cap; |
| const size_t shift = |
| is_single_group(cap) ? (PerTableSalt(control()) | 1) : 0; |
| IterateOverFullSlots( |
| that.common(), that.slot_array(), |
| [&](const ctrl_t* that_ctrl, |
| slot_type* that_slot) ABSL_ATTRIBUTE_ALWAYS_INLINE { |
| if (shift == 0) { |
| // Big tables case. Position must be searched via probing. |
| // The table is guaranteed to be empty, so we can do faster than |
| // a full `insert`. |
| const size_t hash = PolicyTraits::apply( |
| HashElement{hash_ref()}, PolicyTraits::element(that_slot)); |
| FindInfo target = find_first_non_full_outofline(common(), hash); |
| infoz().RecordInsert(hash, target.probe_length); |
| offset = target.offset; |
| } else { |
| // Small tables case. Next position is computed via shift. |
| offset = (offset + shift) & cap; |
| } |
| const h2_t h2 = static_cast<h2_t>(*that_ctrl); |
| assert( // We rely that hash is not changed for small tables. |
| H2(PolicyTraits::apply(HashElement{hash_ref()}, |
| PolicyTraits::element(that_slot))) == h2 && |
| "hash function value changed unexpectedly during the copy"); |
| SetCtrl(common(), offset, h2, sizeof(slot_type)); |
| emplace_at(iterator_at(offset), PolicyTraits::element(that_slot)); |
| common().maybe_increment_generation_on_insert(); |
| }); |
| if (shift != 0) { |
| // On small table copy we do not record individual inserts. |
| // RecordInsert requires hash, but it is unknown for small tables. |
| infoz().RecordStorageChanged(size, cap); |
| } |
| common().set_size(size); |
| growth_info().OverwriteManyEmptyAsFull(size); |
| } |
| |
| ABSL_ATTRIBUTE_NOINLINE raw_hash_set(raw_hash_set&& that) noexcept( |
| std::is_nothrow_copy_constructible<hasher>::value && |
| std::is_nothrow_copy_constructible<key_equal>::value && |
| std::is_nothrow_copy_constructible<allocator_type>::value) |
| : // Hash, equality and allocator are copied instead of moved because |
| // `that` must be left valid. If Hash is std::function<Key>, moving it |
| // would create a nullptr functor that cannot be called. |
| // TODO(b/296061262): move instead of copying hash/eq/alloc. |
| // Note: we avoid using exchange for better generated code. |
| settings_(PolicyTraits::transfer_uses_memcpy() || !that.is_full_soo() |
| ? std::move(that.common()) |
| : CommonFields{full_soo_tag_t{}}, |
| that.hash_ref(), that.eq_ref(), that.alloc_ref()) { |
| if (!PolicyTraits::transfer_uses_memcpy() && that.is_full_soo()) { |
| transfer(soo_slot(), that.soo_slot()); |
| } |
| that.common() = CommonFields::CreateDefault<SooEnabled()>(); |
| maybe_increment_generation_or_rehash_on_move(); |
| } |
| |
| raw_hash_set(raw_hash_set&& that, const allocator_type& a) |
| : settings_(CommonFields::CreateDefault<SooEnabled()>(), that.hash_ref(), |
| that.eq_ref(), a) { |
| if (a == that.alloc_ref()) { |
| swap_common(that); |
| maybe_increment_generation_or_rehash_on_move(); |
| } else { |
| move_elements_allocs_unequal(std::move(that)); |
| } |
| } |
| |
| raw_hash_set& operator=(const raw_hash_set& that) { |
| if (ABSL_PREDICT_FALSE(this == &that)) return *this; |
| constexpr bool propagate_alloc = |
| AllocTraits::propagate_on_container_copy_assignment::value; |
| // TODO(ezb): maybe avoid allocating a new backing array if this->capacity() |
| // is an exact match for that.size(). If this->capacity() is too big, then |
| // it would make iteration very slow to reuse the allocation. Maybe we can |
| // do the same heuristic as clear() and reuse if it's small enough. |
| raw_hash_set tmp(that, propagate_alloc ? that.alloc_ref() : alloc_ref()); |
| // NOLINTNEXTLINE: not returning *this for performance. |
| return assign_impl<propagate_alloc>(std::move(tmp)); |
| } |
| |
| raw_hash_set& operator=(raw_hash_set&& that) noexcept( |
| absl::allocator_traits<allocator_type>::is_always_equal::value && |
| std::is_nothrow_move_assignable<hasher>::value && |
| std::is_nothrow_move_assignable<key_equal>::value) { |
| // TODO(sbenza): We should only use the operations from the noexcept clause |
| // to make sure we actually adhere to that contract. |
| // NOLINTNEXTLINE: not returning *this for performance. |
| return move_assign( |
| std::move(that), |
| typename AllocTraits::propagate_on_container_move_assignment()); |
| } |
| |
| ~raw_hash_set() { destructor_impl(); } |
| |
| iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| if (ABSL_PREDICT_FALSE(empty())) return end(); |
| if (is_soo()) return soo_iterator(); |
| iterator it = {control(), common().slots_union(), |
| common().generation_ptr()}; |
| it.skip_empty_or_deleted(); |
| assert(IsFull(*it.control())); |
| return it; |
| } |
| iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return iterator(common().generation_ptr()); |
| } |
| |
| const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return const_cast<raw_hash_set*>(this)->begin(); |
| } |
| const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return iterator(common().generation_ptr()); |
| } |
| const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return begin(); |
| } |
| const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); } |
| |
| bool empty() const { return !size(); } |
| size_t size() const { return common().size(); } |
| size_t capacity() const { |
| const size_t cap = common().capacity(); |
| // Compiler complains when using functions in assume so use local variables. |
| ABSL_ATTRIBUTE_UNUSED static constexpr bool kEnabled = SooEnabled(); |
| ABSL_ATTRIBUTE_UNUSED static constexpr size_t kCapacity = SooCapacity(); |
| ABSL_ASSUME(!kEnabled || cap >= kCapacity); |
| return cap; |
| } |
| size_t max_size() const { return (std::numeric_limits<size_t>::max)(); } |
| |
| ABSL_ATTRIBUTE_REINITIALIZES void clear() { |
| // Iterating over this container is O(bucket_count()). When bucket_count() |
| // is much greater than size(), iteration becomes prohibitively expensive. |
| // For clear() it is more important to reuse the allocated array when the |
| // container is small because allocation takes comparatively long time |
| // compared to destruction of the elements of the container. So we pick the |
| // largest bucket_count() threshold for which iteration is still fast and |
| // past that we simply deallocate the array. |
| const size_t cap = capacity(); |
| if (cap == 0) { |
| // Already guaranteed to be empty; so nothing to do. |
| } else if (is_soo()) { |
| if (!empty()) destroy(soo_slot()); |
| common().set_empty_soo(); |
| } else { |
| destroy_slots(); |
| ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/cap < 128, |
| SooEnabled()); |
| } |
| common().set_reserved_growth(0); |
| common().set_reservation_size(0); |
| } |
| |
| // This overload kicks in when the argument is an rvalue of insertable and |
| // decomposable type other than init_type. |
| // |
| // flat_hash_map<std::string, int> m; |
| // m.insert(std::make_pair("abc", 42)); |
| // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc |
| // bug. |
| template <class T, RequiresInsertable<T> = 0, class T2 = T, |
| typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0, |
| T* = nullptr> |
| std::pair<iterator, bool> insert(T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
|