blob: 7a4c1f40972fea201affcf2b851e27aad01a0873 [file] [log] [blame]
// Copyright (c) 2019 The Khronos Group Inc.
// Copyright (c) 2019 Valve Corporation
// Copyright (c) 2019 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "convert_to_half_pass.h"
#include "source/opt/ir_builder.h"
namespace spvtools {
namespace opt {
namespace {
// Indices of operands in SPIR-V instructions
constexpr int kImageSampleDrefIdInIdx = 2;
} // namespace
bool ConvertToHalfPass::IsArithmetic(Instruction* inst) {
return target_ops_core_.count(inst->opcode()) != 0 ||
(inst->opcode() == spv::Op::OpExtInst &&
inst->GetSingleWordInOperand(0) ==
context()->get_feature_mgr()->GetExtInstImportId_GLSLstd450() &&
target_ops_450_.count(inst->GetSingleWordInOperand(1)) != 0);
}
bool ConvertToHalfPass::IsFloat(Instruction* inst, uint32_t width) {
uint32_t ty_id = inst->type_id();
if (ty_id == 0) return false;
return Pass::IsFloat(ty_id, width);
}
bool ConvertToHalfPass::IsDecoratedRelaxed(Instruction* inst) {
uint32_t r_id = inst->result_id();
for (auto r_inst : get_decoration_mgr()->GetDecorationsFor(r_id, false))
if (r_inst->opcode() == spv::Op::OpDecorate &&
spv::Decoration(r_inst->GetSingleWordInOperand(1)) ==
spv::Decoration::RelaxedPrecision) {
return true;
}
return false;
}
bool ConvertToHalfPass::IsRelaxed(uint32_t id) {
return relaxed_ids_set_.count(id) > 0;
}
void ConvertToHalfPass::AddRelaxed(uint32_t id) { relaxed_ids_set_.insert(id); }
analysis::Type* ConvertToHalfPass::FloatScalarType(uint32_t width) {
analysis::Float float_ty(width);
return context()->get_type_mgr()->GetRegisteredType(&float_ty);
}
analysis::Type* ConvertToHalfPass::FloatVectorType(uint32_t v_len,
uint32_t width) {
analysis::Type* reg_float_ty = FloatScalarType(width);
analysis::Vector vec_ty(reg_float_ty, v_len);
return context()->get_type_mgr()->GetRegisteredType(&vec_ty);
}
analysis::Type* ConvertToHalfPass::FloatMatrixType(uint32_t v_cnt,
uint32_t vty_id,
uint32_t width) {
Instruction* vty_inst = get_def_use_mgr()->GetDef(vty_id);
uint32_t v_len = vty_inst->GetSingleWordInOperand(1);
analysis::Type* reg_vec_ty = FloatVectorType(v_len, width);
analysis::Matrix mat_ty(reg_vec_ty, v_cnt);
return context()->get_type_mgr()->GetRegisteredType(&mat_ty);
}
uint32_t ConvertToHalfPass::EquivFloatTypeId(uint32_t ty_id, uint32_t width) {
analysis::Type* reg_equiv_ty;
Instruction* ty_inst = get_def_use_mgr()->GetDef(ty_id);
if (ty_inst->opcode() == spv::Op::OpTypeMatrix)
reg_equiv_ty = FloatMatrixType(ty_inst->GetSingleWordInOperand(1),
ty_inst->GetSingleWordInOperand(0), width);
else if (ty_inst->opcode() == spv::Op::OpTypeVector)
reg_equiv_ty = FloatVectorType(ty_inst->GetSingleWordInOperand(1), width);
else // spv::Op::OpTypeFloat
reg_equiv_ty = FloatScalarType(width);
return context()->get_type_mgr()->GetTypeInstruction(reg_equiv_ty);
}
void ConvertToHalfPass::GenConvert(uint32_t* val_idp, uint32_t width,
Instruction* inst) {
Instruction* val_inst = get_def_use_mgr()->GetDef(*val_idp);
uint32_t ty_id = val_inst->type_id();
uint32_t nty_id = EquivFloatTypeId(ty_id, width);
if (nty_id == ty_id) return;
Instruction* cvt_inst;
InstructionBuilder builder(
context(), inst,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
if (val_inst->opcode() == spv::Op::OpUndef)
cvt_inst = builder.AddNullaryOp(nty_id, spv::Op::OpUndef);
else
cvt_inst = builder.AddUnaryOp(nty_id, spv::Op::OpFConvert, *val_idp);
*val_idp = cvt_inst->result_id();
}
bool ConvertToHalfPass::MatConvertCleanup(Instruction* inst) {
if (inst->opcode() != spv::Op::OpFConvert) return false;
uint32_t mty_id = inst->type_id();
Instruction* mty_inst = get_def_use_mgr()->GetDef(mty_id);
if (mty_inst->opcode() != spv::Op::OpTypeMatrix) return false;
uint32_t vty_id = mty_inst->GetSingleWordInOperand(0);
uint32_t v_cnt = mty_inst->GetSingleWordInOperand(1);
Instruction* vty_inst = get_def_use_mgr()->GetDef(vty_id);
uint32_t cty_id = vty_inst->GetSingleWordInOperand(0);
Instruction* cty_inst = get_def_use_mgr()->GetDef(cty_id);
InstructionBuilder builder(
context(), inst,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
// Convert each component vector, combine them with OpCompositeConstruct
// and replace original instruction.
uint32_t orig_width = (cty_inst->GetSingleWordInOperand(0) == 16) ? 32 : 16;
uint32_t orig_mat_id = inst->GetSingleWordInOperand(0);
uint32_t orig_vty_id = EquivFloatTypeId(vty_id, orig_width);
std::vector<Operand> opnds = {};
for (uint32_t vidx = 0; vidx < v_cnt; ++vidx) {
Instruction* ext_inst = builder.AddIdLiteralOp(
orig_vty_id, spv::Op::OpCompositeExtract, orig_mat_id, vidx);
Instruction* cvt_inst =
builder.AddUnaryOp(vty_id, spv::Op::OpFConvert, ext_inst->result_id());
opnds.push_back({SPV_OPERAND_TYPE_ID, {cvt_inst->result_id()}});
}
uint32_t mat_id = TakeNextId();
std::unique_ptr<Instruction> mat_inst(new Instruction(
context(), spv::Op::OpCompositeConstruct, mty_id, mat_id, opnds));
(void)builder.AddInstruction(std::move(mat_inst));
context()->ReplaceAllUsesWith(inst->result_id(), mat_id);
// Turn original instruction into copy so it is valid.
inst->SetOpcode(spv::Op::OpCopyObject);
inst->SetResultType(EquivFloatTypeId(mty_id, orig_width));
get_def_use_mgr()->AnalyzeInstUse(inst);
return true;
}
bool ConvertToHalfPass::RemoveRelaxedDecoration(uint32_t id) {
return context()->get_decoration_mgr()->RemoveDecorationsFrom(
id, [](const Instruction& dec) {
if (dec.opcode() == spv::Op::OpDecorate &&
spv::Decoration(dec.GetSingleWordInOperand(1u)) ==
spv::Decoration::RelaxedPrecision) {
return true;
} else
return false;
});
}
bool ConvertToHalfPass::GenHalfArith(Instruction* inst) {
bool modified = false;
// Convert all float32 based operands to float16 equivalent and change
// instruction type to float16 equivalent.
inst->ForEachInId([&inst, &modified, this](uint32_t* idp) {
Instruction* op_inst = get_def_use_mgr()->GetDef(*idp);
if (!IsFloat(op_inst, 32)) return;
GenConvert(idp, 16, inst);
modified = true;
});
if (IsFloat(inst, 32)) {
inst->SetResultType(EquivFloatTypeId(inst->type_id(), 16));
converted_ids_.insert(inst->result_id());
modified = true;
}
if (modified) get_def_use_mgr()->AnalyzeInstUse(inst);
return modified;
}
bool ConvertToHalfPass::ProcessPhi(Instruction* inst, uint32_t from_width,
uint32_t to_width) {
// Add converts of any float operands to to_width if they are of from_width.
// If converting to 16, change type of phi to float16 equivalent and remember
// result id. Converts need to be added to preceding blocks.
uint32_t ocnt = 0;
uint32_t* prev_idp;
bool modified = false;
inst->ForEachInId([&ocnt, &prev_idp, &from_width, &to_width, &modified,
this](uint32_t* idp) {
if (ocnt % 2 == 0) {
prev_idp = idp;
} else {
Instruction* val_inst = get_def_use_mgr()->GetDef(*prev_idp);
if (IsFloat(val_inst, from_width)) {
BasicBlock* bp = context()->get_instr_block(*idp);
auto insert_before = bp->tail();
if (insert_before != bp->begin()) {
--insert_before;
if (insert_before->opcode() != spv::Op::OpSelectionMerge &&
insert_before->opcode() != spv::Op::OpLoopMerge)
++insert_before;
}
GenConvert(prev_idp, to_width, &*insert_before);
modified = true;
}
}
++ocnt;
});
if (to_width == 16u) {
inst->SetResultType(EquivFloatTypeId(inst->type_id(), 16u));
converted_ids_.insert(inst->result_id());
modified = true;
}
if (modified) get_def_use_mgr()->AnalyzeInstUse(inst);
return modified;
}
bool ConvertToHalfPass::ProcessConvert(Instruction* inst) {
// If float32 and relaxed, change to float16 convert
if (IsFloat(inst, 32) && IsRelaxed(inst->result_id())) {
inst->SetResultType(EquivFloatTypeId(inst->type_id(), 16));
get_def_use_mgr()->AnalyzeInstUse(inst);
converted_ids_.insert(inst->result_id());
}
// If operand and result types are the same, change FConvert to CopyObject to
// keep validator happy; simplification and DCE will clean it up
// One way this can happen is if an FConvert generated during this pass
// (likely by ProcessPhi) is later encountered here and its operand has been
// changed to half.
uint32_t val_id = inst->GetSingleWordInOperand(0);
Instruction* val_inst = get_def_use_mgr()->GetDef(val_id);
if (inst->type_id() == val_inst->type_id())
inst->SetOpcode(spv::Op::OpCopyObject);
return true; // modified
}
bool ConvertToHalfPass::ProcessImageRef(Instruction* inst) {
bool modified = false;
// If image reference, only need to convert dref args back to float32
if (dref_image_ops_.count(inst->opcode()) != 0) {
uint32_t dref_id = inst->GetSingleWordInOperand(kImageSampleDrefIdInIdx);
if (converted_ids_.count(dref_id) > 0) {
GenConvert(&dref_id, 32, inst);
inst->SetInOperand(kImageSampleDrefIdInIdx, {dref_id});
get_def_use_mgr()->AnalyzeInstUse(inst);
modified = true;
}
}
return modified;
}
bool ConvertToHalfPass::ProcessDefault(Instruction* inst) {
// If non-relaxed instruction has changed operands, need to convert
// them back to float32
if (inst->opcode() == spv::Op::OpPhi) return ProcessPhi(inst, 16u, 32u);
bool modified = false;
inst->ForEachInId([&inst, &modified, this](uint32_t* idp) {
if (converted_ids_.count(*idp) == 0) return;
uint32_t old_id = *idp;
GenConvert(idp, 32, inst);
if (*idp != old_id) modified = true;
});
if (modified) get_def_use_mgr()->AnalyzeInstUse(inst);
return modified;
}
bool ConvertToHalfPass::GenHalfInst(Instruction* inst) {
bool modified = false;
// Remember id for later deletion of RelaxedPrecision decoration
bool inst_relaxed = IsRelaxed(inst->result_id());
if (IsArithmetic(inst) && inst_relaxed)
modified = GenHalfArith(inst);
else if (inst->opcode() == spv::Op::OpPhi && inst_relaxed)
modified = ProcessPhi(inst, 32u, 16u);
else if (inst->opcode() == spv::Op::OpFConvert)
modified = ProcessConvert(inst);
else if (image_ops_.count(inst->opcode()) != 0)
modified = ProcessImageRef(inst);
else
modified = ProcessDefault(inst);
return modified;
}
bool ConvertToHalfPass::CloseRelaxInst(Instruction* inst) {
if (inst->result_id() == 0) return false;
if (IsRelaxed(inst->result_id())) return false;
if (!IsFloat(inst, 32)) return false;
if (IsDecoratedRelaxed(inst)) {
AddRelaxed(inst->result_id());
return true;
}
if (closure_ops_.count(inst->opcode()) == 0) return false;
// Can relax if all float operands are relaxed
bool relax = true;
inst->ForEachInId([&relax, this](uint32_t* idp) {
Instruction* op_inst = get_def_use_mgr()->GetDef(*idp);
if (!IsFloat(op_inst, 32)) return;
if (!IsRelaxed(*idp)) relax = false;
});
if (relax) {
AddRelaxed(inst->result_id());
return true;
}
// Can relax if all uses are relaxed
relax = true;
get_def_use_mgr()->ForEachUser(inst, [&relax, this](Instruction* uinst) {
if (uinst->result_id() == 0 || !IsFloat(uinst, 32) ||
(!IsDecoratedRelaxed(uinst) && !IsRelaxed(uinst->result_id()))) {
relax = false;
return;
}
});
if (relax) {
AddRelaxed(inst->result_id());
return true;
}
return false;
}
bool ConvertToHalfPass::ProcessFunction(Function* func) {
// Do a closure of Relaxed on composite and phi instructions
bool changed = true;
while (changed) {
changed = false;
cfg()->ForEachBlockInReversePostOrder(
func->entry().get(), [&changed, this](BasicBlock* bb) {
for (auto ii = bb->begin(); ii != bb->end(); ++ii)
changed |= CloseRelaxInst(&*ii);
});
}
// Do convert of relaxed instructions to half precision
bool modified = false;
cfg()->ForEachBlockInReversePostOrder(
func->entry().get(), [&modified, this](BasicBlock* bb) {
for (auto ii = bb->begin(); ii != bb->end(); ++ii)
modified |= GenHalfInst(&*ii);
});
// Replace invalid converts of matrix into equivalent vector extracts,
// converts and finally a composite construct
cfg()->ForEachBlockInReversePostOrder(
func->entry().get(), [&modified, this](BasicBlock* bb) {
for (auto ii = bb->begin(); ii != bb->end(); ++ii)
modified |= MatConvertCleanup(&*ii);
});
return modified;
}
Pass::Status ConvertToHalfPass::ProcessImpl() {
Pass::ProcessFunction pfn = [this](Function* fp) {
return ProcessFunction(fp);
};
bool modified = context()->ProcessReachableCallTree(pfn);
// If modified, make sure module has Float16 capability
if (modified) context()->AddCapability(spv::Capability::Float16);
// Remove all RelaxedPrecision decorations from instructions and globals
for (auto c_id : relaxed_ids_set_) {
modified |= RemoveRelaxedDecoration(c_id);
}
for (auto& val : get_module()->types_values()) {
uint32_t v_id = val.result_id();
if (v_id != 0) {
modified |= RemoveRelaxedDecoration(v_id);
}
}
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
Pass::Status ConvertToHalfPass::Process() {
Initialize();
return ProcessImpl();
}
void ConvertToHalfPass::Initialize() {
target_ops_core_ = {
spv::Op::OpVectorExtractDynamic,
spv::Op::OpVectorInsertDynamic,
spv::Op::OpVectorShuffle,
spv::Op::OpCompositeConstruct,
spv::Op::OpCompositeInsert,
spv::Op::OpCompositeExtract,
spv::Op::OpCopyObject,
spv::Op::OpTranspose,
spv::Op::OpConvertSToF,
spv::Op::OpConvertUToF,
// spv::Op::OpFConvert,
// spv::Op::OpQuantizeToF16,
spv::Op::OpFNegate,
spv::Op::OpFAdd,
spv::Op::OpFSub,
spv::Op::OpFMul,
spv::Op::OpFDiv,
spv::Op::OpFMod,
spv::Op::OpVectorTimesScalar,
spv::Op::OpMatrixTimesScalar,
spv::Op::OpVectorTimesMatrix,
spv::Op::OpMatrixTimesVector,
spv::Op::OpMatrixTimesMatrix,
spv::Op::OpOuterProduct,
spv::Op::OpDot,
spv::Op::OpSelect,
spv::Op::OpFOrdEqual,
spv::Op::OpFUnordEqual,
spv::Op::OpFOrdNotEqual,
spv::Op::OpFUnordNotEqual,
spv::Op::OpFOrdLessThan,
spv::Op::OpFUnordLessThan,
spv::Op::OpFOrdGreaterThan,
spv::Op::OpFUnordGreaterThan,
spv::Op::OpFOrdLessThanEqual,
spv::Op::OpFUnordLessThanEqual,
spv::Op::OpFOrdGreaterThanEqual,
spv::Op::OpFUnordGreaterThanEqual,
};
target_ops_450_ = {
GLSLstd450Round, GLSLstd450RoundEven, GLSLstd450Trunc, GLSLstd450FAbs,
GLSLstd450FSign, GLSLstd450Floor, GLSLstd450Ceil, GLSLstd450Fract,
GLSLstd450Radians, GLSLstd450Degrees, GLSLstd450Sin, GLSLstd450Cos,
GLSLstd450Tan, GLSLstd450Asin, GLSLstd450Acos, GLSLstd450Atan,
GLSLstd450Sinh, GLSLstd450Cosh, GLSLstd450Tanh, GLSLstd450Asinh,
GLSLstd450Acosh, GLSLstd450Atanh, GLSLstd450Atan2, GLSLstd450Pow,
GLSLstd450Exp, GLSLstd450Log, GLSLstd450Exp2, GLSLstd450Log2,
GLSLstd450Sqrt, GLSLstd450InverseSqrt, GLSLstd450Determinant,
GLSLstd450MatrixInverse,
// TODO(greg-lunarg): GLSLstd450ModfStruct,
GLSLstd450FMin, GLSLstd450FMax, GLSLstd450FClamp, GLSLstd450FMix,
GLSLstd450Step, GLSLstd450SmoothStep, GLSLstd450Fma,
// TODO(greg-lunarg): GLSLstd450FrexpStruct,
GLSLstd450Ldexp, GLSLstd450Length, GLSLstd450Distance, GLSLstd450Cross,
GLSLstd450Normalize, GLSLstd450FaceForward, GLSLstd450Reflect,
GLSLstd450Refract, GLSLstd450NMin, GLSLstd450NMax, GLSLstd450NClamp};
image_ops_ = {spv::Op::OpImageSampleImplicitLod,
spv::Op::OpImageSampleExplicitLod,
spv::Op::OpImageSampleDrefImplicitLod,
spv::Op::OpImageSampleDrefExplicitLod,
spv::Op::OpImageSampleProjImplicitLod,
spv::Op::OpImageSampleProjExplicitLod,
spv::Op::OpImageSampleProjDrefImplicitLod,
spv::Op::OpImageSampleProjDrefExplicitLod,
spv::Op::OpImageFetch,
spv::Op::OpImageGather,
spv::Op::OpImageDrefGather,
spv::Op::OpImageRead,
spv::Op::OpImageSparseSampleImplicitLod,
spv::Op::OpImageSparseSampleExplicitLod,
spv::Op::OpImageSparseSampleDrefImplicitLod,
spv::Op::OpImageSparseSampleDrefExplicitLod,
spv::Op::OpImageSparseSampleProjImplicitLod,
spv::Op::OpImageSparseSampleProjExplicitLod,
spv::Op::OpImageSparseSampleProjDrefImplicitLod,
spv::Op::OpImageSparseSampleProjDrefExplicitLod,
spv::Op::OpImageSparseFetch,
spv::Op::OpImageSparseGather,
spv::Op::OpImageSparseDrefGather,
spv::Op::OpImageSparseTexelsResident,
spv::Op::OpImageSparseRead};
dref_image_ops_ = {
spv::Op::OpImageSampleDrefImplicitLod,
spv::Op::OpImageSampleDrefExplicitLod,
spv::Op::OpImageSampleProjDrefImplicitLod,
spv::Op::OpImageSampleProjDrefExplicitLod,
spv::Op::OpImageDrefGather,
spv::Op::OpImageSparseSampleDrefImplicitLod,
spv::Op::OpImageSparseSampleDrefExplicitLod,
spv::Op::OpImageSparseSampleProjDrefImplicitLod,
spv::Op::OpImageSparseSampleProjDrefExplicitLod,
spv::Op::OpImageSparseDrefGather,
};
closure_ops_ = {
spv::Op::OpVectorExtractDynamic,
spv::Op::OpVectorInsertDynamic,
spv::Op::OpVectorShuffle,
spv::Op::OpCompositeConstruct,
spv::Op::OpCompositeInsert,
spv::Op::OpCompositeExtract,
spv::Op::OpCopyObject,
spv::Op::OpTranspose,
spv::Op::OpPhi,
};
relaxed_ids_set_.clear();
converted_ids_.clear();
}
} // namespace opt
} // namespace spvtools