blob: e970562110937dfa3f157c7020cadcd0676a3c8c [file] [log] [blame]
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "test/unit_spirv.h"
#include "test/val/val_code_generator.h"
#include "test/val/val_fixtures.h"
namespace spvtools {
namespace val {
namespace {
using ::testing::HasSubstr;
using ::testing::Not;
using ::testing::Values;
using ValidateComposites = spvtest::ValidateBase<bool>;
std::string GenerateShaderCode(
const std::string& body,
const std::string& capabilities_and_extensions = "",
const std::string& execution_model = "Fragment") {
std::ostringstream ss;
ss << R"(
OpCapability Shader
OpCapability Float64
)";
ss << capabilities_and_extensions;
ss << "OpMemoryModel Logical GLSL450\n";
ss << "OpEntryPoint " << execution_model << " %main \"main\"\n";
if (execution_model == "Fragment") {
ss << "OpExecutionMode %main OriginUpperLeft\n";
}
ss << R"(
%void = OpTypeVoid
%func = OpTypeFunction %void
%bool = OpTypeBool
%f32 = OpTypeFloat 32
%f64 = OpTypeFloat 64
%u32 = OpTypeInt 32 0
%s32 = OpTypeInt 32 1
%f32vec2 = OpTypeVector %f32 2
%f32vec3 = OpTypeVector %f32 3
%f32vec4 = OpTypeVector %f32 4
%f64vec2 = OpTypeVector %f64 2
%u32vec2 = OpTypeVector %u32 2
%u32vec4 = OpTypeVector %u32 4
%f64mat22 = OpTypeMatrix %f64vec2 2
%f32mat22 = OpTypeMatrix %f32vec2 2
%f32mat23 = OpTypeMatrix %f32vec2 3
%f32mat32 = OpTypeMatrix %f32vec3 2
%f32_0 = OpConstant %f32 0
%f32_1 = OpConstant %f32 1
%f32_2 = OpConstant %f32 2
%f32_3 = OpConstant %f32 3
%f32vec2_01 = OpConstantComposite %f32vec2 %f32_0 %f32_1
%f32vec2_12 = OpConstantComposite %f32vec2 %f32_1 %f32_2
%f32vec4_0123 = OpConstantComposite %f32vec4 %f32_0 %f32_1 %f32_2 %f32_3
%u32_0 = OpConstant %u32 0
%u32_1 = OpConstant %u32 1
%u32_2 = OpConstant %u32 2
%u32_3 = OpConstant %u32 3
%u32vec2_01 = OpConstantComposite %u32vec2 %u32_0 %u32_1
%u32vec4_0123 = OpConstantComposite %u32vec4 %u32_0 %u32_1 %u32_2 %u32_3
%f32mat22_1212 = OpConstantComposite %f32mat22 %f32vec2_12 %f32vec2_12
%f32mat23_121212 = OpConstantComposite %f32mat23 %f32vec2_12 %f32vec2_12 %f32vec2_12
%f32vec2arr3 = OpTypeArray %f32vec2 %u32_3
%f32vec2rarr = OpTypeRuntimeArray %f32vec2
%f32u32struct = OpTypeStruct %f32 %u32
%big_struct = OpTypeStruct %f32 %f32vec4 %f32mat23 %f32vec2arr3 %f32vec2rarr %f32u32struct
%ptr_big_struct = OpTypePointer Uniform %big_struct
%var_big_struct = OpVariable %ptr_big_struct Uniform
%main = OpFunction %void None %func
%main_entry = OpLabel
)";
ss << body;
ss << R"(
OpReturn
OpFunctionEnd)";
return ss.str();
}
// Returns header for legacy tests taken from val_id_test.cpp.
std::string GetHeaderForTestsFromValId() {
return R"(
OpCapability Shader
OpCapability Linkage
OpCapability Addresses
OpCapability Pipes
OpCapability LiteralSampler
OpCapability DeviceEnqueue
OpCapability Vector16
OpCapability Int8
OpCapability Int16
OpCapability Int64
OpCapability Float64
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%void_f = OpTypeFunction %void
%int = OpTypeInt 32 0
%float = OpTypeFloat 32
%v3float = OpTypeVector %float 3
%mat4x3 = OpTypeMatrix %v3float 4
%_ptr_Private_mat4x3 = OpTypePointer Private %mat4x3
%_ptr_Private_float = OpTypePointer Private %float
%my_matrix = OpVariable %_ptr_Private_mat4x3 Private
%my_float_var = OpVariable %_ptr_Private_float Private
%_ptr_Function_float = OpTypePointer Function %float
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%int_2 = OpConstant %int 2
%int_3 = OpConstant %int 3
%int_5 = OpConstant %int 5
; Making the following nested structures.
;
; struct S {
; bool b;
; vec4 v[5];
; int i;
; mat4x3 m[5];
; }
; uniform blockName {
; S s;
; bool cond;
; RunTimeArray arr;
; }
%f32arr = OpTypeRuntimeArray %float
%v4float = OpTypeVector %float 4
%array5_mat4x3 = OpTypeArray %mat4x3 %int_5
%array5_vec4 = OpTypeArray %v4float %int_5
%_ptr_Uniform_float = OpTypePointer Uniform %float
%_ptr_Function_vec4 = OpTypePointer Function %v4float
%_ptr_Uniform_vec4 = OpTypePointer Uniform %v4float
%struct_s = OpTypeStruct %int %array5_vec4 %int %array5_mat4x3
%struct_blockName = OpTypeStruct %struct_s %int %f32arr
%_ptr_Uniform_blockName = OpTypePointer Uniform %struct_blockName
%_ptr_Uniform_struct_s = OpTypePointer Uniform %struct_s
%_ptr_Uniform_array5_mat4x3 = OpTypePointer Uniform %array5_mat4x3
%_ptr_Uniform_mat4x3 = OpTypePointer Uniform %mat4x3
%_ptr_Uniform_v3float = OpTypePointer Uniform %v3float
%blockName_var = OpVariable %_ptr_Uniform_blockName Uniform
%spec_int = OpSpecConstant %int 2
%func = OpFunction %void None %void_f
%my_label = OpLabel
)";
}
TEST_F(ValidateComposites, VectorExtractDynamicSuccess) {
const std::string body = R"(
%val1 = OpVectorExtractDynamic %f32 %f32vec4_0123 %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateComposites, VectorExtractDynamicWrongResultType) {
const std::string body = R"(
%val1 = OpVectorExtractDynamic %f32vec4 %f32vec4_0123 %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected Result Type to be a scalar type"));
}
TEST_F(ValidateComposites, VectorExtractDynamicNotVector) {
const std::string body = R"(
%val1 = OpVectorExtractDynamic %f32 %f32mat22_1212 %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected Vector type to be OpTypeVector"));
}
TEST_F(ValidateComposites, VectorExtractDynamicWrongVectorComponent) {
const std::string body = R"(
%val1 = OpVectorExtractDynamic %f32 %u32vec4_0123 %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected Vector component type to be equal to Result Type"));
}
TEST_F(ValidateComposites, VectorExtractDynamicWrongIndexType) {
const std::string body = R"(
%val1 = OpVectorExtractDynamic %f32 %f32vec4_0123 %f32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected Index to be int scalar"));
}
TEST_F(ValidateComposites, VectorInsertDynamicSuccess) {
const std::string body = R"(
%val1 = OpVectorInsertDynamic %f32vec4 %f32vec4_0123 %f32_1 %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateComposites, VectorInsertDynamicWrongResultType) {
const std::string body = R"(
%val1 = OpVectorInsertDynamic %f32 %f32vec4_0123 %f32_1 %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected Result Type to be OpTypeVector"));
}
TEST_F(ValidateComposites, VectorInsertDynamicNotVector) {
const std::string body = R"(
%val1 = OpVectorInsertDynamic %f32vec4 %f32mat22_1212 %f32_1 %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected Vector type to be equal to Result Type"));
}
TEST_F(ValidateComposites, VectorInsertDynamicWrongComponentType) {
const std::string body = R"(
%val1 = OpVectorInsertDynamic %f32vec4 %f32vec4_0123 %u32_1 %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected Component type to be equal to Result Type "
"component type"));
}
TEST_F(ValidateComposites, VectorInsertDynamicWrongIndexType) {
const std::string body = R"(
%val1 = OpVectorInsertDynamic %f32vec4 %f32vec4_0123 %f32_1 %f32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected Index to be int scalar"));
}
TEST_F(ValidateComposites, CompositeConstructNotComposite) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32 %f32_1
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected Result Type to be a composite type"));
}
TEST_F(ValidateComposites, CompositeConstructVectorSuccess) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32vec4 %f32vec2_12 %f32vec2_12
%val2 = OpCompositeConstruct %f32vec4 %f32vec2_12 %f32_0 %f32_0
%val3 = OpCompositeConstruct %f32vec4 %f32_0 %f32_0 %f32vec2_12
%val4 = OpCompositeConstruct %f32vec4 %f32_0 %f32_1 %f32_2 %f32_3
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateComposites, CompositeConstructVectorOnlyOneConstituent) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32vec4 %f32vec4_0123
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected number of constituents to be at least 2"));
}
TEST_F(ValidateComposites, CompositeConstructVectorWrongConsituent1) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32vec4 %f32 %f32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr("Operand 5[%float] cannot be a "
"type"));
}
TEST_F(ValidateComposites, CompositeConstructVectorWrongConsituent2) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32vec4 %f32vec2_12 %u32vec2_01
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected Constituents to be scalars or vectors of the same "
"type as Result Type components"));
}
TEST_F(ValidateComposites, CompositeConstructVectorWrongConsituent3) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32vec4 %f32vec2_12 %u32_0 %f32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected Constituents to be scalars or vectors of the same "
"type as Result Type components"));
}
TEST_F(ValidateComposites, CompositeConstructVectorWrongComponentNumber1) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32vec4 %f32vec2_12 %f32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected total number of given components to be equal to the "
"size of Result Type vector"));
}
TEST_F(ValidateComposites, CompositeConstructVectorWrongComponentNumber2) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32vec4 %f32vec2_12 %f32vec2_12 %f32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected total number of given components to be equal to the "
"size of Result Type vector"));
}
TEST_F(ValidateComposites, CompositeConstructMatrixSuccess) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32mat22 %f32vec2_12 %f32vec2_12
%val2 = OpCompositeConstruct %f32mat23 %f32vec2_12 %f32vec2_12 %f32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateComposites, CompositeConstructVectorWrongConsituentNumber1) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32mat22 %f32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected total number of Constituents to be equal to the "
"number of columns of Result Type matrix"));
}
TEST_F(ValidateComposites, CompositeConstructVectorWrongConsituentNumber2) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32mat22 %f32vec2_12 %f32vec2_12 %f32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected total number of Constituents to be equal to the "
"number of columns of Result Type matrix"));
}
TEST_F(ValidateComposites, CompositeConstructVectorWrongConsituent) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32mat22 %f32vec2_12 %u32vec2_01
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected Constituent type to be equal to the column type "
"Result Type matrix"));
}
TEST_F(ValidateComposites, CompositeConstructArraySuccess) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32vec2arr3 %f32vec2_12 %f32vec2_12 %f32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateComposites, CompositeConstructArrayWrongConsituentNumber1) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32vec2arr3 %f32vec2_12 %f32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected total number of Constituents to be equal to the "
"number of elements of Result Type array"));
}
TEST_F(ValidateComposites, CompositeConstructArrayWrongConsituentNumber2) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32vec2arr3 %f32vec2_12 %f32vec2_12 %f32vec2_12 %f32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected total number of Constituents to be equal to the "
"number of elements of Result Type array"));
}
TEST_F(ValidateComposites, CompositeConstructArrayWrongConsituent) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32vec2arr3 %f32vec2_12 %u32vec2_01 %f32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected Constituent type to be equal to the column type "
"Result Type array"));
}
TEST_F(ValidateComposites, CompositeConstructStructSuccess) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32u32struct %f32_0 %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateComposites, CompositeConstructStructWrongConstituentNumber1) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32u32struct %f32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected total number of Constituents to be equal to the "
"number of members of Result Type struct"));
}
TEST_F(ValidateComposites, CompositeConstructStructWrongConstituentNumber2) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32u32struct %f32_0 %u32_1 %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected total number of Constituents to be equal to the "
"number of members of Result Type struct"));
}
TEST_F(ValidateComposites, CompositeConstructStructWrongConstituent) {
const std::string body = R"(
%val1 = OpCompositeConstruct %f32u32struct %f32_0 %f32_1
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected Constituent type to be equal to the "
"corresponding member type of Result Type struct"));
}
TEST_F(ValidateComposites, CopyObjectSuccess) {
const std::string body = R"(
%val1 = OpCopyObject %f32 %f32_0
%val2 = OpCopyObject %f32vec4 %f32vec4_0123
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateComposites, CopyObjectResultTypeNotType) {
const std::string body = R"(
%val1 = OpCopyObject %f32_0 %f32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("ID 19[%float_0] is not a type id"));
}
TEST_F(ValidateComposites, CopyObjectWrongOperandType) {
const std::string body = R"(
%val1 = OpCopyObject %f32 %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected Result Type and Operand type to be the same"));
}
TEST_F(ValidateComposites, TransposeSuccess) {
const std::string body = R"(
%val1 = OpTranspose %f32mat32 %f32mat23_121212
%val2 = OpTranspose %f32mat22 %f32mat22_1212
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateComposites, TransposeResultTypeNotMatrix) {
const std::string body = R"(
%val1 = OpTranspose %f32vec4 %f32mat22_1212
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected Result Type to be a matrix type"));
}
TEST_F(ValidateComposites, TransposeDifferentComponentTypes) {
const std::string body = R"(
%val1 = OpTranspose %f64mat22 %f32mat22_1212
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected component types of Matrix and Result Type to be "
"identical"));
}
TEST_F(ValidateComposites, TransposeIncompatibleDimensions1) {
const std::string body = R"(
%val1 = OpTranspose %f32mat23 %f32mat22_1212
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected number of columns and the column size "
"of Matrix to be the reverse of those of Result Type"));
}
TEST_F(ValidateComposites, TransposeIncompatibleDimensions2) {
const std::string body = R"(
%val1 = OpTranspose %f32mat32 %f32mat22_1212
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected number of columns and the column size "
"of Matrix to be the reverse of those of Result Type"));
}
TEST_F(ValidateComposites, TransposeIncompatibleDimensions3) {
const std::string body = R"(
%val1 = OpTranspose %f32mat23 %f32mat23_121212
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected number of columns and the column size "
"of Matrix to be the reverse of those of Result Type"));
}
TEST_F(ValidateComposites, CompositeExtractSuccess) {
const std::string body = R"(
%val1 = OpCompositeExtract %f32 %f32vec4_0123 1
%val2 = OpCompositeExtract %u32 %u32vec4_0123 0
%val3 = OpCompositeExtract %f32 %f32mat22_1212 0 1
%val4 = OpCompositeExtract %f32vec2 %f32mat22_1212 0
%array = OpCompositeConstruct %f32vec2arr3 %f32vec2_12 %f32vec2_12 %f32vec2_12
%val5 = OpCompositeExtract %f32vec2 %array 2
%val6 = OpCompositeExtract %f32 %array 2 1
%struct = OpLoad %big_struct %var_big_struct
%val7 = OpCompositeExtract %f32 %struct 0
%val8 = OpCompositeExtract %f32vec4 %struct 1
%val9 = OpCompositeExtract %f32 %struct 1 2
%val10 = OpCompositeExtract %f32mat23 %struct 2
%val11 = OpCompositeExtract %f32vec2 %struct 2 2
%val12 = OpCompositeExtract %f32 %struct 2 2 1
%val13 = OpCompositeExtract %f32vec2 %struct 3 2
%val14 = OpCompositeExtract %f32 %struct 3 2 1
%val15 = OpCompositeExtract %f32vec2 %struct 4 100
%val16 = OpCompositeExtract %f32 %struct 4 1000 1
%val17 = OpCompositeExtract %f32 %struct 5 0
%val18 = OpCompositeExtract %u32 %struct 5 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateComposites, CompositeExtractNotObject) {
const std::string body = R"(
%val1 = OpCompositeExtract %f32 %f32vec4 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr("Operand 11[%v4float] cannot "
"be a type"));
}
TEST_F(ValidateComposites, CompositeExtractNotComposite) {
const std::string body = R"(
%val1 = OpCompositeExtract %f32 %f32_1 0
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Reached non-composite type while indexes still remain "
"to be traversed."));
}
TEST_F(ValidateComposites, CompositeExtractVectorOutOfBounds) {
const std::string body = R"(
%val1 = OpCompositeExtract %f32 %f32vec4_0123 4
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Vector access is out of bounds, "
"vector size is 4, but access index is 4"));
}
TEST_F(ValidateComposites, CompositeExtractMatrixOutOfCols) {
const std::string body = R"(
%val1 = OpCompositeExtract %f32 %f32mat23_121212 3 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Matrix access is out of bounds, "
"matrix has 3 columns, but access index is 3"));
}
TEST_F(ValidateComposites, CompositeExtractMatrixOutOfRows) {
const std::string body = R"(
%val1 = OpCompositeExtract %f32 %f32mat23_121212 2 5
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Vector access is out of bounds, "
"vector size is 2, but access index is 5"));
}
TEST_F(ValidateComposites, CompositeExtractArrayOutOfBounds) {
const std::string body = R"(
%array = OpCompositeConstruct %f32vec2arr3 %f32vec2_12 %f32vec2_12 %f32vec2_12
%val1 = OpCompositeExtract %f32vec2 %array 3
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Array access is out of bounds, "
"array size is 3, but access index is 3"));
}
TEST_F(ValidateComposites, CompositeExtractStructOutOfBounds) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeExtract %f32 %struct 6
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Index is out of bounds, can not find index 6 in the "
"structure <id> '37'. This structure has 6 members. "
"Largest valid index is 5."));
}
TEST_F(ValidateComposites, CompositeExtractNestedVectorOutOfBounds) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeExtract %f32 %struct 3 1 5
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Vector access is out of bounds, "
"vector size is 2, but access index is 5"));
}
TEST_F(ValidateComposites, CompositeExtractTooManyIndices) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeExtract %f32 %struct 3 1 1 2
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Reached non-composite type while "
"indexes still remain to be traversed."));
}
TEST_F(ValidateComposites, CompositeExtractNoIndices) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeExtract %big_struct %struct
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected at least one index to OpCompositeExtract"));
}
TEST_F(ValidateComposites, CompositeExtractWrongType1) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeExtract %f32vec2 %struct 3 1 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"Result type (OpTypeVector) does not match the type that results "
"from indexing into the composite (OpTypeFloat)."));
}
TEST_F(ValidateComposites, CompositeExtractWrongType2) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeExtract %f32 %struct 3 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Result type (OpTypeFloat) does not match the type "
"that results from indexing into the composite "
"(OpTypeVector)."));
}
TEST_F(ValidateComposites, CompositeExtractWrongType3) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeExtract %f32 %struct 2 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Result type (OpTypeFloat) does not match the type "
"that results from indexing into the composite "
"(OpTypeVector)."));
}
TEST_F(ValidateComposites, CompositeExtractWrongType4) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeExtract %f32 %struct 4 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Result type (OpTypeFloat) does not match the type "
"that results from indexing into the composite "
"(OpTypeVector)."));
}
TEST_F(ValidateComposites, CompositeExtractWrongType5) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeExtract %f32 %struct 5 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"Result type (OpTypeFloat) does not match the "
"type that results from indexing into the composite (OpTypeInt)."));
}
TEST_F(ValidateComposites, CompositeInsertSuccess) {
const std::string body = R"(
%val1 = OpCompositeInsert %f32vec4 %f32_1 %f32vec4_0123 0
%val2 = OpCompositeInsert %u32vec4 %u32_1 %u32vec4_0123 0
%val3 = OpCompositeInsert %f32mat22 %f32_2 %f32mat22_1212 0 1
%val4 = OpCompositeInsert %f32mat22 %f32vec2_01 %f32mat22_1212 0
%array = OpCompositeConstruct %f32vec2arr3 %f32vec2_12 %f32vec2_12 %f32vec2_12
%val5 = OpCompositeInsert %f32vec2arr3 %f32vec2_01 %array 2
%val6 = OpCompositeInsert %f32vec2arr3 %f32_3 %array 2 1
%struct = OpLoad %big_struct %var_big_struct
%val7 = OpCompositeInsert %big_struct %f32_3 %struct 0
%val8 = OpCompositeInsert %big_struct %f32vec4_0123 %struct 1
%val9 = OpCompositeInsert %big_struct %f32_3 %struct 1 2
%val10 = OpCompositeInsert %big_struct %f32mat23_121212 %struct 2
%val11 = OpCompositeInsert %big_struct %f32vec2_01 %struct 2 2
%val12 = OpCompositeInsert %big_struct %f32_3 %struct 2 2 1
%val13 = OpCompositeInsert %big_struct %f32vec2_01 %struct 3 2
%val14 = OpCompositeInsert %big_struct %f32_3 %struct 3 2 1
%val15 = OpCompositeInsert %big_struct %f32vec2_01 %struct 4 100
%val16 = OpCompositeInsert %big_struct %f32_3 %struct 4 1000 1
%val17 = OpCompositeInsert %big_struct %f32_3 %struct 5 0
%val18 = OpCompositeInsert %big_struct %u32_3 %struct 5 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateComposites, CompositeInsertResultTypeDifferentFromComposite) {
const std::string body = R"(
%val1 = OpCompositeInsert %f32 %f32_1 %f32vec4_0123 0
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The Result Type must be the same as Composite type in "
"OpCompositeInsert yielding Result Id 5."));
}
TEST_F(ValidateComposites, CompositeInsertNotComposite) {
const std::string body = R"(
%val1 = OpCompositeInsert %f32 %f32_1 %f32_0 0
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Reached non-composite type while indexes still remain "
"to be traversed."));
}
TEST_F(ValidateComposites, CompositeInsertVectorOutOfBounds) {
const std::string body = R"(
%val1 = OpCompositeInsert %f32vec4 %f32_1 %f32vec4_0123 4
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Vector access is out of bounds, "
"vector size is 4, but access index is 4"));
}
TEST_F(ValidateComposites, CompositeInsertMatrixOutOfCols) {
const std::string body = R"(
%val1 = OpCompositeInsert %f32mat23 %f32_1 %f32mat23_121212 3 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Matrix access is out of bounds, "
"matrix has 3 columns, but access index is 3"));
}
TEST_F(ValidateComposites, CompositeInsertMatrixOutOfRows) {
const std::string body = R"(
%val1 = OpCompositeInsert %f32mat23 %f32_1 %f32mat23_121212 2 5
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Vector access is out of bounds, "
"vector size is 2, but access index is 5"));
}
TEST_F(ValidateComposites, CompositeInsertArrayOutOfBounds) {
const std::string body = R"(
%array = OpCompositeConstruct %f32vec2arr3 %f32vec2_12 %f32vec2_12 %f32vec2_12
%val1 = OpCompositeInsert %f32vec2arr3 %f32vec2_01 %array 3
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Array access is out of bounds, array "
"size is 3, but access index is 3"));
}
TEST_F(ValidateComposites, CompositeInsertStructOutOfBounds) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeInsert %big_struct %f32_1 %struct 6
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Index is out of bounds, can not find index 6 in the "
"structure <id> '37'. This structure has 6 members. "
"Largest valid index is 5."));
}
TEST_F(ValidateComposites, CompositeInsertNestedVectorOutOfBounds) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeInsert %big_struct %f32_1 %struct 3 1 5
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Vector access is out of bounds, "
"vector size is 2, but access index is 5"));
}
TEST_F(ValidateComposites, CompositeInsertTooManyIndices) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeInsert %big_struct %f32_1 %struct 3 1 1 2
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Reached non-composite type while indexes still remain "
"to be traversed."));
}
TEST_F(ValidateComposites, CompositeInsertWrongType1) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeInsert %big_struct %f32vec2_01 %struct 3 1 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The Object type (OpTypeVector) does not match the "
"type that results from indexing into the Composite "
"(OpTypeFloat)."));
}
TEST_F(ValidateComposites, CompositeInsertWrongType2) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeInsert %big_struct %f32_1 %struct 3 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The Object type (OpTypeFloat) does not match the type "
"that results from indexing into the Composite "
"(OpTypeVector)."));
}
TEST_F(ValidateComposites, CompositeInsertWrongType3) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeInsert %big_struct %f32_1 %struct 2 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The Object type (OpTypeFloat) does not match the type "
"that results from indexing into the Composite "
"(OpTypeVector)."));
}
TEST_F(ValidateComposites, CompositeInsertWrongType4) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeInsert %big_struct %f32_1 %struct 4 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The Object type (OpTypeFloat) does not match the type "
"that results from indexing into the Composite "
"(OpTypeVector)."));
}
TEST_F(ValidateComposites, CompositeInsertWrongType5) {
const std::string body = R"(
%struct = OpLoad %big_struct %var_big_struct
%val1 = OpCompositeInsert %big_struct %f32_1 %struct 5 1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The Object type (OpTypeFloat) does not match the type "
"that results from indexing into the Composite "
"(OpTypeInt)."));
}
// Tests ported from val_id_test.cpp.
// Valid. Tests both CompositeExtract and CompositeInsert with 255 indexes.
TEST_F(ValidateComposites, CompositeExtractInsertLimitsGood) {
int depth = 255;
std::string header = GetHeaderForTestsFromValId();
header.erase(header.find("%func"));
std::ostringstream spirv;
spirv << header << std::endl;
// Build nested structures. Struct 'i' contains struct 'i-1'
spirv << "%s_depth_1 = OpTypeStruct %float\n";
for (int i = 2; i <= depth; ++i) {
spirv << "%s_depth_" << i << " = OpTypeStruct %s_depth_" << i - 1 << "\n";
}
// Define Pointer and Variable to use for CompositeExtract/Insert.
spirv << "%_ptr_Uniform_deep_struct = OpTypePointer Uniform %s_depth_"
<< depth << "\n";
spirv << "%deep_var = OpVariable %_ptr_Uniform_deep_struct Uniform\n";
// Function Start
spirv << R"(
%func = OpFunction %void None %void_f
%my_label = OpLabel
)";
// OpCompositeExtract/Insert with 'n' indexes (n = depth)
spirv << "%deep = OpLoad %s_depth_" << depth << " %deep_var" << std::endl;
spirv << "%entry = OpCompositeExtract %float %deep";
for (int i = 0; i < depth; ++i) {
spirv << " 0";
}
spirv << std::endl;
spirv << "%new_composite = OpCompositeInsert %s_depth_" << depth
<< " %entry %deep";
for (int i = 0; i < depth; ++i) {
spirv << " 0";
}
spirv << std::endl;
// Function end
spirv << R"(
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: 256 indexes passed to OpCompositeExtract. Limit is 255.
TEST_F(ValidateComposites, CompositeExtractArgCountExceededLimitBad) {
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%entry = OpCompositeExtract %float %matrix";
for (int i = 0; i < 256; ++i) {
spirv << " 0";
}
spirv << R"(
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The number of indexes in OpCompositeExtract may not "
"exceed 255. Found 256 indexes."));
}
// Invalid: 256 indexes passed to OpCompositeInsert. Limit is 255.
TEST_F(ValidateComposites, CompositeInsertArgCountExceededLimitBad) {
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%new_composite = OpCompositeInsert %mat4x3 %int_0 %matrix";
for (int i = 0; i < 256; ++i) {
spirv << " 0";
}
spirv << R"(
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The number of indexes in OpCompositeInsert may not "
"exceed 255. Found 256 indexes."));
}
// Invalid: In OpCompositeInsert, result type must be the same as composite type
TEST_F(ValidateComposites, CompositeInsertWrongResultTypeBad) {
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%float_entry = OpCompositeExtract %float %matrix 0 1" << std::endl;
spirv << "%new_composite = OpCompositeInsert %float %float_entry %matrix 0 1"
<< std::endl;
spirv << R"(OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The Result Type must be the same as Composite type"));
}
// Invalid: No Indexes were passed to OpCompositeExtract.
TEST_F(ValidateComposites, CompositeExtractNoIndices2) {
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%float_entry = OpCompositeExtract %mat4x3 %matrix" << std::endl;
spirv << R"(OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"Expected at least one index to OpCompositeExtract, zero found"));
}
// Invalid: No Indexes were passed to OpCompositeExtract.
TEST_F(ValidateComposites, CompositeExtractNoIndicesWrongResultType) {
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%float_entry = OpCompositeExtract %float %matrix" << std::endl;
spirv << R"(OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"Expected at least one index to OpCompositeExtract, zero found"));
}
// Invalid: No Indices were passed to OpCompositeInsert, and the type of the
// Object<id> argument matches the Composite type.
TEST_F(ValidateComposites, CompositeInsertMissingIndices) {
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%matrix_2 = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%new_composite = OpCompositeInsert %mat4x3 %matrix_2 %matrix";
spirv << R"(
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"Expected at least one index to OpCompositeInsert, zero found"));
}
// Invalid: No Indices were passed to OpCompositeInsert, but the type of the
// Object<id> argument does not match the Composite type.
TEST_F(ValidateComposites, CompositeInsertMissingIndices2) {
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%new_composite = OpCompositeInsert %mat4x3 %int_0 %matrix";
spirv << R"(
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"Expected at least one index to OpCompositeInsert, zero found"));
}
// Valid: Tests that we can index into Struct, Array, Matrix, and Vector!
TEST_F(ValidateComposites, CompositeExtractInsertIndexIntoAllTypesGood) {
// indexes that we are passing are: 0, 3, 1, 2, 0
// 0 will select the struct_s within the base struct (blockName)
// 3 will select the Array that contains 5 matrices
// 1 will select the Matrix that is at index 1 of the array
// 2 will select the column (which is a vector) within the matrix at index 2
// 0 will select the element at the index 0 of the vector. (which is a float).
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%ss = OpCompositeExtract %struct_s %myblock 0
%sa = OpCompositeExtract %array5_mat4x3 %myblock 0 3
%sm = OpCompositeExtract %mat4x3 %myblock 0 3 1
%sc = OpCompositeExtract %v3float %myblock 0 3 1 2
%fl = OpCompositeExtract %float %myblock 0 3 1 2 0
;
; Now let's insert back at different levels...
;
%b1 = OpCompositeInsert %struct_blockName %ss %myblock 0
%b2 = OpCompositeInsert %struct_blockName %sa %myblock 0 3
%b3 = OpCompositeInsert %struct_blockName %sm %myblock 0 3 1
%b4 = OpCompositeInsert %struct_blockName %sc %myblock 0 3 1 2
%b5 = OpCompositeInsert %struct_blockName %fl %myblock 0 3 1 2 0
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid. More indexes are provided than needed for OpCompositeExtract.
TEST_F(ValidateComposites, CompositeExtractReachedScalarBad) {
// indexes that we are passing are: 0, 3, 1, 2, 0
// 0 will select the struct_s within the base struct (blockName)
// 3 will select the Array that contains 5 matrices
// 1 will select the Matrix that is at index 1 of the array
// 2 will select the column (which is a vector) within the matrix at index 2
// 0 will select the element at the index 0 of the vector. (which is a float).
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%fl = OpCompositeExtract %float %myblock 0 3 1 2 0 1
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Reached non-composite type while indexes still remain "
"to be traversed."));
}
// Invalid. More indexes are provided than needed for OpCompositeInsert.
TEST_F(ValidateComposites, CompositeInsertReachedScalarBad) {
// indexes that we are passing are: 0, 3, 1, 2, 0
// 0 will select the struct_s within the base struct (blockName)
// 3 will select the Array that contains 5 matrices
// 1 will select the Matrix that is at index 1 of the array
// 2 will select the column (which is a vector) within the matrix at index 2
// 0 will select the element at the index 0 of the vector. (which is a float).
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%fl = OpCompositeExtract %float %myblock 0 3 1 2 0
%b5 = OpCompositeInsert %struct_blockName %fl %myblock 0 3 1 2 0 1
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Reached non-composite type while indexes still remain "
"to be traversed."));
}
// Invalid. Result type doesn't match the type we get from indexing into
// the composite.
TEST_F(ValidateComposites,
CompositeExtractResultTypeDoesntMatchIndexedTypeBad) {
// indexes that we are passing are: 0, 3, 1, 2, 0
// 0 will select the struct_s within the base struct (blockName)
// 3 will select the Array that contains 5 matrices
// 1 will select the Matrix that is at index 1 of the array
// 2 will select the column (which is a vector) within the matrix at index 2
// 0 will select the element at the index 0 of the vector. (which is a float).
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%fl = OpCompositeExtract %int %myblock 0 3 1 2 0
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Result type (OpTypeInt) does not match the type that "
"results from indexing into the composite "
"(OpTypeFloat)."));
}
// Invalid. Given object type doesn't match the type we get from indexing into
// the composite.
TEST_F(ValidateComposites, CompositeInsertObjectTypeDoesntMatchIndexedTypeBad) {
// indexes that we are passing are: 0, 3, 1, 2, 0
// 0 will select the struct_s within the base struct (blockName)
// 3 will select the Array that contains 5 matrices
// 1 will select the Matrix that is at index 1 of the array
// 2 will select the column (which is a vector) within the matrix at index 2
// 0 will select the element at the index 0 of the vector. (which is a float).
// We are trying to insert an integer where we should be inserting a float.
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%b5 = OpCompositeInsert %struct_blockName %int_0 %myblock 0 3 1 2 0
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The Object type (OpTypeInt) does not match the type "
"that results from indexing into the Composite "
"(OpTypeFloat)."));
}
// Invalid. Index into a struct is larger than the number of struct members.
TEST_F(ValidateComposites, CompositeExtractStructIndexOutOfBoundBad) {
// struct_blockName has 3 members (index 0,1,2). We'll try to access index 3.
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%ss = OpCompositeExtract %struct_s %myblock 3
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Index is out of bounds, can not find index 3 in the "
"structure <id> '25'. This structure has 3 members. "
"Largest valid index is 2."));
}
// Invalid. Index into a struct is larger than the number of struct members.
TEST_F(ValidateComposites, CompositeInsertStructIndexOutOfBoundBad) {
// struct_blockName has 3 members (index 0,1,2). We'll try to access index 3.
std::ostringstream spirv;
spirv << GetHeaderForTestsFromValId() << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%ss = OpCompositeExtract %struct_s %myblock 0
%new_composite = OpCompositeInsert %struct_blockName %ss %myblock 3
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Index is out of bounds, can not find index 3 in the structure "
"<id> '25'. This structure has 3 members. Largest valid index "
"is 2."));
}
// #1403: Ensure that the default spec constant value is not used to check the
// extract index.
TEST_F(ValidateComposites, ExtractFromSpecConstantSizedArray) {
std::string spirv = R"(
OpCapability Kernel
OpCapability Linkage
OpMemoryModel Logical OpenCL
OpDecorate %spec_const SpecId 1
%void = OpTypeVoid
%uint = OpTypeInt 32 0
%spec_const = OpSpecConstant %uint 3
%uint_array = OpTypeArray %uint %spec_const
%undef = OpUndef %uint_array
%voidf = OpTypeFunction %void
%func = OpFunction %void None %voidf
%1 = OpLabel
%2 = OpCompositeExtract %uint %undef 4
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// #1403: Ensure that spec constant ops do not produce false positives.
TEST_F(ValidateComposites, ExtractFromSpecConstantOpSizedArray) {
std::string spirv = R"(
OpCapability Kernel
OpCapability Linkage
OpMemoryModel Logical OpenCL
OpDecorate %spec_const SpecId 1
%void = OpTypeVoid
%uint = OpTypeInt 32 0
%const = OpConstant %uint 1
%spec_const = OpSpecConstant %uint 3
%spec_const_op = OpSpecConstantOp %uint IAdd %spec_const %const
%uint_array = OpTypeArray %uint %spec_const_op
%undef = OpUndef %uint_array
%voidf = OpTypeFunction %void
%func = OpFunction %void None %voidf
%1 = OpLabel
%2 = OpCompositeExtract %uint %undef 4
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// #1403: Ensure that the default spec constant value is not used to check the
// size of the array for a composite construct. This code has limited actual
// value as it is incorrect unless the specialization constant is assigned the
// value of 2, but it is still a valid module.
TEST_F(ValidateComposites, CompositeConstructSpecConstantSizedArray) {
std::string spirv = R"(
OpCapability Kernel
OpCapability Linkage
OpMemoryModel Logical OpenCL
OpDecorate %spec_const SpecId 1
%void = OpTypeVoid
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%spec_const = OpSpecConstant %uint 3
%uint_array = OpTypeArray %uint %spec_const
%voidf = OpTypeFunction %void
%func = OpFunction %void None %voidf
%1 = OpLabel
%2 = OpCompositeConstruct %uint_array %uint_0 %uint_0
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateComposites, CoopMatConstantCompositeMismatchFail) {
const std::string body =
R"(
OpCapability Shader
OpCapability Float16
OpCapability CooperativeMatrixNV
OpExtension "SPV_NV_cooperative_matrix"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main"
%void = OpTypeVoid
%func = OpTypeFunction %void
%bool = OpTypeBool
%f16 = OpTypeFloat 16
%f32 = OpTypeFloat 32
%u32 = OpTypeInt 32 0
%u32_8 = OpConstant %u32 8
%subgroup = OpConstant %u32 3
%f16mat = OpTypeCooperativeMatrixNV %f16 %subgroup %u32_8 %u32_8
%f32_1 = OpConstant %f32 1
%f16mat_1 = OpConstantComposite %f16mat %f32_1
%main = OpFunction %void None %func
%main_entry = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(body.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpConstantComposite Constituent <id> '11[%float_1]' type does "
"not match the Result Type <id> '10[%10]'s component type."));
}
TEST_F(ValidateComposites, CoopMatCompositeConstructMismatchFail) {
const std::string body =
R"(
OpCapability Shader
OpCapability Float16
OpCapability CooperativeMatrixNV
OpExtension "SPV_NV_cooperative_matrix"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main"
%void = OpTypeVoid
%func = OpTypeFunction %void
%bool = OpTypeBool
%f16 = OpTypeFloat 16
%f32 = OpTypeFloat 32
%u32 = OpTypeInt 32 0
%u32_8 = OpConstant %u32 8
%subgroup = OpConstant %u32 3
%f16mat = OpTypeCooperativeMatrixNV %f16 %subgroup %u32_8 %u32_8
%f32_1 = OpConstant %f32 1
%main = OpFunction %void None %func
%main_entry = OpLabel
%f16mat_1 = OpCompositeConstruct %f16mat %f32_1
OpReturn
OpFunctionEnd)";
CompileSuccessfully(body.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Expected Constituent type to be equal to the component type"));
}
TEST_F(ValidateComposites, ExtractDynamicLabelIndex) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%void_fn = OpTypeFunction %void
%float_0 = OpConstant %float 0
%v4float_0 = OpConstantComposite %v4float %float_0 %float_0 %float_0 %float_0
%func = OpFunction %void None %void_fn
%1 = OpLabel
%ex = OpVectorExtractDynamic %float %v4float_0 %v4float_0
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Expected Index to be int scalar"));
}
TEST_F(ValidateComposites, CopyLogicalSameType) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%struct = OpTypeStruct
%const_struct = OpConstantComposite %struct
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%1 = OpLabel
%copy = OpCopyLogical %struct %const_struct
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv, SPV_ENV_UNIVERSAL_1_4);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions(SPV_ENV_UNIVERSAL_1_4));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Result Type must not equal the Operand type"));
}
TEST_F(ValidateComposites, CopyLogicalSameStructDifferentId) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%struct1 = OpTypeStruct
%struct2 = OpTypeStruct
%const_struct = OpConstantComposite %struct1
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%1 = OpLabel
%copy = OpCopyLogical %struct2 %const_struct
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv, SPV_ENV_UNIVERSAL_1_4);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_UNIVERSAL_1_4));
}
TEST_F(ValidateComposites, CopyLogicalArrayDifferentLength) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%int = OpTypeInt 32 0
%int_4 = OpConstant %int 4
%int_5 = OpConstant %int 5
%array1 = OpTypeArray %int %int_4
%array2 = OpTypeArray %int %int_5
%const_array = OpConstantComposite %array1 %int_4 %int_4 %int_4 %int_4
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%1 = OpLabel
%copy = OpCopyLogical %array2 %const_array
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv, SPV_ENV_UNIVERSAL_1_4);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions(SPV_ENV_UNIVERSAL_1_4));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Result Type does not logically match the Operand type"));
}
TEST_F(ValidateComposites, CopyLogicalArrayDifferentElement) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%float = OpTypeFloat 32
%int = OpTypeInt 32 0
%int_4 = OpConstant %int 4
%array1 = OpTypeArray %int %int_4
%array2 = OpTypeArray %float %int_4
%const_array = OpConstantComposite %array1 %int_4 %int_4 %int_4 %int_4
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%1 = OpLabel
%copy = OpCopyLogical %array2 %const_array
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv, SPV_ENV_UNIVERSAL_1_4);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions(SPV_ENV_UNIVERSAL_1_4));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Result Type does not logically match the Operand type"));
}
TEST_F(ValidateComposites, CopyLogicalArrayLogicallyMatchedElement) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%float = OpTypeFloat 32
%int = OpTypeInt 32 0
%int_1 = OpConstant %int 1
%inner1 = OpTypeArray %int %int_1
%inner2 = OpTypeArray %int %int_1
%array1 = OpTypeArray %inner1 %int_1
%array2 = OpTypeArray %inner2 %int_1
%const_inner = OpConstantComposite %inner1 %int_1
%const_array = OpConstantComposite %array1 %const_inner
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%1 = OpLabel
%copy = OpCopyLogical %array2 %const_array
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv, SPV_ENV_UNIVERSAL_1_4);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_UNIVERSAL_1_4));
}
TEST_F(ValidateComposites, CopyLogicalStructDifferentNumberElements) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%int = OpTypeInt 32 0
%struct1 = OpTypeStruct
%struct2 = OpTypeStruct %int
%const_struct = OpConstantComposite %struct1
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%1 = OpLabel
%copy = OpCopyLogical %struct2 %const_struct
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv, SPV_ENV_UNIVERSAL_1_4);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions(SPV_ENV_UNIVERSAL_1_4));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Result Type does not logically match the Operand type"));
}
TEST_F(ValidateComposites, CopyLogicalStructDifferentElement) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%int_0 = OpConstant %int 0
%uint_0 = OpConstant %uint 0
%struct1 = OpTypeStruct %int %uint
%struct2 = OpTypeStruct %int %int
%const_struct = OpConstantComposite %struct1 %int_0 %uint_0
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%1 = OpLabel
%copy = OpCopyLogical %struct2 %const_struct
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv, SPV_ENV_UNIVERSAL_1_4);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions(SPV_ENV_UNIVERSAL_1_4));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Result Type does not logically match the Operand type"));
}
TEST_F(ValidateComposites, CopyLogicalStructLogicallyMatch) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%int = OpTypeInt 32 0
%int_1 = OpConstant %int 1
%array1 = OpTypeArray %int %int_1
%array2 = OpTypeArray %int %int_1
%struct1 = OpTypeStruct %int %array1
%struct2 = OpTypeStruct %int %array2
%const_array = OpConstantComposite %array1 %int_1
%const_struct = OpConstantComposite %struct1 %int_1 %const_array
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%1 = OpLabel
%copy = OpCopyLogical %struct2 %const_struct
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv, SPV_ENV_UNIVERSAL_1_4);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_UNIVERSAL_1_4));
}
using ValidateSmallComposites = spvtest::ValidateBase<std::string>;
CodeGenerator GetSmallCompositesCodeGenerator() {
CodeGenerator generator;
generator.capabilities_ = R"(
OpCapability Shader
OpCapability Linkage
OpCapability UniformAndStorageBuffer16BitAccess
OpCapability UniformAndStorageBuffer8BitAccess
)";
generator.extensions_ = R"(
OpExtension "SPV_KHR_16bit_storage"
OpExtension "SPV_KHR_8bit_storage"
)";
generator.memory_model_ = "OpMemoryModel Logical GLSL450\n";
generator.before_types_ = R"(
OpDecorate %char_block Block
OpMemberDecorate %char_block 0 Offset 0
OpDecorate %short_block Block
OpMemberDecorate %short_block 0 Offset 0
OpDecorate %half_block Block
OpMemberDecorate %half_block 0 Offset 0
)";
generator.types_ = R"(
%void = OpTypeVoid
%int = OpTypeInt 32 0
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%char = OpTypeInt 8 0
%char2 = OpTypeVector %char 2
%short = OpTypeInt 16 0
%short2 = OpTypeVector %short 2
%half = OpTypeFloat 16
%half2 = OpTypeVector %half 2
%char_block = OpTypeStruct %char2
%short_block = OpTypeStruct %short2
%half_block = OpTypeStruct %half2
%ptr_ssbo_char_block = OpTypePointer StorageBuffer %char_block
%ptr_ssbo_char2 = OpTypePointer StorageBuffer %char2
%ptr_ssbo_char = OpTypePointer StorageBuffer %char
%ptr_ssbo_short_block = OpTypePointer StorageBuffer %short_block
%ptr_ssbo_short2 = OpTypePointer StorageBuffer %short2
%ptr_ssbo_short = OpTypePointer StorageBuffer %short
%ptr_ssbo_half_block = OpTypePointer StorageBuffer %half_block
%ptr_ssbo_half2 = OpTypePointer StorageBuffer %half2
%ptr_ssbo_half = OpTypePointer StorageBuffer %half
%void_fn = OpTypeFunction %void
%char_var = OpVariable %ptr_ssbo_char_block StorageBuffer
%short_var = OpVariable %ptr_ssbo_short_block StorageBuffer
%half_var = OpVariable %ptr_ssbo_half_block StorageBuffer
)";
generator.after_types_ = R"(
%func = OpFunction %void None %void_fn
%entry = OpLabel
%char2_gep = OpAccessChain %ptr_ssbo_char2 %char_var %int_0
%ld_char2 = OpLoad %char2 %char2_gep
%char_gep = OpAccessChain %ptr_ssbo_char %char_var %int_0 %int_0
%ld_char = OpLoad %char %char_gep
%short2_gep = OpAccessChain %ptr_ssbo_short2 %short_var %int_0
%ld_short2 = OpLoad %short2 %short2_gep
%short_gep = OpAccessChain %ptr_ssbo_short %short_var %int_0 %int_0
%ld_short = OpLoad %short %short_gep
%half2_gep = OpAccessChain %ptr_ssbo_half2 %half_var %int_0
%ld_half2 = OpLoad %half2 %half2_gep
%half_gep = OpAccessChain %ptr_ssbo_half %half_var %int_0 %int_0
%ld_half = OpLoad %half %half_gep
)";
generator.add_at_the_end_ = R"(
OpReturn
OpFunctionEnd
)";
return generator;
}
TEST_P(ValidateSmallComposites, VectorExtractDynamic) {
std::string type = GetParam();
CodeGenerator generator = GetSmallCompositesCodeGenerator();
std::string inst =
"%inst = OpVectorExtractDynamic %" + type + " %ld_" + type + "2 %int_0\n";
generator.after_types_ += inst;
CompileSuccessfully(generator.Build(), SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Cannot extract from a vector of 8- or 16-bit types"));
}
TEST_P(ValidateSmallComposites, VectorInsertDynamic) {
std::string type = GetParam();
CodeGenerator generator = GetSmallCompositesCodeGenerator();
std::string inst = "%inst = OpVectorInsertDynamic %" + type + "2 %ld_" +
type + "2 %ld_" + type + " %int_0\n";
generator.after_types_ += inst;
CompileSuccessfully(generator.Build(), SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Cannot insert into a vector of 8- or 16-bit types"));
}
TEST_P(ValidateSmallComposites, VectorShuffle) {
std::string type = GetParam();
CodeGenerator generator = GetSmallCompositesCodeGenerator();
std::string inst = "%inst = OpVectorShuffle %" + type + "2 %ld_" + type +
"2 %ld_" + type + "2 0 0\n";
generator.after_types_ += inst;
CompileSuccessfully(generator.Build(), SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Cannot shuffle a vector of 8- or 16-bit types"));
}
TEST_P(ValidateSmallComposites, CompositeConstruct) {
std::string type = GetParam();
CodeGenerator generator = GetSmallCompositesCodeGenerator();
std::string inst = "%inst = OpCompositeConstruct %" + type + "2 %ld_" + type +
" %ld_" + type + "\n";
generator.after_types_ += inst;
CompileSuccessfully(generator.Build(), SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Cannot create a composite containing 8- or 16-bit types"));
}
TEST_P(ValidateSmallComposites, CompositeExtract) {
std::string type = GetParam();
CodeGenerator generator = GetSmallCompositesCodeGenerator();
std::string inst =
"%inst = OpCompositeExtract %" + type + " %ld_" + type + "2 0\n";
generator.after_types_ += inst;
CompileSuccessfully(generator.Build(), SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Cannot extract from a composite of 8- or 16-bit types"));
}
TEST_P(ValidateSmallComposites, CompositeInsert) {
std::string type = GetParam();
CodeGenerator generator = GetSmallCompositesCodeGenerator();
std::string inst = "%inst = OpCompositeInsert %" + type + "2 %ld_" + type +
" %ld_" + type + "2 0\n";
generator.after_types_ += inst;
CompileSuccessfully(generator.Build(), SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Cannot insert into a composite of 8- or 16-bit types"));
}
TEST_P(ValidateSmallComposites, CopyObject) {
std::string type = GetParam();
CodeGenerator generator = GetSmallCompositesCodeGenerator();
std::string inst = "%inst = OpCopyObject %" + type + "2 %ld_" + type + "2\n";
generator.after_types_ += inst;
CompileSuccessfully(generator.Build(), SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
}
INSTANTIATE_TEST_SUITE_P(SmallCompositeInstructions, ValidateSmallComposites,
Values("char", "short", "half"));
TEST_F(ValidateComposites, HalfMatrixCannotTranspose) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpCapability UniformAndStorageBuffer16BitAccess
OpExtension "SPV_KHR_16bit_storage"
OpMemoryModel Logical GLSL450
OpDecorate %block Block
OpMemberDecorate %block 0 Offset 0
OpMemberDecorate %block 0 RowMajor
OpMemberDecorate %block 0 MatrixStride 8
%void = OpTypeVoid
%int = OpTypeInt 32 0
%int_0 = OpConstant %int 0
%float = OpTypeFloat 16
%float2 = OpTypeVector %float 2
%mat2x2 = OpTypeMatrix %float2 2
%block = OpTypeStruct %mat2x2
%ptr_ssbo_block = OpTypePointer StorageBuffer %block
%ptr_ssbo_mat2x2 = OpTypePointer StorageBuffer %mat2x2
%var = OpVariable %ptr_ssbo_block StorageBuffer
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%entry = OpLabel
%gep = OpAccessChain %ptr_ssbo_mat2x2 %var %int_0
%ld = OpLoad %mat2x2 %gep
%inst = OpTranspose %mat2x2 %ld
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv, SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Cannot transpose matrices of 16-bit floats"));
}
} // namespace
} // namespace val
} // namespace spvtools