| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: hash.h |
| // ----------------------------------------------------------------------------- |
| // |
| #ifndef ABSL_HASH_INTERNAL_HASH_H_ |
| #define ABSL_HASH_INTERNAL_HASH_H_ |
| |
| #ifdef __APPLE__ |
| #include <Availability.h> |
| #include <TargetConditionals.h> |
| #endif |
| |
| #include "absl/base/config.h" |
| |
| // For feature testing and determining which headers can be included. |
| #if ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L |
| #include <version> |
| #else |
| #include <ciso646> |
| #endif |
| |
| #include <algorithm> |
| #include <array> |
| #include <bitset> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstring> |
| #include <deque> |
| #include <forward_list> |
| #include <functional> |
| #include <iterator> |
| #include <limits> |
| #include <list> |
| #include <map> |
| #include <memory> |
| #include <set> |
| #include <string> |
| #include <tuple> |
| #include <type_traits> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/base/internal/unaligned_access.h" |
| #include "absl/base/port.h" |
| #include "absl/container/fixed_array.h" |
| #include "absl/hash/internal/city.h" |
| #include "absl/hash/internal/low_level_hash.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/numeric/bits.h" |
| #include "absl/numeric/int128.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/types/optional.h" |
| #include "absl/types/variant.h" |
| #include "absl/utility/utility.h" |
| |
| #if defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \ |
| !defined(_LIBCPP_HAS_NO_FILESYSTEM_LIBRARY) |
| #include <filesystem> // NOLINT |
| #endif |
| |
| #ifdef ABSL_HAVE_STD_STRING_VIEW |
| #include <string_view> |
| #endif |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| class HashState; |
| |
| namespace hash_internal { |
| |
| // Internal detail: Large buffers are hashed in smaller chunks. This function |
| // returns the size of these chunks. |
| constexpr size_t PiecewiseChunkSize() { return 1024; } |
| |
| // PiecewiseCombiner |
| // |
| // PiecewiseCombiner is an internal-only helper class for hashing a piecewise |
| // buffer of `char` or `unsigned char` as though it were contiguous. This class |
| // provides two methods: |
| // |
| // H add_buffer(state, data, size) |
| // H finalize(state) |
| // |
| // `add_buffer` can be called zero or more times, followed by a single call to |
| // `finalize`. This will produce the same hash expansion as concatenating each |
| // buffer piece into a single contiguous buffer, and passing this to |
| // `H::combine_contiguous`. |
| // |
| // Example usage: |
| // PiecewiseCombiner combiner; |
| // for (const auto& piece : pieces) { |
| // state = combiner.add_buffer(std::move(state), piece.data, piece.size); |
| // } |
| // return combiner.finalize(std::move(state)); |
| class PiecewiseCombiner { |
| public: |
| PiecewiseCombiner() : position_(0) {} |
| PiecewiseCombiner(const PiecewiseCombiner&) = delete; |
| PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete; |
| |
| // PiecewiseCombiner::add_buffer() |
| // |
| // Appends the given range of bytes to the sequence to be hashed, which may |
| // modify the provided hash state. |
| template <typename H> |
| H add_buffer(H state, const unsigned char* data, size_t size); |
| template <typename H> |
| H add_buffer(H state, const char* data, size_t size) { |
| return add_buffer(std::move(state), |
| reinterpret_cast<const unsigned char*>(data), size); |
| } |
| |
| // PiecewiseCombiner::finalize() |
| // |
| // Finishes combining the hash sequence, which may may modify the provided |
| // hash state. |
| // |
| // Once finalize() is called, add_buffer() may no longer be called. The |
| // resulting hash state will be the same as if the pieces passed to |
| // add_buffer() were concatenated into a single flat buffer, and then provided |
| // to H::combine_contiguous(). |
| template <typename H> |
| H finalize(H state); |
| |
| private: |
| unsigned char buf_[PiecewiseChunkSize()]; |
| size_t position_; |
| }; |
| |
| // is_hashable() |
| // |
| // Trait class which returns true if T is hashable by the absl::Hash framework. |
| // Used for the AbslHashValue implementations for composite types below. |
| template <typename T> |
| struct is_hashable; |
| |
| // HashStateBase |
| // |
| // An internal implementation detail that contains common implementation details |
| // for all of the "hash state objects" objects generated by Abseil. This is not |
| // a public API; users should not create classes that inherit from this. |
| // |
| // A hash state object is the template argument `H` passed to `AbslHashValue`. |
| // It represents an intermediate state in the computation of an unspecified hash |
| // algorithm. `HashStateBase` provides a CRTP style base class for hash state |
| // implementations. Developers adding type support for `absl::Hash` should not |
| // rely on any parts of the state object other than the following member |
| // functions: |
| // |
| // * HashStateBase::combine() |
| // * HashStateBase::combine_contiguous() |
| // * HashStateBase::combine_unordered() |
| // |
| // A derived hash state class of type `H` must provide a public member function |
| // with a signature similar to the following: |
| // |
| // `static H combine_contiguous(H state, const unsigned char*, size_t)`. |
| // |
| // It must also provide a private template method named RunCombineUnordered. |
| // |
| // A "consumer" is a 1-arg functor returning void. Its argument is a reference |
| // to an inner hash state object, and it may be called multiple times. When |
| // called, the functor consumes the entropy from the provided state object, |
| // and resets that object to its empty state. |
| // |
| // A "combiner" is a stateless 2-arg functor returning void. Its arguments are |
| // an inner hash state object and an ElementStateConsumer functor. A combiner |
| // uses the provided inner hash state object to hash each element of the |
| // container, passing the inner hash state object to the consumer after hashing |
| // each element. |
| // |
| // Given these definitions, a derived hash state class of type H |
| // must provide a private template method with a signature similar to the |
| // following: |
| // |
| // `template <typename CombinerT>` |
| // `static H RunCombineUnordered(H outer_state, CombinerT combiner)` |
| // |
| // This function is responsible for constructing the inner state object and |
| // providing a consumer to the combiner. It uses side effects of the consumer |
| // and combiner to mix the state of each element in an order-independent manner, |
| // and uses this to return an updated value of `outer_state`. |
| // |
| // This inside-out approach generates efficient object code in the normal case, |
| // but allows us to use stack storage to implement the absl::HashState type |
| // erasure mechanism (avoiding heap allocations while hashing). |
| // |
| // `HashStateBase` will provide a complete implementation for a hash state |
| // object in terms of these two methods. |
| // |
| // Example: |
| // |
| // // Use CRTP to define your derived class. |
| // struct MyHashState : HashStateBase<MyHashState> { |
| // static H combine_contiguous(H state, const unsigned char*, size_t); |
| // using MyHashState::HashStateBase::combine; |
| // using MyHashState::HashStateBase::combine_contiguous; |
| // using MyHashState::HashStateBase::combine_unordered; |
| // private: |
| // template <typename CombinerT> |
| // static H RunCombineUnordered(H state, CombinerT combiner); |
| // }; |
| template <typename H> |
| class HashStateBase { |
| public: |
| // HashStateBase::combine() |
| // |
| // Combines an arbitrary number of values into a hash state, returning the |
| // updated state. |
| // |
| // Each of the value types `T` must be separately hashable by the Abseil |
| // hashing framework. |
| // |
| // NOTE: |
| // |
| // state = H::combine(std::move(state), value1, value2, value3); |
| // |
| // is guaranteed to produce the same hash expansion as: |
| // |
| // state = H::combine(std::move(state), value1); |
| // state = H::combine(std::move(state), value2); |
| // state = H::combine(std::move(state), value3); |
| template <typename T, typename... Ts> |
| static H combine(H state, const T& value, const Ts&... values); |
| static H combine(H state) { return state; } |
| |
| // HashStateBase::combine_contiguous() |
| // |
| // Combines a contiguous array of `size` elements into a hash state, returning |
| // the updated state. |
| // |
| // NOTE: |
| // |
| // state = H::combine_contiguous(std::move(state), data, size); |
| // |
| // is NOT guaranteed to produce the same hash expansion as a for-loop (it may |
| // perform internal optimizations). If you need this guarantee, use the |
| // for-loop instead. |
| template <typename T> |
| static H combine_contiguous(H state, const T* data, size_t size); |
| |
| template <typename I> |
| static H combine_unordered(H state, I begin, I end); |
| |
| using AbslInternalPiecewiseCombiner = PiecewiseCombiner; |
| |
| template <typename T> |
| using is_hashable = absl::hash_internal::is_hashable<T>; |
| |
| private: |
| // Common implementation of the iteration step of a "combiner", as described |
| // above. |
| template <typename I> |
| struct CombineUnorderedCallback { |
| I begin; |
| I end; |
| |
| template <typename InnerH, typename ElementStateConsumer> |
| void operator()(InnerH inner_state, ElementStateConsumer cb) { |
| for (; begin != end; ++begin) { |
| inner_state = H::combine(std::move(inner_state), *begin); |
| cb(inner_state); |
| } |
| } |
| }; |
| }; |
| |
| // is_uniquely_represented |
| // |
| // `is_uniquely_represented<T>` is a trait class that indicates whether `T` |
| // is uniquely represented. |
| // |
| // A type is "uniquely represented" if two equal values of that type are |
| // guaranteed to have the same bytes in their underlying storage. In other |
| // words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be |
| // zero. This property cannot be detected automatically, so this trait is false |
| // by default, but can be specialized by types that wish to assert that they are |
| // uniquely represented. This makes them eligible for certain optimizations. |
| // |
| // If you have any doubt whatsoever, do not specialize this template. |
| // The default is completely safe, and merely disables some optimizations |
| // that will not matter for most types. Specializing this template, |
| // on the other hand, can be very hazardous. |
| // |
| // To be uniquely represented, a type must not have multiple ways of |
| // representing the same value; for example, float and double are not |
| // uniquely represented, because they have distinct representations for |
| // +0 and -0. Furthermore, the type's byte representation must consist |
| // solely of user-controlled data, with no padding bits and no compiler- |
| // controlled data such as vptrs or sanitizer metadata. This is usually |
| // very difficult to guarantee, because in most cases the compiler can |
| // insert data and padding bits at its own discretion. |
| // |
| // If you specialize this template for a type `T`, you must do so in the file |
| // that defines that type (or in this file). If you define that specialization |
| // anywhere else, `is_uniquely_represented<T>` could have different meanings |
| // in different places. |
| // |
| // The Enable parameter is meaningless; it is provided as a convenience, |
| // to support certain SFINAE techniques when defining specializations. |
| template <typename T, typename Enable = void> |
| struct is_uniquely_represented : std::false_type {}; |
| |
| // is_uniquely_represented<unsigned char> |
| // |
| // unsigned char is a synonym for "byte", so it is guaranteed to be |
| // uniquely represented. |
| template <> |
| struct is_uniquely_represented<unsigned char> : std::true_type {}; |
| |
| // is_uniquely_represented for non-standard integral types |
| // |
| // Integral types other than bool should be uniquely represented on any |
| // platform that this will plausibly be ported to. |
| template <typename Integral> |
| struct is_uniquely_represented< |
| Integral, typename std::enable_if<std::is_integral<Integral>::value>::type> |
| : std::true_type {}; |
| |
| // is_uniquely_represented<bool> |
| // |
| // |
| template <> |
| struct is_uniquely_represented<bool> : std::false_type {}; |
| |
| // hash_bytes() |
| // |
| // Convenience function that combines `hash_state` with the byte representation |
| // of `value`. |
| template <typename H, typename T> |
| H hash_bytes(H hash_state, const T& value) { |
| const unsigned char* start = reinterpret_cast<const unsigned char*>(&value); |
| return H::combine_contiguous(std::move(hash_state), start, sizeof(value)); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Basic Types |
| // ----------------------------------------------------------------------------- |
| |
| // Note: Default `AbslHashValue` implementations live in `hash_internal`. This |
| // allows us to block lexical scope lookup when doing an unqualified call to |
| // `AbslHashValue` below. User-defined implementations of `AbslHashValue` can |
| // only be found via ADL. |
| |
| // AbslHashValue() for hashing bool values |
| // |
| // We use SFINAE to ensure that this overload only accepts bool, not types that |
| // are convertible to bool. |
| template <typename H, typename B> |
| typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue( |
| H hash_state, B value) { |
| return H::combine(std::move(hash_state), |
| static_cast<unsigned char>(value ? 1 : 0)); |
| } |
| |
| // AbslHashValue() for hashing enum values |
| template <typename H, typename Enum> |
| typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue( |
| H hash_state, Enum e) { |
| // In practice, we could almost certainly just invoke hash_bytes directly, |
| // but it's possible that a sanitizer might one day want to |
| // store data in the unused bits of an enum. To avoid that risk, we |
| // convert to the underlying type before hashing. Hopefully this will get |
| // optimized away; if not, we can reopen discussion with c-toolchain-team. |
| return H::combine(std::move(hash_state), |
| static_cast<typename std::underlying_type<Enum>::type>(e)); |
| } |
| // AbslHashValue() for hashing floating-point values |
| template <typename H, typename Float> |
| typename std::enable_if<std::is_same<Float, float>::value || |
| std::is_same<Float, double>::value, |
| H>::type |
| AbslHashValue(H hash_state, Float value) { |
| return hash_internal::hash_bytes(std::move(hash_state), |
| value == 0 ? 0 : value); |
| } |
| |
| // Long double has the property that it might have extra unused bytes in it. |
| // For example, in x86 sizeof(long double)==16 but it only really uses 80-bits |
| // of it. This means we can't use hash_bytes on a long double and have to |
| // convert it to something else first. |
| template <typename H, typename LongDouble> |
| typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type |
| AbslHashValue(H hash_state, LongDouble value) { |
| const int category = std::fpclassify(value); |
| switch (category) { |
| case FP_INFINITE: |
| // Add the sign bit to differentiate between +Inf and -Inf |
| hash_state = H::combine(std::move(hash_state), std::signbit(value)); |
| break; |
| |
| case FP_NAN: |
| case FP_ZERO: |
| default: |
| // Category is enough for these. |
| break; |
| |
| case FP_NORMAL: |
| case FP_SUBNORMAL: |
| // We can't convert `value` directly to double because this would have |
| // undefined behavior if the value is out of range. |
| // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is |
| // guaranteed to be in range for `double`. The truncation is |
| // implementation defined, but that works as long as it is deterministic. |
| int exp; |
| auto mantissa = static_cast<double>(std::frexp(value, &exp)); |
| hash_state = H::combine(std::move(hash_state), mantissa, exp); |
| } |
| |
| return H::combine(std::move(hash_state), category); |
| } |
| |
| // Without this overload, an array decays to a pointer and we hash that, which |
| // is not likely to be what the caller intended. |
| template <typename H, typename T, size_t N> |
| H AbslHashValue(H hash_state, T (&)[N]) { |
| static_assert( |
| sizeof(T) == -1, |
| "Hashing C arrays is not allowed. For string literals, wrap the literal " |
| "in absl::string_view(). To hash the array contents, use " |
| "absl::MakeSpan() or make the array an std::array. To hash the array " |
| "address, use &array[0]."); |
| return hash_state; |
| } |
| |
| // AbslHashValue() for hashing pointers |
| template <typename H, typename T> |
| std::enable_if_t<std::is_pointer<T>::value, H> AbslHashValue(H hash_state, |
| T ptr) { |
| auto v = reinterpret_cast<uintptr_t>(ptr); |
| // Due to alignment, pointers tend to have low bits as zero, and the next few |
| // bits follow a pattern since they are also multiples of some base value. |
| // Mixing the pointer twice helps prevent stuck low bits for certain alignment |
| // values. |
| return H::combine(std::move(hash_state), v, v); |
| } |
| |
| // AbslHashValue() for hashing nullptr_t |
| template <typename H> |
| H AbslHashValue(H hash_state, std::nullptr_t) { |
| return H::combine(std::move(hash_state), static_cast<void*>(nullptr)); |
| } |
| |
| // AbslHashValue() for hashing pointers-to-member |
| template <typename H, typename T, typename C> |
| H AbslHashValue(H hash_state, T C::*ptr) { |
| auto salient_ptm_size = [](std::size_t n) -> std::size_t { |
| #if defined(_MSC_VER) |
| // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2, |
| // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain |
| // padding (namely when they have 1 or 3 ints). The value below is a lower |
| // bound on the number of salient, non-padding bytes that we use for |
| // hashing. |
| if (alignof(T C::*) == alignof(int)) { |
| // No padding when all subobjects have the same size as the total |
| // alignment. This happens in 32-bit mode. |
| return n; |
| } else { |
| // Padding for 1 int (size 16) or 3 ints (size 24). |
| // With 2 ints, the size is 16 with no padding, which we pessimize. |
| return n == 24 ? 20 : n == 16 ? 12 : n; |
| } |
| #else |
| // On other platforms, we assume that pointers-to-members do not have |
| // padding. |
| #ifdef __cpp_lib_has_unique_object_representations |
| static_assert(std::has_unique_object_representations<T C::*>::value); |
| #endif // __cpp_lib_has_unique_object_representations |
| return n; |
| #endif |
| }; |
| return H::combine_contiguous(std::move(hash_state), |
| reinterpret_cast<unsigned char*>(&ptr), |
| salient_ptm_size(sizeof ptr)); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Composite Types |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue() for hashing pairs |
| template <typename H, typename T1, typename T2> |
| typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value, |
| H>::type |
| AbslHashValue(H hash_state, const std::pair<T1, T2>& p) { |
| return H::combine(std::move(hash_state), p.first, p.second); |
| } |
| |
| // hash_tuple() |
| // |
| // Helper function for hashing a tuple. The third argument should |
| // be an index_sequence running from 0 to tuple_size<Tuple> - 1. |
| template <typename H, typename Tuple, size_t... Is> |
| H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) { |
| return H::combine(std::move(hash_state), std::get<Is>(t)...); |
| } |
| |
| // AbslHashValue for hashing tuples |
| template <typename H, typename... Ts> |
| #if defined(_MSC_VER) |
| // This SFINAE gets MSVC confused under some conditions. Let's just disable it |
| // for now. |
| H |
| #else // _MSC_VER |
| typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type |
| #endif // _MSC_VER |
| AbslHashValue(H hash_state, const std::tuple<Ts...>& t) { |
| return hash_internal::hash_tuple(std::move(hash_state), t, |
| absl::make_index_sequence<sizeof...(Ts)>()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Pointers |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing unique_ptr |
| template <typename H, typename T, typename D> |
| H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) { |
| return H::combine(std::move(hash_state), ptr.get()); |
| } |
| |
| // AbslHashValue for hashing shared_ptr |
| template <typename H, typename T> |
| H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) { |
| return H::combine(std::move(hash_state), ptr.get()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for String-Like Types |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing strings |
| // |
| // All the string-like types supported here provide the same hash expansion for |
| // the same character sequence. These types are: |
| // |
| // - `absl::Cord` |
| // - `std::string` (and std::basic_string<T, std::char_traits<T>, A> for |
| // any allocator A and any T in {char, wchar_t, char16_t, char32_t}) |
| // - `absl::string_view`, `std::string_view`, `std::wstring_view`, |
| // `std::u16string_view`, and `std::u32_string_view`. |
| // |
| // For simplicity, we currently support only strings built on `char`, `wchar_t`, |
| // `char16_t`, or `char32_t`. This support may be broadened, if necessary, but |
| // with some caution - this overload would misbehave in cases where the traits' |
| // `eq()` member isn't equivalent to `==` on the underlying character type. |
| template <typename H> |
| H AbslHashValue(H hash_state, absl::string_view str) { |
| return H::combine( |
| H::combine_contiguous(std::move(hash_state), str.data(), str.size()), |
| str.size()); |
| } |
| |
| // Support std::wstring, std::u16string and std::u32string. |
| template <typename Char, typename Alloc, typename H, |
| typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value || |
| std::is_same<Char, char16_t>::value || |
| std::is_same<Char, char32_t>::value>> |
| H AbslHashValue( |
| H hash_state, |
| const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) { |
| return H::combine( |
| H::combine_contiguous(std::move(hash_state), str.data(), str.size()), |
| str.size()); |
| } |
| |
| #ifdef ABSL_HAVE_STD_STRING_VIEW |
| |
| // Support std::wstring_view, std::u16string_view and std::u32string_view. |
| template <typename Char, typename H, |
| typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value || |
| std::is_same<Char, char16_t>::value || |
| std::is_same<Char, char32_t>::value>> |
| H AbslHashValue(H hash_state, std::basic_string_view<Char> str) { |
| return H::combine( |
| H::combine_contiguous(std::move(hash_state), str.data(), str.size()), |
| str.size()); |
| } |
| |
| #endif // ABSL_HAVE_STD_STRING_VIEW |
| |
| #if defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \ |
| !defined(_LIBCPP_HAS_NO_FILESYSTEM_LIBRARY) && \ |
| (!defined(__ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__) || \ |
| __ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__ >= 130000) |
| |
| #define ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE 1 |
| |
| // Support std::filesystem::path. The SFINAE is required because some string |
| // types are implicitly convertible to std::filesystem::path. |
| template <typename Path, typename H, |
| typename = absl::enable_if_t< |
| std::is_same_v<Path, std::filesystem::path>>> |
| H AbslHashValue(H hash_state, const Path& path) { |
| // This is implemented by deferring to the standard library to compute the |
| // hash. The standard library requires that for two paths, `p1 == p2`, then |
| // `hash_value(p1) == hash_value(p2)`. `AbslHashValue` has the same |
| // requirement. Since `operator==` does platform specific matching, deferring |
| // to the standard library is the simplest approach. |
| return H::combine(std::move(hash_state), std::filesystem::hash_value(path)); |
| } |
| |
| #endif // ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Sequence Containers |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing std::array |
| template <typename H, typename T, size_t N> |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
| H hash_state, const std::array<T, N>& array) { |
| return H::combine_contiguous(std::move(hash_state), array.data(), |
| array.size()); |
| } |
| |
| // AbslHashValue for hashing std::deque |
| template <typename H, typename T, typename Allocator> |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
| H hash_state, const std::deque<T, Allocator>& deque) { |
| // TODO(gromer): investigate a more efficient implementation taking |
| // advantage of the chunk structure. |
| for (const auto& t : deque) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), deque.size()); |
| } |
| |
| // AbslHashValue for hashing std::forward_list |
| template <typename H, typename T, typename Allocator> |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
| H hash_state, const std::forward_list<T, Allocator>& list) { |
| size_t size = 0; |
| for (const T& t : list) { |
| hash_state = H::combine(std::move(hash_state), t); |
| ++size; |
| } |
| return H::combine(std::move(hash_state), size); |
| } |
| |
| // AbslHashValue for hashing std::list |
| template <typename H, typename T, typename Allocator> |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
| H hash_state, const std::list<T, Allocator>& list) { |
| for (const auto& t : list) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), list.size()); |
| } |
| |
| // AbslHashValue for hashing std::vector |
| // |
| // Do not use this for vector<bool> on platforms that have a working |
| // implementation of std::hash. It does not have a .data(), and a fallback for |
| // std::hash<> is most likely faster. |
| template <typename H, typename T, typename Allocator> |
| typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value, |
| H>::type |
| AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) { |
| return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(), |
| vector.size()), |
| vector.size()); |
| } |
| |
| // AbslHashValue special cases for hashing std::vector<bool> |
| |
| #if defined(ABSL_IS_BIG_ENDIAN) && \ |
| (defined(__GLIBCXX__) || defined(__GLIBCPP__)) |
| |
| // std::hash in libstdc++ does not work correctly with vector<bool> on Big |
| // Endian platforms therefore we need to implement a custom AbslHashValue for |
| // it. More details on the bug: |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531 |
| template <typename H, typename T, typename Allocator> |
| typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value, |
| H>::type |
| AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) { |
| typename H::AbslInternalPiecewiseCombiner combiner; |
| for (const auto& i : vector) { |
| unsigned char c = static_cast<unsigned char>(i); |
| hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c)); |
| } |
| return H::combine(combiner.finalize(std::move(hash_state)), vector.size()); |
| } |
| #else |
| // When not working around the libstdc++ bug above, we still have to contend |
| // with the fact that std::hash<vector<bool>> is often poor quality, hashing |
| // directly on the internal words and on no other state. On these platforms, |
| // vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value. |
| // |
| // Mixing in the size (as we do in our other vector<> implementations) on top |
| // of the library-provided hash implementation avoids this QOI issue. |
| template <typename H, typename T, typename Allocator> |
| typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value, |
| H>::type |
| AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) { |
| return H::combine(std::move(hash_state), |
| std::hash<std::vector<T, Allocator>>{}(vector), |
| vector.size()); |
| } |
| #endif |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Ordered Associative Containers |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing std::map |
| template <typename H, typename Key, typename T, typename Compare, |
| typename Allocator> |
| typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
| H>::type |
| AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) { |
| for (const auto& t : map) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), map.size()); |
| } |
| |
| // AbslHashValue for hashing std::multimap |
| template <typename H, typename Key, typename T, typename Compare, |
| typename Allocator> |
| typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
| H>::type |
| AbslHashValue(H hash_state, |
| const std::multimap<Key, T, Compare, Allocator>& map) { |
| for (const auto& t : map) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), map.size()); |
| } |
| |
| // AbslHashValue for hashing std::set |
| template <typename H, typename Key, typename Compare, typename Allocator> |
| typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
| H hash_state, const std::set<Key, Compare, Allocator>& set) { |
| for (const auto& t : set) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), set.size()); |
| } |
| |
| // AbslHashValue for hashing std::multiset |
| template <typename H, typename Key, typename Compare, typename Allocator> |
| typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
| H hash_state, const std::multiset<Key, Compare, Allocator>& set) { |
| for (const auto& t : set) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), set.size()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Unordered Associative Containers |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing std::unordered_set |
| template <typename H, typename Key, typename Hash, typename KeyEqual, |
| typename Alloc> |
| typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
| H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) { |
| return H::combine( |
| H::combine_unordered(std::move(hash_state), s.begin(), s.end()), |
| s.size()); |
| } |
| |
| // AbslHashValue for hashing std::unordered_multiset |
| template <typename H, typename Key, typename Hash, typename KeyEqual, |
| typename Alloc> |
| typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
| H hash_state, |
| const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) { |
| return H::combine( |
| H::combine_unordered(std::move(hash_state), s.begin(), s.end()), |
| s.size()); |
| } |
| |
| // AbslHashValue for hashing std::unordered_set |
| template <typename H, typename Key, typename T, typename Hash, |
| typename KeyEqual, typename Alloc> |
| typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
| H>::type |
| AbslHashValue(H hash_state, |
| const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) { |
| return H::combine( |
| H::combine_unordered(std::move(hash_state), s.begin(), s.end()), |
| s.size()); |
| } |
| |
| // AbslHashValue for hashing std::unordered_multiset |
| template <typename H, typename Key, typename T, typename Hash, |
| typename KeyEqual, typename Alloc> |
| typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
| H>::type |
| AbslHashValue(H hash_state, |
| const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) { |
| return H::combine( |
| H::combine_unordered(std::move(hash_state), s.begin(), s.end()), |
| s.size()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Wrapper Types |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing std::reference_wrapper |
| template <typename H, typename T> |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
| H hash_state, std::reference_wrapper<T> opt) { |
| return H::combine(std::move(hash_state), opt.get()); |
| } |
| |
| // AbslHashValue for hashing absl::optional |
| template <typename H, typename T> |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
| H hash_state, const absl::optional<T>& opt) { |
| if (opt) hash_state = H::combine(std::move(hash_state), *opt); |
| return H::combine(std::move(hash_state), opt.has_value()); |
| } |
| |
| // VariantVisitor |
| template <typename H> |
| struct VariantVisitor { |
| H&& hash_state; |
| template <typename T> |
| H operator()(const T& t) const { |
| return H::combine(std::move(hash_state), t); |
| } |
| }; |
| |
| // AbslHashValue for hashing absl::variant |
| template <typename H, typename... T> |
| typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type |
| AbslHashValue(H hash_state, const absl::variant<T...>& v) { |
| if (!v.valueless_by_exception()) { |
| hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v); |
| } |
| return H::combine(std::move(hash_state), v.index()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Other Types |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing std::bitset is not defined on Little Endian |
| // platforms, for the same reason as for vector<bool> (see std::vector above): |
| // It does not expose the raw bytes, and a fallback to std::hash<> is most |
| // likely faster. |
| |
| #if defined(ABSL_IS_BIG_ENDIAN) && \ |
| (defined(__GLIBCXX__) || defined(__GLIBCPP__)) |
| // AbslHashValue for hashing std::bitset |
| // |
| // std::hash in libstdc++ does not work correctly with std::bitset on Big Endian |
| // platforms therefore we need to implement a custom AbslHashValue for it. More |
| // details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531 |
| template <typename H, size_t N> |
| H AbslHashValue(H hash_state, const std::bitset<N>& set) { |
| typename H::AbslInternalPiecewiseCombiner combiner; |
| for (size_t i = 0; i < N; i++) { |
| unsigned char c = static_cast<unsigned char>(set[i]); |
| hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c)); |
| } |
| return H::combine(combiner.finalize(std::move(hash_state)), N); |
| } |
| #endif |
| |
| // ----------------------------------------------------------------------------- |
| |
| // hash_range_or_bytes() |
| // |
| // Mixes all values in the range [data, data+size) into the hash state. |
| // This overload accepts only uniquely-represented types, and hashes them by |
| // hashing the entire range of bytes. |
| template <typename H, typename T> |
| typename std::enable_if<is_uniquely_represented<T>::value, H>::type |
| hash_range_or_bytes(H hash_state, const T* data, size_t size) { |
| const auto* bytes = reinterpret_cast<const unsigned char*>(data); |
| return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size); |
| } |
| |
| // hash_range_or_bytes() |
| template <typename H, typename T> |
| typename std::enable_if<!is_uniquely_represented<T>::value, H>::type |
| hash_range_or_bytes(H hash_state, const T* data, size_t size) { |
| for (const auto end = data + size; data < end; ++data) { |
| hash_state = H::combine(std::move(hash_state), *data); |
| } |
| return hash_state; |
| } |
| |
| #if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \ |
| ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1 |
| #else |
| #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0 |
| #endif |
| |
| // HashSelect |
| // |
| // Type trait to select the appropriate hash implementation to use. |
| // HashSelect::type<T> will give the proper hash implementation, to be invoked |
| // as: |
| // HashSelect::type<T>::Invoke(state, value) |
| // Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a |
| // valid `Invoke` function. Types that are not hashable will have a ::value of |
| // `false`. |
| struct HashSelect { |
| private: |
| struct State : HashStateBase<State> { |
| static State combine_contiguous(State hash_state, const unsigned char*, |
| size_t); |
| using State::HashStateBase::combine_contiguous; |
| }; |
| |
| struct UniquelyRepresentedProbe { |
| template <typename H, typename T> |
| static auto Invoke(H state, const T& value) |
| -> absl::enable_if_t<is_uniquely_represented<T>::value, H> { |
| return hash_internal::hash_bytes(std::move(state), value); |
| } |
| }; |
| |
| struct HashValueProbe { |
| template <typename H, typename T> |
| static auto Invoke(H state, const T& value) -> absl::enable_if_t< |
| std::is_same<H, |
| decltype(AbslHashValue(std::move(state), value))>::value, |
| H> { |
| return AbslHashValue(std::move(state), value); |
| } |
| }; |
| |
| struct LegacyHashProbe { |
| #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| template <typename H, typename T> |
| static auto Invoke(H state, const T& value) -> absl::enable_if_t< |
| std::is_convertible< |
| decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)), |
| size_t>::value, |
| H> { |
| return hash_internal::hash_bytes( |
| std::move(state), |
| ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value)); |
| } |
| #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| }; |
| |
| struct StdHashProbe { |
| template <typename H, typename T> |
| static auto Invoke(H state, const T& value) |
| -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> { |
| return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value)); |
| } |
| }; |
| |
| template <typename Hash, typename T> |
| struct Probe : Hash { |
| private: |
| template <typename H, typename = decltype(H::Invoke( |
| std::declval<State>(), std::declval<const T&>()))> |
| static std::true_type Test(int); |
| template <typename U> |
| static std::false_type Test(char); |
| |
| public: |
| static constexpr bool value = decltype(Test<Hash>(0))::value; |
| }; |
| |
| public: |
| // Probe each implementation in order. |
| // disjunction provides short circuiting wrt instantiation. |
| template <typename T> |
| using Apply = absl::disjunction< // |
| Probe<UniquelyRepresentedProbe, T>, // |
| Probe<HashValueProbe, T>, // |
| Probe<LegacyHashProbe, T>, // |
| Probe<StdHashProbe, T>, // |
| std::false_type>; |
| }; |
| |
| template <typename T> |
| struct is_hashable |
| : std::integral_constant<bool, HashSelect::template Apply<T>::value> {}; |
| |
| // MixingHashState |
| class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> { |
| // absl::uint128 is not an alias or a thin wrapper around the intrinsic. |
| // We use the intrinsic when available to improve performance. |
| #ifdef ABSL_HAVE_INTRINSIC_INT128 |
| using uint128 = __uint128_t; |
| #else // ABSL_HAVE_INTRINSIC_INT128 |
| using uint128 = absl::uint128; |
| #endif // ABSL_HAVE_INTRINSIC_INT128 |
| |
| static constexpr uint64_t kMul = |
| sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51} |
| : uint64_t{0x9ddfea08eb382d69}; |
| |
| template <typename T> |
| using IntegralFastPath = |
| conjunction<std::is_integral<T>, is_uniquely_represented<T>>; |
| |
| public: |
| // Move only |
| MixingHashState(MixingHashState&&) = default; |
| MixingHashState& operator=(MixingHashState&&) = default; |
| |
| // MixingHashState::combine_contiguous() |
| // |
| // Fundamental base case for hash recursion: mixes the given range of bytes |
| // into the hash state. |
| static MixingHashState combine_contiguous(MixingHashState hash_state, |
| const unsigned char* first, |
| size_t size) { |
| return MixingHashState( |
| CombineContiguousImpl(hash_state.state_, first, size, |
| std::integral_constant<int, sizeof(size_t)>{})); |
| } |
| using MixingHashState::HashStateBase::combine_contiguous; |
| |
| // MixingHashState::hash() |
| // |
| // For performance reasons in non-opt mode, we specialize this for |
| // integral types. |
| // Otherwise we would be instantiating and calling dozens of functions for |
| // something that is just one multiplication and a couple xor's. |
| // The result should be the same as running the whole algorithm, but faster. |
| template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0> |
| static size_t hash(T value) { |
| return static_cast<size_t>( |
| Mix(Seed(), static_cast<std::make_unsigned_t<T>>(value))); |
| } |
| |
| // Overload of MixingHashState::hash() |
| template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0> |
| static size_t hash(const T& value) { |
| return static_cast<size_t>(combine(MixingHashState{}, value).state_); |
| } |
| |
| private: |
| // Invoked only once for a given argument; that plus the fact that this is |
| // move-only ensures that there is only one non-moved-from object. |
| MixingHashState() : state_(Seed()) {} |
| |
| friend class MixingHashState::HashStateBase; |
| |
| template <typename CombinerT> |
| static MixingHashState RunCombineUnordered(MixingHashState state, |
| CombinerT combiner) { |
| uint64_t unordered_state = 0; |
| combiner(MixingHashState{}, [&](MixingHashState& inner_state) { |
| // Add the hash state of the element to the running total, but mix the |
| // carry bit back into the low bit. This in intended to avoid losing |
| // entropy to overflow, especially when unordered_multisets contain |
| // multiple copies of the same value. |
| auto element_state = inner_state.state_; |
| unordered_state += element_state; |
| if (unordered_state < element_state) { |
| ++unordered_state; |
| } |
| inner_state = MixingHashState{}; |
| }); |
| return MixingHashState::combine(std::move(state), unordered_state); |
| } |
| |
| // Allow the HashState type-erasure implementation to invoke |
| // RunCombinedUnordered() directly. |
| friend class absl::HashState; |
| |
| // Workaround for MSVC bug. |
| // We make the type copyable to fix the calling convention, even though we |
| // never actually copy it. Keep it private to not affect the public API of the |
| // type. |
| MixingHashState(const MixingHashState&) = default; |
| |
| explicit MixingHashState(uint64_t state) : state_(state) {} |
| |
| // Implementation of the base case for combine_contiguous where we actually |
| // mix the bytes into the state. |
| // Dispatch to different implementations of the combine_contiguous depending |
| // on the value of `sizeof(size_t)`. |
| static uint64_t CombineContiguousImpl(uint64_t state, |
| const unsigned char* first, size_t len, |
| std::integral_constant<int, 4> |
| /* sizeof_size_t */); |
| static uint64_t CombineContiguousImpl(uint64_t state, |
| const unsigned char* first, size_t len, |
| std::integral_constant<int, 8> |
| /* sizeof_size_t */); |
| |
| // Slow dispatch path for calls to CombineContiguousImpl with a size argument |
| // larger than PiecewiseChunkSize(). Has the same effect as calling |
| // CombineContiguousImpl() repeatedly with the chunk stride size. |
| static uint64_t CombineLargeContiguousImpl32(uint64_t state, |
| const unsigned char* first, |
| size_t len); |
| static uint64_t CombineLargeContiguousImpl64(uint64_t state, |
| const unsigned char* first, |
| size_t len); |
| |
| // Reads 9 to 16 bytes from p. |
| // The least significant 8 bytes are in .first, the rest (zero padded) bytes |
| // are in .second. |
| static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p, |
| size_t len) { |
| uint64_t low_mem = absl::base_internal::UnalignedLoad64(p); |
| uint64_t high_mem = absl::base_internal::UnalignedLoad64(p + len - 8); |
| #ifdef ABSL_IS_LITTLE_ENDIAN |
| uint64_t most_significant = high_mem; |
| uint64_t least_significant = low_mem; |
| #else |
| uint64_t most_significant = low_mem; |
| uint64_t least_significant = high_mem; |
| #endif |
| return {least_significant, most_significant}; |
| } |
| |
| // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t. |
| static uint64_t Read4To8(const unsigned char* p, size_t len) { |
| uint32_t low_mem = absl::base_internal::UnalignedLoad32(p); |
| uint32_t high_mem = absl::base_internal::UnalignedLoad32(p + len - 4); |
| #ifdef ABSL_IS_LITTLE_ENDIAN |
| uint32_t most_significant = high_mem; |
| uint32_t least_significant = low_mem; |
| #else |
| uint32_t most_significant = low_mem; |
| uint32_t least_significant = high_mem; |
| #endif |
| return (static_cast<uint64_t>(most_significant) << (len - 4) * 8) | |
| least_significant; |
| } |
| |
| // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t. |
| static uint32_t Read1To3(const unsigned char* p, size_t len) { |
| // The trick used by this implementation is to avoid branches if possible. |
| unsigned char mem0 = p[0]; |
| unsigned char mem1 = p[len / 2]; |
| unsigned char mem2 = p[len - 1]; |
| #ifdef ABSL_IS_LITTLE_ENDIAN |
| unsigned char significant2 = mem2; |
| unsigned char significant1 = mem1; |
| unsigned char significant0 = mem0; |
| #else |
| unsigned char significant2 = mem0; |
| unsigned char significant1 = len == 2 ? mem0 : mem1; |
| unsigned char significant0 = mem2; |
| #endif |
| return static_cast<uint32_t>(significant0 | // |
| (significant1 << (len / 2 * 8)) | // |
| (significant2 << ((len - 1) * 8))); |
| } |
| |
| ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) { |
| // Though the 128-bit product on AArch64 needs two instructions, it is |
| // still a good balance between speed and hash quality. |
| using MultType = |
| absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>; |
| // We do the addition in 64-bit space to make sure the 128-bit |
| // multiplication is fast. If we were to do it as MultType the compiler has |
| // to assume that the high word is non-zero and needs to perform 2 |
| // multiplications instead of one. |
| MultType m = state + v; |
| m *= kMul; |
| return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2))); |
| } |
| |
| // An extern to avoid bloat on a direct call to LowLevelHash() with fixed |
| // values for both the seed and salt parameters. |
| static uint64_t LowLevelHashImpl(const unsigned char* data, size_t len); |
| |
| ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Hash64(const unsigned char* data, |
| size_t len) { |
| #ifdef ABSL_HAVE_INTRINSIC_INT128 |
| return LowLevelHashImpl(data, len); |
| #else |
| return hash_internal::CityHash64(reinterpret_cast<const char*>(data), len); |
| #endif |
| } |
| |
| // Seed() |
| // |
| // A non-deterministic seed. |
| // |
| // The current purpose of this seed is to generate non-deterministic results |
| // and prevent having users depend on the particular hash values. |
| // It is not meant as a security feature right now, but it leaves the door |
| // open to upgrade it to a true per-process random seed. A true random seed |
| // costs more and we don't need to pay for that right now. |
| // |
| // On platforms with ASLR, we take advantage of it to make a per-process |
| // random value. |
| // See https://en.wikipedia.org/wiki/Address_space_layout_randomization |
| // |
| // On other platforms this is still going to be non-deterministic but most |
| // probably per-build and not per-process. |
| ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() { |
| #if (!defined(__clang__) || __clang_major__ > 11) && \ |
| (!defined(__apple_build_version__) || \ |
| __apple_build_version__ >= 19558921) // Xcode 12 |
| return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed)); |
| #else |
| // Workaround the absence of |
| // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021. |
| return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed)); |
| #endif |
| } |
| static const void* const kSeed; |
| |
| uint64_t state_; |
| }; |
| |
| // MixingHashState::CombineContiguousImpl() |
| inline uint64_t MixingHashState::CombineContiguousImpl( |
| uint64_t state, const unsigned char* first, size_t len, |
| std::integral_constant<int, 4> /* sizeof_size_t */) { |
| // For large values we use CityHash, for small ones we just use a |
| // multiplicative hash. |
| uint64_t v; |
| if (len > 8) { |
| if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { |
| return CombineLargeContiguousImpl32(state, first, len); |
| } |
| v = hash_internal::CityHash32(reinterpret_cast<const char*>(first), len); |
| } else if (len >= 4) { |
| v = Read4To8(first, len); |
| } else if (len > 0) { |
| v = Read1To3(first, len); |
| } else { |
| // Empty ranges have no effect. |
| return state; |
| } |
| return Mix(state, v); |
| } |
| |
| // Overload of MixingHashState::CombineContiguousImpl() |
| inline uint64_t MixingHashState::CombineContiguousImpl( |
| uint64_t state, const unsigned char* first, size_t len, |
| std::integral_constant<int, 8> /* sizeof_size_t */) { |
| // For large values we use LowLevelHash or CityHash depending on the platform, |
| // for small ones we just use a multiplicative hash. |
| uint64_t v; |
| if (len > 16) { |
| if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { |
| return CombineLargeContiguousImpl64(state, first, len); |
| } |
| v = Hash64(first, len); |
| } else if (len > 8) { |
| // This hash function was constructed by the ML-driven algorithm discovery |
| // using reinforcement learning. We fed the agent lots of inputs from |
| // microbenchmarks, SMHasher, low hamming distance from generated inputs and |
| // picked up the one that was good on micro and macrobenchmarks. |
| auto p = Read9To16(first, len); |
| uint64_t lo = p.first; |
| uint64_t hi = p.second; |
| // Rotation by 53 was found to be most often useful when discovering these |
| // hashing algorithms with ML techniques. |
| lo = absl::rotr(lo, 53); |
| state += kMul; |
| lo += state; |
| state ^= hi; |
| uint128 m = state; |
| m *= lo; |
| return static_cast<uint64_t>(m ^ (m >> 64)); |
| } else if (len >= 4) { |
| v = Read4To8(first, len); |
| } else if (len > 0) { |
| v = Read1To3(first, len); |
| } else { |
| // Empty ranges have no effect. |
| return state; |
| } |
| return Mix(state, v); |
| } |
| |
| struct AggregateBarrier {}; |
| |
| // HashImpl |
| |
| // Add a private base class to make sure this type is not an aggregate. |
| // Aggregates can be aggregate initialized even if the default constructor is |
| // deleted. |
| struct PoisonedHash : private AggregateBarrier { |
| PoisonedHash() = delete; |
| PoisonedHash(const PoisonedHash&) = delete; |
| PoisonedHash& operator=(const PoisonedHash&) = delete; |
| }; |
| |
| template <typename T> |
| struct HashImpl { |
| size_t operator()(const T& value) const { |
| return MixingHashState::hash(value); |
| } |
| }; |
| |
| template <typename T> |
| struct Hash |
| : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {}; |
| |
| template <typename H> |
| template <typename T, typename... Ts> |
| H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) { |
| return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke( |
| std::move(state), value), |
| values...); |
| } |
| |
| // HashStateBase::combine_contiguous() |
| template <typename H> |
| template <typename T> |
| H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) { |
| return hash_internal::hash_range_or_bytes(std::move(state), data, size); |
| } |
| |
| // HashStateBase::combine_unordered() |
| template <typename H> |
| template <typename I> |
| H HashStateBase<H>::combine_unordered(H state, I begin, I end) { |
| return H::RunCombineUnordered(std::move(state), |
| CombineUnorderedCallback<I>{begin, end}); |
| } |
| |
| // HashStateBase::PiecewiseCombiner::add_buffer() |
| template <typename H> |
| H PiecewiseCombiner::add_buffer(H state, const unsigned char* data, |
| size_t size) { |
| if (position_ + size < PiecewiseChunkSize()) { |
| // This partial chunk does not fill our existing buffer |
| memcpy(buf_ + position_, data, size); |
| position_ += size; |
| return state; |
| } |
| |
| // If the buffer is partially filled we need to complete the buffer |
| // and hash it. |
| if (position_ != 0) { |
| const size_t bytes_needed = PiecewiseChunkSize() - position_; |
| memcpy(buf_ + position_, data, bytes_needed); |
| state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize()); |
| data += bytes_needed; |
| size -= bytes_needed; |
| } |
| |
| // Hash whatever chunks we can without copying |
| while (size >= PiecewiseChunkSize()) { |
| state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize()); |
| data += PiecewiseChunkSize(); |
| size -= PiecewiseChunkSize(); |
| } |
| // Fill the buffer with the remainder |
| memcpy(buf_, data, size); |
| position_ = size; |
| return state; |
| } |
| |
| // HashStateBase::PiecewiseCombiner::finalize() |
| template <typename H> |
| H PiecewiseCombiner::finalize(H state) { |
| // Hash the remainder left in the buffer, which may be empty |
| return H::combine_contiguous(std::move(state), buf_, position_); |
| } |
| |
| } // namespace hash_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_HASH_INTERNAL_HASH_H_ |