| // Copyright 2021 The Abseil Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: cord_buffer.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This file defines an `absl::CordBuffer` data structure to hold data for |
| // eventual inclusion within an existing `Cord` data structure. Cord buffers are |
| // useful for building large Cords that may require custom allocation of its |
| // associated memory. |
| // |
| #ifndef ABSL_STRINGS_CORD_BUFFER_H_ |
| #define ABSL_STRINGS_CORD_BUFFER_H_ |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <memory> |
| #include <utility> |
| |
| #include "absl/base/config.h" |
| #include "absl/base/macros.h" |
| #include "absl/numeric/bits.h" |
| #include "absl/strings/internal/cord_internal.h" |
| #include "absl/strings/internal/cord_rep_flat.h" |
| #include "absl/types/span.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| class Cord; |
| class CordBufferTestPeer; |
| |
| // CordBuffer |
| // |
| // CordBuffer manages memory buffers for purposes such as zero-copy APIs as well |
| // as applications building cords with large data requiring granular control |
| // over the allocation and size of cord data. For example, a function creating |
| // a cord of random data could use a CordBuffer as follows: |
| // |
| // absl::Cord CreateRandomCord(size_t length) { |
| // absl::Cord cord; |
| // while (length > 0) { |
| // CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(length); |
| // absl::Span<char> data = buffer.available_up_to(length); |
| // FillRandomValues(data.data(), data.size()); |
| // buffer.IncreaseLengthBy(data.size()); |
| // cord.Append(std::move(buffer)); |
| // length -= data.size(); |
| // } |
| // return cord; |
| // } |
| // |
| // CordBuffer instances are by default limited to a capacity of `kDefaultLimit` |
| // bytes. `kDefaultLimit` is currently just under 4KiB, but this default may |
| // change in the future and/or for specific architectures. The default limit is |
| // aimed to provide a good trade-off between performance and memory overhead. |
| // Smaller buffers typically incur more compute cost while larger buffers are |
| // more CPU efficient but create significant memory overhead because of such |
| // allocations being less granular. Using larger buffers may also increase the |
| // risk of memory fragmentation. |
| // |
| // Applications create a buffer using one of the `CreateWithDefaultLimit()` or |
| // `CreateWithCustomLimit()` methods. The returned instance will have a non-zero |
| // capacity and a zero length. Applications use the `data()` method to set the |
| // contents of the managed memory, and once done filling the buffer, use the |
| // `IncreaseLengthBy()` or 'SetLength()' method to specify the length of the |
| // initialized data before adding the buffer to a Cord. |
| // |
| // The `CreateWithCustomLimit()` method is intended for applications needing |
| // larger buffers than the default memory limit, allowing the allocation of up |
| // to a capacity of `kCustomLimit` bytes minus some minimum internal overhead. |
| // The usage of `CreateWithCustomLimit()` should be limited to only those use |
| // cases where the distribution of the input is relatively well known, and/or |
| // where the trade-off between the efficiency gains outweigh the risk of memory |
| // fragmentation. See the documentation for `CreateWithCustomLimit()` for more |
| // information on using larger custom limits. |
| // |
| // The capacity of a `CordBuffer` returned by one of the `Create` methods may |
| // be larger than the requested capacity due to rounding, alignment and |
| // granularity of the memory allocator. Applications should use the `capacity` |
| // method to obtain the effective capacity of the returned instance as |
| // demonstrated in the provided example above. |
| // |
| // CordBuffer is a move-only class. All references into the managed memory are |
| // invalidated when an instance is moved into either another CordBuffer instance |
| // or a Cord. Writing to a location obtained by a previous call to `data()` |
| // after an instance was moved will lead to undefined behavior. |
| // |
| // A `moved from` CordBuffer instance will have a valid, but empty state. |
| // CordBuffer is thread compatible. |
| class CordBuffer { |
| public: |
| // kDefaultLimit |
| // |
| // Default capacity limits of allocated CordBuffers. |
| // See the class comments for more information on allocation limits. |
| static constexpr size_t kDefaultLimit = cord_internal::kMaxFlatLength; |
| |
| // kCustomLimit |
| // |
| // Maximum size for CreateWithCustomLimit() allocated buffers. |
| // Note that the effective capacity may be slightly less |
| // because of internal overhead of internal cord buffers. |
| static constexpr size_t kCustomLimit = 64U << 10; |
| |
| // Constructors, Destructors and Assignment Operators |
| |
| // Creates an empty CordBuffer. |
| CordBuffer() = default; |
| |
| // Destroys this CordBuffer instance and, if not empty, releases any memory |
| // managed by this instance, invalidating previously returned references. |
| ~CordBuffer(); |
| |
| // CordBuffer is move-only |
| CordBuffer(CordBuffer&& rhs) noexcept; |
| CordBuffer& operator=(CordBuffer&&) noexcept; |
| CordBuffer(const CordBuffer&) = delete; |
| CordBuffer& operator=(const CordBuffer&) = delete; |
| |
| // CordBuffer::MaximumPayload() |
| // |
| // Returns the guaranteed maximum payload for a CordBuffer returned by the |
| // `CreateWithDefaultLimit()` method. While small, each internal buffer inside |
| // a Cord incurs an overhead to manage the length, type and reference count |
| // for the buffer managed inside the cord tree. Applications can use this |
| // method to get approximate number of buffers required for a given byte |
| // size, etc. |
| // |
| // For example: |
| // const size_t payload = absl::CordBuffer::MaximumPayload(); |
| // const size_t buffer_count = (total_size + payload - 1) / payload; |
| // buffers.reserve(buffer_count); |
| static constexpr size_t MaximumPayload(); |
| |
| // Overload to the above `MaximumPayload()` except that it returns the |
| // maximum payload for a CordBuffer returned by the `CreateWithCustomLimit()` |
| // method given the provided `block_size`. |
| static constexpr size_t MaximumPayload(size_t block_size); |
| |
| // CordBuffer::CreateWithDefaultLimit() |
| // |
| // Creates a CordBuffer instance of the desired `capacity`, capped at the |
| // default limit `kDefaultLimit`. The returned buffer has a guaranteed |
| // capacity of at least `min(kDefaultLimit, capacity)`. See the class comments |
| // for more information on buffer capacities and intended usage. |
| static CordBuffer CreateWithDefaultLimit(size_t capacity); |
| |
| // CordBuffer::CreateWithCustomLimit() |
| // |
| // Creates a CordBuffer instance of the desired `capacity` rounded to an |
| // appropriate power of 2 size less than, or equal to `block_size`. |
| // Requires `block_size` to be a power of 2. |
| // |
| // If `capacity` is less than or equal to `kDefaultLimit`, then this method |
| // behaves identical to `CreateWithDefaultLimit`, which means that the caller |
| // is guaranteed to get a buffer of at least the requested capacity. |
| // |
| // If `capacity` is greater than or equal to `block_size`, then this method |
| // returns a buffer with an `allocated size` of `block_size` bytes. Otherwise, |
| // this methods returns a buffer with a suitable smaller power of 2 block size |
| // to satisfy the request. The actual size depends on a number of factors, and |
| // is typically (but not necessarily) the highest or second highest power of 2 |
| // value less than or equal to `capacity`. |
| // |
| // The 'allocated size' includes a small amount of overhead required for |
| // internal state, which is currently 13 bytes on 64-bit platforms. For |
| // example: a buffer created with `block_size` and `capacity' set to 8KiB |
| // will have an allocated size of 8KiB, and an effective internal `capacity` |
| // of 8KiB - 13 = 8179 bytes. |
| // |
| // To demonstrate this in practice, let's assume we want to read data from |
| // somewhat larger files using approximately 64KiB buffers: |
| // |
| // absl::Cord ReadFromFile(int fd, size_t n) { |
| // absl::Cord cord; |
| // while (n > 0) { |
| // CordBuffer buffer = CordBuffer::CreateWithCustomLimit(64 << 10, n); |
| // absl::Span<char> data = buffer.available_up_to(n); |
| // ReadFileDataOrDie(fd, data.data(), data.size()); |
| // buffer.IncreaseLengthBy(data.size()); |
| // cord.Append(std::move(buffer)); |
| // n -= data.size(); |
| // } |
| // return cord; |
| // } |
| // |
| // If we'd use this function to read a file of 659KiB, we may get the |
| // following pattern of allocated cord buffer sizes: |
| // |
| // CreateWithCustomLimit(64KiB, 674816) --> ~64KiB (65523) |
| // CreateWithCustomLimit(64KiB, 674816) --> ~64KiB (65523) |
| // ... |
| // CreateWithCustomLimit(64KiB, 19586) --> ~16KiB (16371) |
| // CreateWithCustomLimit(64KiB, 3215) --> 3215 (at least 3215) |
| // |
| // The reason the method returns a 16K buffer instead of a roughly 19K buffer |
| // is to reduce memory overhead and fragmentation risks. Using carefully |
| // chosen power of 2 values reduces the entropy of allocated memory sizes. |
| // |
| // Additionally, let's assume we'd use the above function on files that are |
| // generally smaller than 64K. If we'd use 'precise' sized buffers for such |
| // files, than we'd get a very wide distribution of allocated memory sizes |
| // rounded to 4K page sizes, and we'd end up with a lot of unused capacity. |
| // |
| // In general, application should only use custom sizes if the data they are |
| // consuming or storing is expected to be many times the chosen block size, |
| // and be based on objective data and performance metrics. For example, a |
| // compress function may work faster and consume less CPU when using larger |
| // buffers. Such an application should pick a size offering a reasonable |
| // trade-off between expected data size, compute savings with larger buffers, |
| // and the cost or fragmentation effect of larger buffers. |
| // Applications must pick a reasonable spot on that curve, and make sure their |
| // data meets their expectations in size distributions such as "mostly large". |
| static CordBuffer CreateWithCustomLimit(size_t block_size, size_t capacity); |
| |
| // CordBuffer::available() |
| // |
| // Returns the span delineating the available capacity in this buffer |
| // which is defined as `{ data() + length(), capacity() - length() }`. |
| absl::Span<char> available(); |
| |
| // CordBuffer::available_up_to() |
| // |
| // Returns the span delineating the available capacity in this buffer limited |
| // to `size` bytes. This is equivalent to `available().subspan(0, size)`. |
| absl::Span<char> available_up_to(size_t size); |
| |
| // CordBuffer::data() |
| // |
| // Returns a non-null reference to the data managed by this instance. |
| // Applications are allowed to write up to `capacity` bytes of instance data. |
| // CordBuffer data is uninitialized by default. Reading data from an instance |
| // that has not yet been initialized will lead to undefined behavior. |
| char* data(); |
| const char* data() const; |
| |
| // CordBuffer::length() |
| // |
| // Returns the length of this instance. The default length of a CordBuffer is |
| // 0, indicating an 'empty' CordBuffer. Applications must specify the length |
| // of the data in a CordBuffer before adding it to a Cord. |
| size_t length() const; |
| |
| // CordBuffer::capacity() |
| // |
| // Returns the capacity of this instance. All instances have a non-zero |
| // capacity: default and `moved from` instances have a small internal buffer. |
| size_t capacity() const; |
| |
| // CordBuffer::IncreaseLengthBy() |
| // |
| // Increases the length of this buffer by the specified 'n' bytes. |
| // Applications must make sure all data in this buffer up to the new length |
| // has been initialized before adding a CordBuffer to a Cord: failure to do so |
| // will lead to undefined behavior. Requires `length() + n <= capacity()`. |
| // Typically, applications will use 'available_up_to()` to get a span of the |
| // desired capacity, and use `span.size()` to increase the length as in: |
| // absl::Span<char> span = buffer.available_up_to(desired); |
| // buffer.IncreaseLengthBy(span.size()); |
| // memcpy(span.data(), src, span.size()); |
| // etc... |
| void IncreaseLengthBy(size_t n); |
| |
| // CordBuffer::SetLength() |
| // |
| // Sets the data length of this instance. Applications must make sure all data |
| // of the specified length has been initialized before adding a CordBuffer to |
| // a Cord: failure to do so will lead to undefined behavior. |
| // Setting the length to a small value or zero does not release any memory |
| // held by this CordBuffer instance. Requires `length <= capacity()`. |
| // Applications should preferably use the `IncreaseLengthBy()` method above |
| // in combination with the 'available()` or `available_up_to()` methods. |
| void SetLength(size_t length); |
| |
| private: |
| // Make sure we don't accidentally over promise. |
| static_assert(kCustomLimit <= cord_internal::kMaxLargeFlatSize, ""); |
| |
| // Assume the cost of an 'uprounded' allocation to CeilPow2(size) versus |
| // the cost of allocating at least 1 extra flat <= 4KB: |
| // - Flat overhead = 13 bytes |
| // - Btree amortized cost / node =~ 13 bytes |
| // - 64 byte granularity of tcmalloc at 4K =~ 32 byte average |
| // CPU cost and efficiency requires we should at least 'save' something by |
| // splitting, as a poor man's measure, we say the slop needs to be |
| // at least double the cost offset to make it worth splitting: ~128 bytes. |
| static constexpr size_t kMaxPageSlop = 128; |
| |
| // Overhead for allocation a flat. |
| static constexpr size_t kOverhead = cord_internal::kFlatOverhead; |
| |
| using CordRepFlat = cord_internal::CordRepFlat; |
| |
| // `Rep` is the internal data representation of a CordBuffer. The internal |
| // representation has an internal small size optimization similar to |
| // std::string (SSO). |
| struct Rep { |
| // Inline SSO size of a CordBuffer |
| static constexpr size_t kInlineCapacity = sizeof(intptr_t) * 2 - 1; |
| |
| // Creates a default instance with kInlineCapacity. |
| Rep() : short_rep{} {} |
| |
| // Creates an instance managing an allocated non zero CordRep. |
| explicit Rep(cord_internal::CordRepFlat* rep) : long_rep{rep} { |
| assert(rep != nullptr); |
| } |
| |
| // Returns true if this instance manages the SSO internal buffer. |
| bool is_short() const { |
| constexpr size_t offset = offsetof(Short, raw_size); |
| return (reinterpret_cast<const char*>(this)[offset] & 1) != 0; |
| } |
| |
| // Returns the available area of the internal SSO data |
| absl::Span<char> short_available() { |
| const size_t length = short_length(); |
| return absl::Span<char>(short_rep.data + length, |
| kInlineCapacity - length); |
| } |
| |
| // Returns the available area of the internal SSO data |
| absl::Span<char> long_available() const { |
| assert(!is_short()); |
| const size_t length = long_rep.rep->length; |
| return absl::Span<char>(long_rep.rep->Data() + length, |
| long_rep.rep->Capacity() - length); |
| } |
| |
| // Returns the length of the internal SSO data. |
| size_t short_length() const { |
| assert(is_short()); |
| return static_cast<size_t>(short_rep.raw_size >> 1); |
| } |
| |
| // Sets the length of the internal SSO data. |
| // Disregards any previously set CordRep instance. |
| void set_short_length(size_t length) { |
| short_rep.raw_size = static_cast<char>((length << 1) + 1); |
| } |
| |
| // Adds `n` to the current short length. |
| void add_short_length(size_t n) { |
| assert(is_short()); |
| short_rep.raw_size += static_cast<char>(n << 1); |
| } |
| |
| // Returns reference to the internal SSO data buffer. |
| char* data() { |
| assert(is_short()); |
| return short_rep.data; |
| } |
| const char* data() const { |
| assert(is_short()); |
| return short_rep.data; |
| } |
| |
| // Returns a pointer the external CordRep managed by this instance. |
| cord_internal::CordRepFlat* rep() const { |
| assert(!is_short()); |
| return long_rep.rep; |
| } |
| |
| // The internal representation takes advantage of the fact that allocated |
| // memory is always on an even address, and uses the least significant bit |
| // of the first or last byte (depending on endianness) as the inline size |
| // indicator overlapping with the least significant byte of the CordRep*. |
| #if defined(ABSL_IS_BIG_ENDIAN) |
| struct Long { |
| explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {} |
| void* padding; |
| cord_internal::CordRepFlat* rep; |
| }; |
| struct Short { |
| char data[sizeof(Long) - 1]; |
| char raw_size = 1; |
| }; |
| #else |
| struct Long { |
| explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {} |
| cord_internal::CordRepFlat* rep; |
| void* padding; |
| }; |
| struct Short { |
| char raw_size = 1; |
| char data[sizeof(Long) - 1]; |
| }; |
| #endif |
| |
| union { |
| Long long_rep; |
| Short short_rep; |
| }; |
| }; |
| |
| // Power2 functions |
| static bool IsPow2(size_t size) { return absl::has_single_bit(size); } |
| static size_t Log2Floor(size_t size) { |
| return static_cast<size_t>(absl::bit_width(size) - 1); |
| } |
| static size_t Log2Ceil(size_t size) { |
| return static_cast<size_t>(absl::bit_width(size - 1)); |
| } |
| |
| // Implementation of `CreateWithCustomLimit()`. |
| // This implementation allows for future memory allocation hints to |
| // be passed down into the CordRepFlat allocation function. |
| template <typename... AllocationHints> |
| static CordBuffer CreateWithCustomLimitImpl(size_t block_size, |
| size_t capacity, |
| AllocationHints... hints); |
| |
| // Consumes the value contained in this instance and resets the instance. |
| // This method returns a non-null Cordrep* if the current instances manages a |
| // CordRep*, and resets the instance to an empty SSO instance. If the current |
| // instance is an SSO instance, then this method returns nullptr and sets |
| // `short_value` to the inlined data value. In either case, the current |
| // instance length is reset to zero. |
| // This method is intended to be used by Cord internal functions only. |
| cord_internal::CordRep* ConsumeValue(absl::string_view& short_value) { |
| cord_internal::CordRep* rep = nullptr; |
| if (rep_.is_short()) { |
| short_value = absl::string_view(rep_.data(), rep_.short_length()); |
| } else { |
| rep = rep_.rep(); |
| } |
| rep_.set_short_length(0); |
| return rep; |
| } |
| |
| // Internal constructor. |
| explicit CordBuffer(cord_internal::CordRepFlat* rep) : rep_(rep) { |
| assert(rep != nullptr); |
| } |
| |
| Rep rep_; |
| |
| friend class Cord; |
| friend class CordBufferTestPeer; |
| }; |
| |
| inline constexpr size_t CordBuffer::MaximumPayload() { |
| return cord_internal::kMaxFlatLength; |
| } |
| |
| inline constexpr size_t CordBuffer::MaximumPayload(size_t block_size) { |
| return (std::min)(kCustomLimit, block_size) - cord_internal::kFlatOverhead; |
| } |
| |
| inline CordBuffer CordBuffer::CreateWithDefaultLimit(size_t capacity) { |
| if (capacity > Rep::kInlineCapacity) { |
| auto* rep = cord_internal::CordRepFlat::New(capacity); |
| rep->length = 0; |
| return CordBuffer(rep); |
| } |
| return CordBuffer(); |
| } |
| |
| template <typename... AllocationHints> |
| inline CordBuffer CordBuffer::CreateWithCustomLimitImpl( |
| size_t block_size, size_t capacity, AllocationHints... hints) { |
| assert(IsPow2(block_size)); |
| capacity = (std::min)(capacity, kCustomLimit); |
| block_size = (std::min)(block_size, kCustomLimit); |
| if (capacity + kOverhead >= block_size) { |
| capacity = block_size; |
| } else if (capacity <= kDefaultLimit) { |
| capacity = capacity + kOverhead; |
| } else if (!IsPow2(capacity)) { |
| // Check if rounded up to next power 2 is a good enough fit |
| // with limited waste making it an acceptable direct fit. |
| const size_t rounded_up = size_t{1} << Log2Ceil(capacity); |
| const size_t slop = rounded_up - capacity; |
| if (slop >= kOverhead && slop <= kMaxPageSlop + kOverhead) { |
| capacity = rounded_up; |
| } else { |
| // Round down to highest power of 2 <= capacity. |
| // Consider a more aggressive step down if that may reduce the |
| // risk of fragmentation where 'people are holding it wrong'. |
| const size_t rounded_down = size_t{1} << Log2Floor(capacity); |
| capacity = rounded_down; |
| } |
| } |
| const size_t length = capacity - kOverhead; |
| auto* rep = CordRepFlat::New(CordRepFlat::Large(), length, hints...); |
| rep->length = 0; |
| return CordBuffer(rep); |
| } |
| |
| inline CordBuffer CordBuffer::CreateWithCustomLimit(size_t block_size, |
| size_t capacity) { |
| return CreateWithCustomLimitImpl(block_size, capacity); |
| } |
| |
| inline CordBuffer::~CordBuffer() { |
| if (!rep_.is_short()) { |
| cord_internal::CordRepFlat::Delete(rep_.rep()); |
| } |
| } |
| |
| inline CordBuffer::CordBuffer(CordBuffer&& rhs) noexcept : rep_(rhs.rep_) { |
| rhs.rep_.set_short_length(0); |
| } |
| |
| inline CordBuffer& CordBuffer::operator=(CordBuffer&& rhs) noexcept { |
| if (!rep_.is_short()) cord_internal::CordRepFlat::Delete(rep_.rep()); |
| rep_ = rhs.rep_; |
| rhs.rep_.set_short_length(0); |
| return *this; |
| } |
| |
| inline absl::Span<char> CordBuffer::available() { |
| return rep_.is_short() ? rep_.short_available() : rep_.long_available(); |
| } |
| |
| inline absl::Span<char> CordBuffer::available_up_to(size_t size) { |
| return available().subspan(0, size); |
| } |
| |
| inline char* CordBuffer::data() { |
| return rep_.is_short() ? rep_.data() : rep_.rep()->Data(); |
| } |
| |
| inline const char* CordBuffer::data() const { |
| return rep_.is_short() ? rep_.data() : rep_.rep()->Data(); |
| } |
| |
| inline size_t CordBuffer::capacity() const { |
| return rep_.is_short() ? Rep::kInlineCapacity : rep_.rep()->Capacity(); |
| } |
| |
| inline size_t CordBuffer::length() const { |
| return rep_.is_short() ? rep_.short_length() : rep_.rep()->length; |
| } |
| |
| inline void CordBuffer::SetLength(size_t length) { |
| ABSL_HARDENING_ASSERT(length <= capacity()); |
| if (rep_.is_short()) { |
| rep_.set_short_length(length); |
| } else { |
| rep_.rep()->length = length; |
| } |
| } |
| |
| inline void CordBuffer::IncreaseLengthBy(size_t n) { |
| ABSL_HARDENING_ASSERT(n <= capacity() && length() + n <= capacity()); |
| if (rep_.is_short()) { |
| rep_.add_short_length(n); |
| } else { |
| rep_.rep()->length += n; |
| } |
| } |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_STRINGS_CORD_BUFFER_H_ |