blob: f31c5a022dde4069b1afe643a39dac7035be3872 [file] [log] [blame]
// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <string>
#include <vector>
#include "source/opcode.h"
#include "source/spirv_target_env.h"
#include "source/val/instruction.h"
#include "source/val/validate.h"
#include "source/val/validate_scopes.h"
#include "source/val/validation_state.h"
namespace spvtools {
namespace val {
namespace {
bool AreLayoutCompatibleStructs(ValidationState_t&, const Instruction*,
const Instruction*);
bool HaveLayoutCompatibleMembers(ValidationState_t&, const Instruction*,
const Instruction*);
bool HaveSameLayoutDecorations(ValidationState_t&, const Instruction*,
const Instruction*);
bool HasConflictingMemberOffsets(const std::vector<Decoration>&,
const std::vector<Decoration>&);
bool IsAllowedTypeOrArrayOfSame(ValidationState_t& _, const Instruction* type,
std::initializer_list<uint32_t> allowed) {
if (std::find(allowed.begin(), allowed.end(), type->opcode()) !=
allowed.end()) {
return true;
}
if (type->opcode() == SpvOpTypeArray ||
type->opcode() == SpvOpTypeRuntimeArray) {
auto elem_type = _.FindDef(type->word(2));
return std::find(allowed.begin(), allowed.end(), elem_type->opcode()) !=
allowed.end();
}
return false;
}
// Returns true if the two instructions represent structs that, as far as the
// validator can tell, have the exact same data layout.
bool AreLayoutCompatibleStructs(ValidationState_t& _, const Instruction* type1,
const Instruction* type2) {
if (type1->opcode() != SpvOpTypeStruct) {
return false;
}
if (type2->opcode() != SpvOpTypeStruct) {
return false;
}
if (!HaveLayoutCompatibleMembers(_, type1, type2)) return false;
return HaveSameLayoutDecorations(_, type1, type2);
}
// Returns true if the operands to the OpTypeStruct instruction defining the
// types are the same or are layout compatible types. |type1| and |type2| must
// be OpTypeStruct instructions.
bool HaveLayoutCompatibleMembers(ValidationState_t& _, const Instruction* type1,
const Instruction* type2) {
assert(type1->opcode() == SpvOpTypeStruct &&
"type1 must be an OpTypeStruct instruction.");
assert(type2->opcode() == SpvOpTypeStruct &&
"type2 must be an OpTypeStruct instruction.");
const auto& type1_operands = type1->operands();
const auto& type2_operands = type2->operands();
if (type1_operands.size() != type2_operands.size()) {
return false;
}
for (size_t operand = 2; operand < type1_operands.size(); ++operand) {
if (type1->word(operand) != type2->word(operand)) {
auto def1 = _.FindDef(type1->word(operand));
auto def2 = _.FindDef(type2->word(operand));
if (!AreLayoutCompatibleStructs(_, def1, def2)) {
return false;
}
}
}
return true;
}
// Returns true if all decorations that affect the data layout of the struct
// (like Offset), are the same for the two types. |type1| and |type2| must be
// OpTypeStruct instructions.
bool HaveSameLayoutDecorations(ValidationState_t& _, const Instruction* type1,
const Instruction* type2) {
assert(type1->opcode() == SpvOpTypeStruct &&
"type1 must be an OpTypeStruct instruction.");
assert(type2->opcode() == SpvOpTypeStruct &&
"type2 must be an OpTypeStruct instruction.");
const std::vector<Decoration>& type1_decorations =
_.id_decorations(type1->id());
const std::vector<Decoration>& type2_decorations =
_.id_decorations(type2->id());
// TODO: Will have to add other check for arrays an matricies if we want to
// handle them.
if (HasConflictingMemberOffsets(type1_decorations, type2_decorations)) {
return false;
}
return true;
}
bool HasConflictingMemberOffsets(
const std::vector<Decoration>& type1_decorations,
const std::vector<Decoration>& type2_decorations) {
{
// We are interested in conflicting decoration. If a decoration is in one
// list but not the other, then we will assume the code is correct. We are
// looking for things we know to be wrong.
//
// We do not have to traverse type2_decoration because, after traversing
// type1_decorations, anything new will not be found in
// type1_decoration. Therefore, it cannot lead to a conflict.
for (const Decoration& decoration : type1_decorations) {
switch (decoration.dec_type()) {
case SpvDecorationOffset: {
// Since these affect the layout of the struct, they must be present
// in both structs.
auto compare = [&decoration](const Decoration& rhs) {
if (rhs.dec_type() != SpvDecorationOffset) return false;
return decoration.struct_member_index() ==
rhs.struct_member_index();
};
auto i = std::find_if(type2_decorations.begin(),
type2_decorations.end(), compare);
if (i != type2_decorations.end() &&
decoration.params().front() != i->params().front()) {
return true;
}
} break;
default:
// This decoration does not affect the layout of the structure, so
// just moving on.
break;
}
}
}
return false;
}
// If |skip_builtin| is true, returns true if |storage| contains bool within
// it and no storage that contains the bool is builtin.
// If |skip_builtin| is false, returns true if |storage| contains bool within
// it.
bool ContainsInvalidBool(ValidationState_t& _, const Instruction* storage,
bool skip_builtin) {
if (skip_builtin) {
for (const Decoration& decoration : _.id_decorations(storage->id())) {
if (decoration.dec_type() == SpvDecorationBuiltIn) return false;
}
}
const size_t elem_type_index = 1;
uint32_t elem_type_id;
Instruction* elem_type;
switch (storage->opcode()) {
case SpvOpTypeBool:
return true;
case SpvOpTypeVector:
case SpvOpTypeMatrix:
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray:
elem_type_id = storage->GetOperandAs<uint32_t>(elem_type_index);
elem_type = _.FindDef(elem_type_id);
return ContainsInvalidBool(_, elem_type, skip_builtin);
case SpvOpTypeStruct:
for (size_t member_type_index = 1;
member_type_index < storage->operands().size();
++member_type_index) {
auto member_type_id =
storage->GetOperandAs<uint32_t>(member_type_index);
auto member_type = _.FindDef(member_type_id);
if (ContainsInvalidBool(_, member_type, skip_builtin)) return true;
}
default:
break;
}
return false;
}
bool ContainsCooperativeMatrix(ValidationState_t& _,
const Instruction* storage) {
const size_t elem_type_index = 1;
uint32_t elem_type_id;
Instruction* elem_type;
switch (storage->opcode()) {
case SpvOpTypeCooperativeMatrixNV:
return true;
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray:
elem_type_id = storage->GetOperandAs<uint32_t>(elem_type_index);
elem_type = _.FindDef(elem_type_id);
return ContainsCooperativeMatrix(_, elem_type);
case SpvOpTypeStruct:
for (size_t member_type_index = 1;
member_type_index < storage->operands().size();
++member_type_index) {
auto member_type_id =
storage->GetOperandAs<uint32_t>(member_type_index);
auto member_type = _.FindDef(member_type_id);
if (ContainsCooperativeMatrix(_, member_type)) return true;
}
break;
default:
break;
}
return false;
}
std::pair<SpvStorageClass, SpvStorageClass> GetStorageClass(
ValidationState_t& _, const Instruction* inst) {
SpvStorageClass dst_sc = SpvStorageClassMax;
SpvStorageClass src_sc = SpvStorageClassMax;
switch (inst->opcode()) {
case SpvOpCooperativeMatrixLoadNV:
case SpvOpLoad: {
auto load_pointer = _.FindDef(inst->GetOperandAs<uint32_t>(2));
auto load_pointer_type = _.FindDef(load_pointer->type_id());
dst_sc = load_pointer_type->GetOperandAs<SpvStorageClass>(1);
break;
}
case SpvOpCooperativeMatrixStoreNV:
case SpvOpStore: {
auto store_pointer = _.FindDef(inst->GetOperandAs<uint32_t>(0));
auto store_pointer_type = _.FindDef(store_pointer->type_id());
dst_sc = store_pointer_type->GetOperandAs<SpvStorageClass>(1);
break;
}
case SpvOpCopyMemory:
case SpvOpCopyMemorySized: {
auto dst = _.FindDef(inst->GetOperandAs<uint32_t>(0));
auto dst_type = _.FindDef(dst->type_id());
dst_sc = dst_type->GetOperandAs<SpvStorageClass>(1);
auto src = _.FindDef(inst->GetOperandAs<uint32_t>(1));
auto src_type = _.FindDef(src->type_id());
src_sc = src_type->GetOperandAs<SpvStorageClass>(1);
break;
}
default:
break;
}
return std::make_pair(dst_sc, src_sc);
}
// Returns the number of instruction words taken up by a memory access
// argument and its implied operands.
int MemoryAccessNumWords(uint32_t mask) {
int result = 1; // Count the mask
if (mask & SpvMemoryAccessAlignedMask) ++result;
if (mask & SpvMemoryAccessMakePointerAvailableKHRMask) ++result;
if (mask & SpvMemoryAccessMakePointerVisibleKHRMask) ++result;
return result;
}
// Returns the scope ID operand for MakeAvailable memory access with mask
// at the given operand index.
// This function is only called for OpLoad, OpStore, OpCopyMemory and
// OpCopyMemorySized, OpCooperativeMatrixLoadNV, and
// OpCooperativeMatrixStoreNV.
uint32_t GetMakeAvailableScope(const Instruction* inst, uint32_t mask,
uint32_t mask_index) {
assert(mask & SpvMemoryAccessMakePointerAvailableKHRMask);
uint32_t this_bit = uint32_t(SpvMemoryAccessMakePointerAvailableKHRMask);
uint32_t index =
mask_index - 1 + MemoryAccessNumWords(mask & (this_bit | (this_bit - 1)));
return inst->GetOperandAs<uint32_t>(index);
}
// This function is only called for OpLoad, OpStore, OpCopyMemory,
// OpCopyMemorySized, OpCooperativeMatrixLoadNV, and
// OpCooperativeMatrixStoreNV.
uint32_t GetMakeVisibleScope(const Instruction* inst, uint32_t mask,
uint32_t mask_index) {
assert(mask & SpvMemoryAccessMakePointerVisibleKHRMask);
uint32_t this_bit = uint32_t(SpvMemoryAccessMakePointerVisibleKHRMask);
uint32_t index =
mask_index - 1 + MemoryAccessNumWords(mask & (this_bit | (this_bit - 1)));
return inst->GetOperandAs<uint32_t>(index);
}
bool DoesStructContainRTA(const ValidationState_t& _, const Instruction* inst) {
for (size_t member_index = 1; member_index < inst->operands().size();
++member_index) {
const auto member_id = inst->GetOperandAs<uint32_t>(member_index);
const auto member_type = _.FindDef(member_id);
if (member_type->opcode() == SpvOpTypeRuntimeArray) return true;
}
return false;
}
spv_result_t CheckMemoryAccess(ValidationState_t& _, const Instruction* inst,
uint32_t index) {
SpvStorageClass dst_sc, src_sc;
std::tie(dst_sc, src_sc) = GetStorageClass(_, inst);
if (inst->operands().size() <= index) {
if (src_sc == SpvStorageClassPhysicalStorageBufferEXT ||
dst_sc == SpvStorageClassPhysicalStorageBufferEXT) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Memory accesses with PhysicalStorageBufferEXT must use "
"Aligned.";
}
return SPV_SUCCESS;
}
const uint32_t mask = inst->GetOperandAs<uint32_t>(index);
if (mask & SpvMemoryAccessMakePointerAvailableKHRMask) {
if (inst->opcode() == SpvOpLoad ||
inst->opcode() == SpvOpCooperativeMatrixLoadNV) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "MakePointerAvailableKHR cannot be used with OpLoad.";
}
if (!(mask & SpvMemoryAccessNonPrivatePointerKHRMask)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "NonPrivatePointerKHR must be specified if "
"MakePointerAvailableKHR is specified.";
}
// Check the associated scope for MakeAvailableKHR.
const auto available_scope = GetMakeAvailableScope(inst, mask, index);
if (auto error = ValidateMemoryScope(_, inst, available_scope))
return error;
}
if (mask & SpvMemoryAccessMakePointerVisibleKHRMask) {
if (inst->opcode() == SpvOpStore ||
inst->opcode() == SpvOpCooperativeMatrixStoreNV) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "MakePointerVisibleKHR cannot be used with OpStore.";
}
if (!(mask & SpvMemoryAccessNonPrivatePointerKHRMask)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "NonPrivatePointerKHR must be specified if "
<< "MakePointerVisibleKHR is specified.";
}
// Check the associated scope for MakeVisibleKHR.
const auto visible_scope = GetMakeVisibleScope(inst, mask, index);
if (auto error = ValidateMemoryScope(_, inst, visible_scope)) return error;
}
if (mask & SpvMemoryAccessNonPrivatePointerKHRMask) {
if (dst_sc != SpvStorageClassUniform &&
dst_sc != SpvStorageClassWorkgroup &&
dst_sc != SpvStorageClassCrossWorkgroup &&
dst_sc != SpvStorageClassGeneric && dst_sc != SpvStorageClassImage &&
dst_sc != SpvStorageClassStorageBuffer &&
dst_sc != SpvStorageClassPhysicalStorageBufferEXT) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "NonPrivatePointerKHR requires a pointer in Uniform, "
<< "Workgroup, CrossWorkgroup, Generic, Image or StorageBuffer "
<< "storage classes.";
}
if (src_sc != SpvStorageClassMax && src_sc != SpvStorageClassUniform &&
src_sc != SpvStorageClassWorkgroup &&
src_sc != SpvStorageClassCrossWorkgroup &&
src_sc != SpvStorageClassGeneric && src_sc != SpvStorageClassImage &&
src_sc != SpvStorageClassStorageBuffer &&
src_sc != SpvStorageClassPhysicalStorageBufferEXT) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "NonPrivatePointerKHR requires a pointer in Uniform, "
<< "Workgroup, CrossWorkgroup, Generic, Image or StorageBuffer "
<< "storage classes.";
}
}
if (!(mask & SpvMemoryAccessAlignedMask)) {
if (src_sc == SpvStorageClassPhysicalStorageBufferEXT ||
dst_sc == SpvStorageClassPhysicalStorageBufferEXT) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Memory accesses with PhysicalStorageBufferEXT must use "
"Aligned.";
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateVariable(ValidationState_t& _, const Instruction* inst) {
auto result_type = _.FindDef(inst->type_id());
if (!result_type || result_type->opcode() != SpvOpTypePointer) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpVariable Result Type <id> '" << _.getIdName(inst->type_id())
<< "' is not a pointer type.";
}
const auto initializer_index = 3;
const auto storage_class_index = 2;
if (initializer_index < inst->operands().size()) {
const auto initializer_id = inst->GetOperandAs<uint32_t>(initializer_index);
const auto initializer = _.FindDef(initializer_id);
const auto is_module_scope_var =
initializer && (initializer->opcode() == SpvOpVariable) &&
(initializer->GetOperandAs<SpvStorageClass>(storage_class_index) !=
SpvStorageClassFunction);
const auto is_constant =
initializer && spvOpcodeIsConstant(initializer->opcode());
if (!initializer || !(is_constant || is_module_scope_var)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpVariable Initializer <id> '" << _.getIdName(initializer_id)
<< "' is not a constant or module-scope variable.";
}
if (initializer->type_id() != result_type->GetOperandAs<uint32_t>(2u)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Initializer type must match the type pointed to by the Result "
"Type";
}
}
auto storage_class = inst->GetOperandAs<SpvStorageClass>(storage_class_index);
if (storage_class != SpvStorageClassWorkgroup &&
storage_class != SpvStorageClassCrossWorkgroup &&
storage_class != SpvStorageClassPrivate &&
storage_class != SpvStorageClassFunction &&
storage_class != SpvStorageClassRayPayloadNV &&
storage_class != SpvStorageClassIncomingRayPayloadNV &&
storage_class != SpvStorageClassHitAttributeNV &&
storage_class != SpvStorageClassCallableDataNV &&
storage_class != SpvStorageClassIncomingCallableDataNV) {
const auto storage_index = 2;
const auto storage_id = result_type->GetOperandAs<uint32_t>(storage_index);
const auto storage = _.FindDef(storage_id);
bool storage_input_or_output = storage_class == SpvStorageClassInput ||
storage_class == SpvStorageClassOutput;
bool builtin = false;
if (storage_input_or_output) {
for (const Decoration& decoration : _.id_decorations(inst->id())) {
if (decoration.dec_type() == SpvDecorationBuiltIn) {
builtin = true;
break;
}
}
}
if (!(storage_input_or_output && builtin) &&
ContainsInvalidBool(_, storage, storage_input_or_output)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "If OpTypeBool is stored in conjunction with OpVariable, it "
<< "can only be used with non-externally visible shader Storage "
<< "Classes: Workgroup, CrossWorkgroup, Private, and Function";
}
}
// SPIR-V 3.32.8: Check that pointer type and variable type have the same
// storage class.
const auto result_storage_class_index = 1;
const auto result_storage_class =
result_type->GetOperandAs<uint32_t>(result_storage_class_index);
if (storage_class != result_storage_class) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "From SPIR-V spec, section 3.32.8 on OpVariable:\n"
<< "Its Storage Class operand must be the same as the Storage Class "
<< "operand of the result type.";
}
// Variable pointer related restrictions.
const auto pointee = _.FindDef(result_type->word(3));
if (_.addressing_model() == SpvAddressingModelLogical &&
!_.options()->relax_logical_pointer) {
// VariablePointersStorageBuffer is implied by VariablePointers.
if (pointee->opcode() == SpvOpTypePointer) {
if (!_.HasCapability(SpvCapabilityVariablePointersStorageBuffer)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "In Logical addressing, variables may not allocate a pointer "
<< "type";
} else if (storage_class != SpvStorageClassFunction &&
storage_class != SpvStorageClassPrivate) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "In Logical addressing with variable pointers, variables "
<< "that allocate pointers must be in Function or Private "
<< "storage classes";
}
}
}
// Vulkan 14.5.1: Check type of PushConstant variables.
// Vulkan 14.5.2: Check type of UniformConstant and Uniform variables.
if (spvIsVulkanEnv(_.context()->target_env)) {
if (storage_class == SpvStorageClassPushConstant) {
if (!IsAllowedTypeOrArrayOfSame(_, pointee, {SpvOpTypeStruct})) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "PushConstant OpVariable <id> '" << _.getIdName(inst->id())
<< "' has illegal type.\n"
<< "From Vulkan spec, section 14.5.1:\n"
<< "Such variables must be typed as OpTypeStruct, "
<< "or an array of this type";
}
}
if (storage_class == SpvStorageClassUniformConstant) {
if (!IsAllowedTypeOrArrayOfSame(
_, pointee,
{SpvOpTypeImage, SpvOpTypeSampler, SpvOpTypeSampledImage,
SpvOpTypeAccelerationStructureNV})) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "UniformConstant OpVariable <id> '" << _.getIdName(inst->id())
<< "' has illegal type.\n"
<< "From Vulkan spec, section 14.5.2:\n"
<< "Variables identified with the UniformConstant storage class "
<< "are used only as handles to refer to opaque resources. Such "
<< "variables must be typed as OpTypeImage, OpTypeSampler, "
<< "OpTypeSampledImage, OpTypeAccelerationStructureNV, "
<< "or an array of one of these types.";
}
}
if (storage_class == SpvStorageClassUniform) {
if (!IsAllowedTypeOrArrayOfSame(_, pointee, {SpvOpTypeStruct})) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Uniform OpVariable <id> '" << _.getIdName(inst->id())
<< "' has illegal type.\n"
<< "From Vulkan spec, section 14.5.2:\n"
<< "Variables identified with the Uniform storage class are "
<< "used to access transparent buffer backed resources. Such "
<< "variables must be typed as OpTypeStruct, or an array of "
<< "this type";
}
}
}
// WebGPU & Vulkan Appendix A: Check that if contains initializer, then
// storage class is Output, Private, or Function.
if (inst->operands().size() > 3 && storage_class != SpvStorageClassOutput &&
storage_class != SpvStorageClassPrivate &&
storage_class != SpvStorageClassFunction) {
if (spvIsVulkanOrWebGPUEnv(_.context()->target_env)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpVariable, <id> '" << _.getIdName(inst->id())
<< "', has a disallowed initializer & storage class "
<< "combination.\n"
<< "From " << spvLogStringForEnv(_.context()->target_env)
<< " spec:\n"
<< "Variable declarations that include initializers must have "
<< "one of the following storage classes: Output, Private, or "
<< "Function";
}
}
// WebGPU: All variables with storage class Output, Private, or Function MUST
// have an initializer.
if (spvIsWebGPUEnv(_.context()->target_env) && inst->operands().size() <= 3 &&
(storage_class == SpvStorageClassOutput ||
storage_class == SpvStorageClassPrivate ||
storage_class == SpvStorageClassFunction)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpVariable, <id> '" << _.getIdName(inst->id())
<< "', must have an initializer.\n"
<< "From WebGPU execution environment spec:\n"
<< "All variables in the following storage classes must have an "
<< "initializer: Output, Private, or Function";
}
if (storage_class == SpvStorageClassPhysicalStorageBufferEXT) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "PhysicalStorageBufferEXT must not be used with OpVariable.";
}
auto pointee_base = pointee;
while (pointee_base->opcode() == SpvOpTypeArray) {
pointee_base = _.FindDef(pointee_base->GetOperandAs<uint32_t>(1u));
}
if (pointee_base->opcode() == SpvOpTypePointer) {
if (pointee_base->GetOperandAs<uint32_t>(1u) ==
SpvStorageClassPhysicalStorageBufferEXT) {
// check for AliasedPointerEXT/RestrictPointerEXT
bool foundAliased =
_.HasDecoration(inst->id(), SpvDecorationAliasedPointerEXT);
bool foundRestrict =
_.HasDecoration(inst->id(), SpvDecorationRestrictPointerEXT);
if (!foundAliased && !foundRestrict) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpVariable " << inst->id()
<< ": expected AliasedPointerEXT or RestrictPointerEXT for "
<< "PhysicalStorageBufferEXT pointer.";
}
if (foundAliased && foundRestrict) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpVariable " << inst->id()
<< ": can't specify both AliasedPointerEXT and "
<< "RestrictPointerEXT for PhysicalStorageBufferEXT pointer.";
}
}
}
// Vulkan specific validation rules for OpTypeRuntimeArray
const auto type_index = 2;
const auto value_id = result_type->GetOperandAs<uint32_t>(type_index);
auto value_type = _.FindDef(value_id);
if (spvIsVulkanEnv(_.context()->target_env)) {
// OpTypeRuntimeArray should only ever be in a container like OpTypeStruct,
// so should never appear as a bare variable.
// Unless the module has the RuntimeDescriptorArrayEXT capability.
if (value_type && value_type->opcode() == SpvOpTypeRuntimeArray) {
if (!_.HasCapability(SpvCapabilityRuntimeDescriptorArrayEXT)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpVariable, <id> '" << _.getIdName(inst->id())
<< "', is attempting to create memory for an illegal type, "
<< "OpTypeRuntimeArray.\nFor Vulkan OpTypeRuntimeArray can only "
<< "appear as the final member of an OpTypeStruct, thus cannot "
<< "be instantiated via OpVariable";
} else {
// A bare variable OpTypeRuntimeArray is allowed in this context, but
// still need to check the storage class.
if (storage_class != SpvStorageClassStorageBuffer &&
storage_class != SpvStorageClassUniform &&
storage_class != SpvStorageClassUniformConstant) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "For Vulkan with RuntimeDescriptorArrayEXT, a variable "
<< "containing OpTypeRuntimeArray must have storage class of "
<< "StorageBuffer, Uniform, or UniformConstant.";
}
}
}
// If an OpStruct has an OpTypeRuntimeArray somewhere within it, then it
// must either have the storage class StorageBuffer and be decorated
// with Block, or it must be in the Uniform storage class and be decorated
// as BufferBlock.
if (value_type && value_type->opcode() == SpvOpTypeStruct) {
if (DoesStructContainRTA(_, value_type)) {
if (storage_class == SpvStorageClassStorageBuffer) {
if (!_.HasDecoration(value_id, SpvDecorationBlock)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "For Vulkan, an OpTypeStruct variable containing an "
<< "OpTypeRuntimeArray must be decorated with Block if it "
<< "has storage class StorageBuffer.";
}
} else if (storage_class == SpvStorageClassUniform) {
if (!_.HasDecoration(value_id, SpvDecorationBufferBlock)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "For Vulkan, an OpTypeStruct variable containing an "
<< "OpTypeRuntimeArray must be decorated with BufferBlock "
<< "if it has storage class Uniform.";
}
} else {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "For Vulkan, OpTypeStruct variables containing "
<< "OpTypeRuntimeArray must have storage class of "
<< "StorageBuffer or Uniform.";
}
}
}
}
// WebGPU specific validation rules for OpTypeRuntimeArray
if (spvIsWebGPUEnv(_.context()->target_env)) {
// OpTypeRuntimeArray should only ever be in an OpTypeStruct,
// so should never appear as a bare variable.
if (value_type && value_type->opcode() == SpvOpTypeRuntimeArray) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpVariable, <id> '" << _.getIdName(inst->id())
<< "', is attempting to create memory for an illegal type, "
<< "OpTypeRuntimeArray.\nFor WebGPU OpTypeRuntimeArray can only "
<< "appear as the final member of an OpTypeStruct, thus cannot "
<< "be instantiated via OpVariable";
}
// If an OpStruct has an OpTypeRuntimeArray somewhere within it, then it
// must have the storage class StorageBuffer and be decorated
// with Block.
if (value_type && value_type->opcode() == SpvOpTypeStruct) {
if (DoesStructContainRTA(_, value_type)) {
if (storage_class == SpvStorageClassStorageBuffer) {
if (!_.HasDecoration(value_id, SpvDecorationBlock)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "For WebGPU, an OpTypeStruct variable containing an "
<< "OpTypeRuntimeArray must be decorated with Block if it "
<< "has storage class StorageBuffer.";
}
} else {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "For WebGPU, OpTypeStruct variables containing "
<< "OpTypeRuntimeArray must have storage class of "
<< "StorageBuffer";
}
}
}
}
// Cooperative matrix types can only be allocated in Function or Private
if ((storage_class != SpvStorageClassFunction &&
storage_class != SpvStorageClassPrivate) &&
ContainsCooperativeMatrix(_, pointee)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Cooperative matrix types (or types containing them) can only be "
"allocated "
<< "in Function or Private storage classes or as function "
"parameters";
}
if (_.HasCapability(SpvCapabilityShader)) {
// Don't allow variables containing 16-bit elements without the appropriate
// capabilities.
if ((!_.HasCapability(SpvCapabilityInt16) &&
_.ContainsSizedIntOrFloatType(value_id, SpvOpTypeInt, 16)) ||
(!_.HasCapability(SpvCapabilityFloat16) &&
_.ContainsSizedIntOrFloatType(value_id, SpvOpTypeFloat, 16))) {
auto underlying_type = value_type;
while (underlying_type->opcode() == SpvOpTypePointer) {
storage_class = underlying_type->GetOperandAs<SpvStorageClass>(1u);
underlying_type =
_.FindDef(underlying_type->GetOperandAs<uint32_t>(2u));
}
bool storage_class_ok = true;
std::string sc_name = _.grammar().lookupOperandName(
SPV_OPERAND_TYPE_STORAGE_CLASS, storage_class);
switch (storage_class) {
case SpvStorageClassStorageBuffer:
case SpvStorageClassPhysicalStorageBufferEXT:
if (!_.HasCapability(SpvCapabilityStorageBuffer16BitAccess)) {
storage_class_ok = false;
}
break;
case SpvStorageClassUniform:
if (!_.HasCapability(
SpvCapabilityUniformAndStorageBuffer16BitAccess)) {
if (underlying_type->opcode() == SpvOpTypeArray ||
underlying_type->opcode() == SpvOpTypeRuntimeArray) {
underlying_type =
_.FindDef(underlying_type->GetOperandAs<uint32_t>(1u));
}
if (!_.HasCapability(SpvCapabilityStorageBuffer16BitAccess) ||
!_.HasDecoration(underlying_type->id(),
SpvDecorationBufferBlock)) {
storage_class_ok = false;
}
}
break;
case SpvStorageClassPushConstant:
if (!_.HasCapability(SpvCapabilityStoragePushConstant16)) {
storage_class_ok = false;
}
break;
case SpvStorageClassInput:
case SpvStorageClassOutput:
if (!_.HasCapability(SpvCapabilityStorageInputOutput16)) {
storage_class_ok = false;
}
break;
default:
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Cannot allocate a variable containing a 16-bit type in "
<< sc_name << " storage class";
}
if (!storage_class_ok) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Allocating a variable containing a 16-bit element in "
<< sc_name << " storage class requires an additional capability";
}
}
// Don't allow variables containing 8-bit elements without the appropriate
// capabilities.
if (!_.HasCapability(SpvCapabilityInt8) &&
_.ContainsSizedIntOrFloatType(value_id, SpvOpTypeInt, 8)) {
auto underlying_type = value_type;
while (underlying_type->opcode() == SpvOpTypePointer) {
storage_class = underlying_type->GetOperandAs<SpvStorageClass>(1u);
underlying_type =
_.FindDef(underlying_type->GetOperandAs<uint32_t>(2u));
}
bool storage_class_ok = true;
std::string sc_name = _.grammar().lookupOperandName(
SPV_OPERAND_TYPE_STORAGE_CLASS, storage_class);
switch (storage_class) {
case SpvStorageClassStorageBuffer:
case SpvStorageClassPhysicalStorageBufferEXT:
if (!_.HasCapability(SpvCapabilityStorageBuffer8BitAccess)) {
storage_class_ok = false;
}
break;
case SpvStorageClassUniform:
if (!_.HasCapability(
SpvCapabilityUniformAndStorageBuffer8BitAccess)) {
if (underlying_type->opcode() == SpvOpTypeArray ||
underlying_type->opcode() == SpvOpTypeRuntimeArray) {
underlying_type =
_.FindDef(underlying_type->GetOperandAs<uint32_t>(1u));
}
if (!_.HasCapability(SpvCapabilityStorageBuffer8BitAccess) ||
!_.HasDecoration(underlying_type->id(),
SpvDecorationBufferBlock)) {
storage_class_ok = false;
}
}
break;
case SpvStorageClassPushConstant:
if (!_.HasCapability(SpvCapabilityStoragePushConstant8)) {
storage_class_ok = false;
}
break;
default:
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Cannot allocate a variable containing a 8-bit type in "
<< sc_name << " storage class";
}
if (!storage_class_ok) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Allocating a variable containing a 8-bit element in "
<< sc_name << " storage class requires an additional capability";
}
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateLoad(ValidationState_t& _, const Instruction* inst) {
const auto result_type = _.FindDef(inst->type_id());
if (!result_type) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpLoad Result Type <id> '" << _.getIdName(inst->type_id())
<< "' is not defined.";
}
const bool uses_variable_pointers =
_.features().variable_pointers ||
_.features().variable_pointers_storage_buffer;
const auto pointer_index = 2;
const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
const auto pointer = _.FindDef(pointer_id);
if (!pointer ||
((_.addressing_model() == SpvAddressingModelLogical) &&
((!uses_variable_pointers &&
!spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
(uses_variable_pointers &&
!spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpLoad Pointer <id> '" << _.getIdName(pointer_id)
<< "' is not a logical pointer.";
}
const auto pointer_type = _.FindDef(pointer->type_id());
if (!pointer_type || pointer_type->opcode() != SpvOpTypePointer) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpLoad type for pointer <id> '" << _.getIdName(pointer_id)
<< "' is not a pointer type.";
}
const auto pointee_type = _.FindDef(pointer_type->GetOperandAs<uint32_t>(2));
if (!pointee_type || result_type->id() != pointee_type->id()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpLoad Result Type <id> '" << _.getIdName(inst->type_id())
<< "' does not match Pointer <id> '" << _.getIdName(pointer->id())
<< "'s type.";
}
if (auto error = CheckMemoryAccess(_, inst, 3)) return error;
if (_.HasCapability(SpvCapabilityShader) &&
_.ContainsLimitedUseIntOrFloatType(inst->type_id()) &&
result_type->opcode() != SpvOpTypePointer) {
if (result_type->opcode() != SpvOpTypeInt &&
result_type->opcode() != SpvOpTypeFloat &&
result_type->opcode() != SpvOpTypeVector &&
result_type->opcode() != SpvOpTypeMatrix) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "8- or 16-bit loads must be a scalar, vector or matrix type";
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateStore(ValidationState_t& _, const Instruction* inst) {
const bool uses_variable_pointer =
_.features().variable_pointers ||
_.features().variable_pointers_storage_buffer;
const auto pointer_index = 0;
const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
const auto pointer = _.FindDef(pointer_id);
if (!pointer ||
(_.addressing_model() == SpvAddressingModelLogical &&
((!uses_variable_pointer &&
!spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
(uses_variable_pointer &&
!spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "' is not a logical pointer.";
}
const auto pointer_type = _.FindDef(pointer->type_id());
if (!pointer_type || pointer_type->opcode() != SpvOpTypePointer) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpStore type for pointer <id> '" << _.getIdName(pointer_id)
<< "' is not a pointer type.";
}
const auto type_id = pointer_type->GetOperandAs<uint32_t>(2);
const auto type = _.FindDef(type_id);
if (!type || SpvOpTypeVoid == type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "'s type is void.";
}
// validate storage class
{
uint32_t data_type;
uint32_t storage_class;
if (!_.GetPointerTypeInfo(pointer_type->id(), &data_type, &storage_class)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "' is not pointer type";
}
if (storage_class == SpvStorageClassUniformConstant ||
storage_class == SpvStorageClassInput ||
storage_class == SpvStorageClassPushConstant) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "' storage class is read-only";
}
if (spvIsVulkanEnv(_.context()->target_env) &&
storage_class == SpvStorageClassUniform) {
auto base_ptr = _.TracePointer(pointer);
if (base_ptr->opcode() == SpvOpVariable) {
// If it's not a variable a different check should catch the problem.
auto base_type = _.FindDef(base_ptr->GetOperandAs<uint32_t>(0));
// Get the pointed-to type.
base_type = _.FindDef(base_type->GetOperandAs<uint32_t>(2u));
if (base_type->opcode() == SpvOpTypeArray ||
base_type->opcode() == SpvOpTypeRuntimeArray) {
base_type = _.FindDef(base_type->GetOperandAs<uint32_t>(1u));
}
if (_.HasDecoration(base_type->id(), SpvDecorationBlock)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "In the Vulkan environment, cannot store to Uniform Blocks";
}
}
}
}
const auto object_index = 1;
const auto object_id = inst->GetOperandAs<uint32_t>(object_index);
const auto object = _.FindDef(object_id);
if (!object || !object->type_id()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpStore Object <id> '" << _.getIdName(object_id)
<< "' is not an object.";
}
const auto object_type = _.FindDef(object->type_id());
if (!object_type || SpvOpTypeVoid == object_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpStore Object <id> '" << _.getIdName(object_id)
<< "'s type is void.";
}
if (type->id() != object_type->id()) {
if (!_.options()->relax_struct_store || type->opcode() != SpvOpTypeStruct ||
object_type->opcode() != SpvOpTypeStruct) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "'s type does not match Object <id> '"
<< _.getIdName(object->id()) << "'s type.";
}
// TODO: Check for layout compatible matricies and arrays as well.
if (!AreLayoutCompatibleStructs(_, type, object_type)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpStore Pointer <id> '" << _.getIdName(pointer_id)
<< "'s layout does not match Object <id> '"
<< _.getIdName(object->id()) << "'s layout.";
}
}
if (auto error = CheckMemoryAccess(_, inst, 2)) return error;
if (_.HasCapability(SpvCapabilityShader) &&
_.ContainsLimitedUseIntOrFloatType(inst->type_id()) &&
object_type->opcode() != SpvOpTypePointer) {
if (object_type->opcode() != SpvOpTypeInt &&
object_type->opcode() != SpvOpTypeFloat &&
object_type->opcode() != SpvOpTypeVector &&
object_type->opcode() != SpvOpTypeMatrix) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "8- or 16-bit stores must be a scalar, vector or matrix type";
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateCopyMemoryMemoryAccess(ValidationState_t& _,
const Instruction* inst) {
assert(inst->opcode() == SpvOpCopyMemory ||
inst->opcode() == SpvOpCopyMemorySized);
const uint32_t first_access_index = inst->opcode() == SpvOpCopyMemory ? 2 : 3;
if (inst->operands().size() > first_access_index) {
if (auto error = CheckMemoryAccess(_, inst, first_access_index))
return error;
const auto first_access = inst->GetOperandAs<uint32_t>(first_access_index);
const uint32_t second_access_index =
first_access_index + MemoryAccessNumWords(first_access);
if (inst->operands().size() > second_access_index) {
if (_.features().copy_memory_permits_two_memory_accesses) {
if (auto error = CheckMemoryAccess(_, inst, second_access_index))
return error;
// In the two-access form in SPIR-V 1.4 and later:
// - the first is the target (write) access and it can't have
// make-visible.
// - the second is the source (read) access and it can't have
// make-available.
if (first_access & SpvMemoryAccessMakePointerVisibleKHRMask) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Target memory access must not include "
"MakePointerVisibleKHR";
}
const auto second_access =
inst->GetOperandAs<uint32_t>(second_access_index);
if (second_access & SpvMemoryAccessMakePointerAvailableKHRMask) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Source memory access must not include "
"MakePointerAvailableKHR";
}
} else {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< spvOpcodeString(static_cast<SpvOp>(inst->opcode()))
<< " with two memory access operands requires SPIR-V 1.4 or "
"later";
}
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateCopyMemory(ValidationState_t& _, const Instruction* inst) {
const auto target_index = 0;
const auto target_id = inst->GetOperandAs<uint32_t>(target_index);
const auto target = _.FindDef(target_id);
if (!target) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Target operand <id> '" << _.getIdName(target_id)
<< "' is not defined.";
}
const auto source_index = 1;
const auto source_id = inst->GetOperandAs<uint32_t>(source_index);
const auto source = _.FindDef(source_id);
if (!source) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Source operand <id> '" << _.getIdName(source_id)
<< "' is not defined.";
}
const auto target_pointer_type = _.FindDef(target->type_id());
if (!target_pointer_type ||
target_pointer_type->opcode() != SpvOpTypePointer) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Target operand <id> '" << _.getIdName(target_id)
<< "' is not a pointer.";
}
const auto source_pointer_type = _.FindDef(source->type_id());
if (!source_pointer_type ||
source_pointer_type->opcode() != SpvOpTypePointer) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Source operand <id> '" << _.getIdName(source_id)
<< "' is not a pointer.";
}
if (inst->opcode() == SpvOpCopyMemory) {
const auto target_type =
_.FindDef(target_pointer_type->GetOperandAs<uint32_t>(2));
if (!target_type || target_type->opcode() == SpvOpTypeVoid) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Target operand <id> '" << _.getIdName(target_id)
<< "' cannot be a void pointer.";
}
const auto source_type =
_.FindDef(source_pointer_type->GetOperandAs<uint32_t>(2));
if (!source_type || source_type->opcode() == SpvOpTypeVoid) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Source operand <id> '" << _.getIdName(source_id)
<< "' cannot be a void pointer.";
}
if (target_type->id() != source_type->id()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Target <id> '" << _.getIdName(source_id)
<< "'s type does not match Source <id> '"
<< _.getIdName(source_type->id()) << "'s type.";
}
if (auto error = CheckMemoryAccess(_, inst, 2)) return error;
} else {
const auto size_id = inst->GetOperandAs<uint32_t>(2);
const auto size = _.FindDef(size_id);
if (!size) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Size operand <id> '" << _.getIdName(size_id)
<< "' is not defined.";
}
const auto size_type = _.FindDef(size->type_id());
if (!_.IsIntScalarType(size_type->id())) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Size operand <id> '" << _.getIdName(size_id)
<< "' must be a scalar integer type.";
}
bool is_zero = true;
switch (size->opcode()) {
case SpvOpConstantNull:
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Size operand <id> '" << _.getIdName(size_id)
<< "' cannot be a constant zero.";
case SpvOpConstant:
if (size_type->word(3) == 1 &&
size->word(size->words().size() - 1) & 0x80000000) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Size operand <id> '" << _.getIdName(size_id)
<< "' cannot have the sign bit set to 1.";
}
for (size_t i = 3; is_zero && i < size->words().size(); ++i) {
is_zero &= (size->word(i) == 0);
}
if (is_zero) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Size operand <id> '" << _.getIdName(size_id)
<< "' cannot be a constant zero.";
}
break;
default:
// Cannot infer any other opcodes.
break;
}
if (auto error = CheckMemoryAccess(_, inst, 3)) return error;
}
if (auto error = ValidateCopyMemoryMemoryAccess(_, inst)) return error;
// Get past the pointers to avoid checking a pointer copy.
auto sub_type = _.FindDef(target_pointer_type->GetOperandAs<uint32_t>(2));
while (sub_type->opcode() == SpvOpTypePointer) {
sub_type = _.FindDef(sub_type->GetOperandAs<uint32_t>(2));
}
if (_.HasCapability(SpvCapabilityShader) &&
_.ContainsLimitedUseIntOrFloatType(sub_type->id())) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Cannot copy memory of objects containing 8- or 16-bit types";
}
return SPV_SUCCESS;
}
spv_result_t ValidateAccessChain(ValidationState_t& _,
const Instruction* inst) {
std::string instr_name =
"Op" + std::string(spvOpcodeString(static_cast<SpvOp>(inst->opcode())));
// The result type must be OpTypePointer.
auto result_type = _.FindDef(inst->type_id());
if (SpvOpTypePointer != result_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "The Result Type of " << instr_name << " <id> '"
<< _.getIdName(inst->id()) << "' must be OpTypePointer. Found Op"
<< spvOpcodeString(static_cast<SpvOp>(result_type->opcode())) << ".";
}
// Result type is a pointer. Find out what it's pointing to.
// This will be used to make sure the indexing results in the same type.
// OpTypePointer word 3 is the type being pointed to.
const auto result_type_pointee = _.FindDef(result_type->word(3));
// Base must be a pointer, pointing to the base of a composite object.
const auto base_index = 2;
const auto base_id = inst->GetOperandAs<uint32_t>(base_index);
const auto base = _.FindDef(base_id);
const auto base_type = _.FindDef(base->type_id());
if (!base_type || SpvOpTypePointer != base_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "The Base <id> '" << _.getIdName(base_id) << "' in " << instr_name
<< " instruction must be a pointer.";
}
// The result pointer storage class and base pointer storage class must match.
// Word 2 of OpTypePointer is the Storage Class.
auto result_type_storage_class = result_type->word(2);
auto base_type_storage_class = base_type->word(2);
if (result_type_storage_class != base_type_storage_class) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "The result pointer storage class and base "
"pointer storage class in "
<< instr_name << " do not match.";
}
// The type pointed to by OpTypePointer (word 3) must be a composite type.
auto type_pointee = _.FindDef(base_type->word(3));
// Check Universal Limit (SPIR-V Spec. Section 2.17).
// The number of indexes passed to OpAccessChain may not exceed 255
// The instruction includes 4 words + N words (for N indexes)
size_t num_indexes = inst->words().size() - 4;
if (inst->opcode() == SpvOpPtrAccessChain ||
inst->opcode() == SpvOpInBoundsPtrAccessChain) {
// In pointer access chains, the element operand is required, but not
// counted as an index.
--num_indexes;
}
const size_t num_indexes_limit =
_.options()->universal_limits_.max_access_chain_indexes;
if (num_indexes > num_indexes_limit) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "The number of indexes in " << instr_name << " may not exceed "
<< num_indexes_limit << ". Found " << num_indexes << " indexes.";
}
// Indexes walk the type hierarchy to the desired depth, potentially down to
// scalar granularity. The first index in Indexes will select the top-level
// member/element/component/element of the base composite. All composite
// constituents use zero-based numbering, as described by their OpType...
// instruction. The second index will apply similarly to that result, and so
// on. Once any non-composite type is reached, there must be no remaining
// (unused) indexes.
auto starting_index = 4;
if (inst->opcode() == SpvOpPtrAccessChain ||
inst->opcode() == SpvOpInBoundsPtrAccessChain) {
++starting_index;
}
for (size_t i = starting_index; i < inst->words().size(); ++i) {
const uint32_t cur_word = inst->words()[i];
// Earlier ID checks ensure that cur_word definition exists.
auto cur_word_instr = _.FindDef(cur_word);
// The index must be a scalar integer type (See OpAccessChain in the Spec.)
auto index_type = _.FindDef(cur_word_instr->type_id());
if (!index_type || SpvOpTypeInt != index_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Indexes passed to " << instr_name
<< " must be of type integer.";
}
switch (type_pointee->opcode()) {
case SpvOpTypeMatrix:
case SpvOpTypeVector:
case SpvOpTypeCooperativeMatrixNV:
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray: {
// In OpTypeMatrix, OpTypeVector, SpvOpTypeCooperativeMatrixNV,
// OpTypeArray, and OpTypeRuntimeArray, word 2 is the Element Type.
type_pointee = _.FindDef(type_pointee->word(2));
break;
}
case SpvOpTypeStruct: {
// In case of structures, there is an additional constraint on the
// index: the index must be an OpConstant.
if (SpvOpConstant != cur_word_instr->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, cur_word_instr)
<< "The <id> passed to " << instr_name
<< " to index into a "
"structure must be an OpConstant.";
}
// Get the index value from the OpConstant (word 3 of OpConstant).
// OpConstant could be a signed integer. But it's okay to treat it as
// unsigned because a negative constant int would never be seen as
// correct as a struct offset, since structs can't have more than 2
// billion members.
const uint32_t cur_index = cur_word_instr->word(3);
// The index points to the struct member we want, therefore, the index
// should be less than the number of struct members.
const uint32_t num_struct_members =
static_cast<uint32_t>(type_pointee->words().size() - 2);
if (cur_index >= num_struct_members) {
return _.diag(SPV_ERROR_INVALID_ID, cur_word_instr)
<< "Index is out of bounds: " << instr_name
<< " can not find index " << cur_index
<< " into the structure <id> '"
<< _.getIdName(type_pointee->id()) << "'. This structure has "
<< num_struct_members << " members. Largest valid index is "
<< num_struct_members - 1 << ".";
}
// Struct members IDs start at word 2 of OpTypeStruct.
auto structMemberId = type_pointee->word(cur_index + 2);
type_pointee = _.FindDef(structMemberId);
break;
}
default: {
// Give an error. reached non-composite type while indexes still remain.
return _.diag(SPV_ERROR_INVALID_ID, cur_word_instr)
<< instr_name
<< " reached non-composite type while indexes "
"still remain to be traversed.";
}
}
}
// At this point, we have fully walked down from the base using the indeces.
// The type being pointed to should be the same as the result type.
if (type_pointee->id() != result_type_pointee->id()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< instr_name << " result type (Op"
<< spvOpcodeString(static_cast<SpvOp>(result_type_pointee->opcode()))
<< ") does not match the type that results from indexing into the "
"base "
"<id> (Op"
<< spvOpcodeString(static_cast<SpvOp>(type_pointee->opcode()))
<< ").";
}
return SPV_SUCCESS;
}
spv_result_t ValidatePtrAccessChain(ValidationState_t& _,
const Instruction* inst) {
if (_.addressing_model() == SpvAddressingModelLogical) {
if (!_.features().variable_pointers &&
!_.features().variable_pointers_storage_buffer) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Generating variable pointers requires capability "
<< "VariablePointers or VariablePointersStorageBuffer";
}
}
return ValidateAccessChain(_, inst);
}
spv_result_t ValidateArrayLength(ValidationState_t& state,
const Instruction* inst) {
std::string instr_name =
"Op" + std::string(spvOpcodeString(static_cast<SpvOp>(inst->opcode())));
// Result type must be a 32-bit unsigned int.
auto result_type = state.FindDef(inst->type_id());
if (result_type->opcode() != SpvOpTypeInt ||
result_type->GetOperandAs<uint32_t>(1) != 32 ||
result_type->GetOperandAs<uint32_t>(2) != 0) {
return state.diag(SPV_ERROR_INVALID_ID, inst)
<< "The Result Type of " << instr_name << " <id> '"
<< state.getIdName(inst->id())
<< "' must be OpTypeInt with width 32 and signedness 0.";
}
// The structure that is passed in must be an pointer to a structure, whose
// last element is a runtime array.
auto pointer = state.FindDef(inst->GetOperandAs<uint32_t>(2));
auto pointer_type = state.FindDef(pointer->type_id());
if (pointer_type->opcode() != SpvOpTypePointer) {
return state.diag(SPV_ERROR_INVALID_ID, inst)
<< "The Struture's type in " << instr_name << " <id> '"
<< state.getIdName(inst->id())
<< "' must be a pointer to an OpTypeStruct.";
}
auto structure_type = state.FindDef(pointer_type->GetOperandAs<uint32_t>(2));
if (structure_type->opcode() != SpvOpTypeStruct) {
return state.diag(SPV_ERROR_INVALID_ID, inst)
<< "The Struture's type in " << instr_name << " <id> '"
<< state.getIdName(inst->id())
<< "' must be a pointer to an OpTypeStruct.";
}
auto num_of_members = structure_type->operands().size() - 1;
auto last_member =
state.FindDef(structure_type->GetOperandAs<uint32_t>(num_of_members));
if (last_member->opcode() != SpvOpTypeRuntimeArray) {
return state.diag(SPV_ERROR_INVALID_ID, inst)
<< "The Struture's last member in " << instr_name << " <id> '"
<< state.getIdName(inst->id()) << "' must be an OpTypeRuntimeArray.";
}
// The array member must the the index of the last element (the run time
// array).
if (inst->GetOperandAs<uint32_t>(3) != num_of_members - 1) {
return state.diag(SPV_ERROR_INVALID_ID, inst)
<< "The array member in " << instr_name << " <id> '"
<< state.getIdName(inst->id())
<< "' must be an the last member of the struct.";
}
return SPV_SUCCESS;
}
spv_result_t ValidateCooperativeMatrixLengthNV(ValidationState_t& state,
const Instruction* inst) {
std::string instr_name =
"Op" + std::string(spvOpcodeString(static_cast<SpvOp>(inst->opcode())));
// Result type must be a 32-bit unsigned int.
auto result_type = state.FindDef(inst->type_id());
if (result_type->opcode() != SpvOpTypeInt ||
result_type->GetOperandAs<uint32_t>(1) != 32 ||
result_type->GetOperandAs<uint32_t>(2) != 0) {
return state.diag(SPV_ERROR_INVALID_ID, inst)
<< "The Result Type of " << instr_name << " <id> '"
<< state.getIdName(inst->id())
<< "' must be OpTypeInt with width 32 and signedness 0.";
}
auto type_id = inst->GetOperandAs<uint32_t>(2);
auto type = state.FindDef(type_id);
if (type->opcode() != SpvOpTypeCooperativeMatrixNV) {
return state.diag(SPV_ERROR_INVALID_ID, inst)
<< "The type in " << instr_name << " <id> '"
<< state.getIdName(type_id)
<< "' must be OpTypeCooperativeMatrixNV.";
}
return SPV_SUCCESS;
}
spv_result_t ValidateCooperativeMatrixLoadStoreNV(ValidationState_t& _,
const Instruction* inst) {
uint32_t type_id;
const char* opname;
if (inst->opcode() == SpvOpCooperativeMatrixLoadNV) {
type_id = inst->type_id();
opname = "SpvOpCooperativeMatrixLoadNV";
} else {
// get Object operand's type
type_id = _.FindDef(inst->GetOperandAs<uint32_t>(1))->type_id();
opname = "SpvOpCooperativeMatrixStoreNV";
}
auto matrix_type = _.FindDef(type_id);
if (matrix_type->opcode() != SpvOpTypeCooperativeMatrixNV) {
if (inst->opcode() == SpvOpCooperativeMatrixLoadNV) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "SpvOpCooperativeMatrixLoadNV Result Type <id> '"
<< _.getIdName(type_id) << "' is not a cooperative matrix type.";
} else {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "SpvOpCooperativeMatrixStoreNV Object type <id> '"
<< _.getIdName(type_id) << "' is not a cooperative matrix type.";
}
}
const bool uses_variable_pointers =
_.features().variable_pointers ||
_.features().variable_pointers_storage_buffer;
const auto pointer_index =
(inst->opcode() == SpvOpCooperativeMatrixLoadNV) ? 2u : 0u;
const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
const auto pointer = _.FindDef(pointer_id);
if (!pointer ||
((_.addressing_model() == SpvAddressingModelLogical) &&
((!uses_variable_pointers &&
!spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
(uses_variable_pointers &&
!spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< opname << " Pointer <id> '" << _.getIdName(pointer_id)
<< "' is not a logical pointer.";
}
const auto pointer_type_id = pointer->type_id();
const auto pointer_type = _.FindDef(pointer_type_id);
if (!pointer_type || pointer_type->opcode() != SpvOpTypePointer) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< opname << " type for pointer <id> '" << _.getIdName(pointer_id)
<< "' is not a pointer type.";
}
const auto storage_class_index = 1u;
const auto storage_class =
pointer_type->GetOperandAs<uint32_t>(storage_class_index);
if (storage_class != SpvStorageClassWorkgroup &&
storage_class != SpvStorageClassStorageBuffer &&
storage_class != SpvStorageClassPhysicalStorageBufferEXT) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< opname << " storage class for pointer type <id> '"
<< _.getIdName(pointer_type_id)
<< "' is not Workgroup or StorageBuffer.";
}
const auto pointee_id = pointer_type->GetOperandAs<uint32_t>(2);
const auto pointee_type = _.FindDef(pointee_id);
if (!pointee_type || !(_.IsIntScalarOrVectorType(pointee_id) ||
_.IsFloatScalarOrVectorType(pointee_id))) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< opname << " Pointer <id> '" << _.getIdName(pointer->id())
<< "'s Type must be a scalar or vector type.";
}
const auto stride_index =
(inst->opcode() == SpvOpCooperativeMatrixLoadNV) ? 3u : 2u;
const auto stride_id = inst->GetOperandAs<uint32_t>(stride_index);
const auto stride = _.FindDef(stride_id);
if (!stride || !_.IsIntScalarType(stride->type_id())) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Stride operand <id> '" << _.getIdName(stride_id)
<< "' must be a scalar integer type.";
}
const auto colmajor_index =
(inst->opcode() == SpvOpCooperativeMatrixLoadNV) ? 4u : 3u;
const auto colmajor_id = inst->GetOperandAs<uint32_t>(colmajor_index);
const auto colmajor = _.FindDef(colmajor_id);
if (!colmajor || !_.IsBoolScalarType(colmajor->type_id()) ||
!(spvOpcodeIsConstant(colmajor->opcode()) ||
spvOpcodeIsSpecConstant(colmajor->opcode()))) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Column Major operand <id> '" << _.getIdName(colmajor_id)
<< "' must be a boolean constant instruction.";
}
const auto memory_access_index =
(inst->opcode() == SpvOpCooperativeMatrixLoadNV) ? 5u : 4u;
if (inst->operands().size() > memory_access_index) {
if (auto error = CheckMemoryAccess(_, inst, memory_access_index))
return error;
}
return SPV_SUCCESS;
}
spv_result_t ValidatePtrComparison(ValidationState_t& _,
const Instruction* inst) {
if (_.addressing_model() == SpvAddressingModelLogical &&
!_.features().variable_pointers_storage_buffer) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Instruction cannot be used without a variable pointers "
"capability";
}
const auto result_type = _.FindDef(inst->type_id());
if (inst->opcode() == SpvOpPtrDiff) {
if (!result_type || result_type->opcode() != SpvOpTypeInt) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Result Type must be an integer scalar";
}
} else {
if (!result_type || result_type->opcode() != SpvOpTypeBool) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Result Type must be OpTypeBool";
}
}
const auto op1 = _.FindDef(inst->GetOperandAs<uint32_t>(2u));
const auto op2 = _.FindDef(inst->GetOperandAs<uint32_t>(3u));
if (!op1 || !op2 || op1->type_id() != op2->type_id()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "The types of Operand 1 and Operand 2 must match";
}
const auto op1_type = _.FindDef(op1->type_id());
if (!op1_type || op1_type->opcode() != SpvOpTypePointer) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Operand type must be a pointer";
}
if (_.addressing_model() == SpvAddressingModelLogical) {
SpvStorageClass sc = op1_type->GetOperandAs<SpvStorageClass>(1u);
if (sc != SpvStorageClassWorkgroup && sc != SpvStorageClassStorageBuffer) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Invalid pointer storage class";
}
if (sc == SpvStorageClassWorkgroup && !_.features().variable_pointers) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Workgroup storage class pointer requires VariablePointers "
"capability to be specified";
}
}
return SPV_SUCCESS;
}
} // namespace
spv_result_t MemoryPass(ValidationState_t& _, const Instruction* inst) {
switch (inst->opcode()) {
case SpvOpVariable:
if (auto error = ValidateVariable(_, inst)) return error;
break;
case SpvOpLoad:
if (auto error = ValidateLoad(_, inst)) return error;
break;
case SpvOpStore:
if (auto error = ValidateStore(_, inst)) return error;
break;
case SpvOpCopyMemory:
case SpvOpCopyMemorySized:
if (auto error = ValidateCopyMemory(_, inst)) return error;
break;
case SpvOpPtrAccessChain:
if (auto error = ValidatePtrAccessChain(_, inst)) return error;
break;
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
case SpvOpInBoundsPtrAccessChain:
if (auto error = ValidateAccessChain(_, inst)) return error;
break;
case SpvOpArrayLength:
if (auto error = ValidateArrayLength(_, inst)) return error;
break;
case SpvOpCooperativeMatrixLoadNV:
case SpvOpCooperativeMatrixStoreNV:
if (auto error = ValidateCooperativeMatrixLoadStoreNV(_, inst))
return error;
break;
case SpvOpCooperativeMatrixLengthNV:
if (auto error = ValidateCooperativeMatrixLengthNV(_, inst)) return error;
break;
case SpvOpPtrEqual:
case SpvOpPtrNotEqual:
case SpvOpPtrDiff:
if (auto error = ValidatePtrComparison(_, inst)) return error;
break;
case SpvOpImageTexelPointer:
case SpvOpGenericPtrMemSemantics:
default:
break;
}
return SPV_SUCCESS;
}
} // namespace val
} // namespace spvtools