blob: 560d7dc528eaf00899895eabebaedee6c6ddfad3 [file] [log] [blame]
// Copyright (c) 2020 Vasyl Teliman
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SOURCE_FUZZ_TRANSFORMATION_PROPAGATE_INSTRUCTION_DOWN_H_
#define SOURCE_FUZZ_TRANSFORMATION_PROPAGATE_INSTRUCTION_DOWN_H_
#include <map>
#include "source/fuzz/protobufs/spirvfuzz_protobufs.h"
#include "source/fuzz/transformation.h"
#include "source/fuzz/transformation_context.h"
#include "source/opt/ir_context.h"
namespace spvtools {
namespace fuzz {
class TransformationPropagateInstructionDown : public Transformation {
public:
explicit TransformationPropagateInstructionDown(
protobufs::TransformationPropagateInstructionDown message);
TransformationPropagateInstructionDown(
uint32_t block_id, uint32_t phi_fresh_id,
const std::map<uint32_t, uint32_t>& successor_id_to_fresh_id);
// - It should be possible to apply this transformation to |block_id| (see
// IsApplicableToBlock method).
// - Every acceptable successor of |block_id| (see GetAcceptableSuccessors
// method) must have an entry in the |successor_id_to_fresh_id| map unless
// overflow ids are available.
// - All values in |successor_id_to_fresh_id| and |phi_fresh_id| must be
// unique and fresh.
bool IsApplicable(
opt::IRContext* ir_context,
const TransformationContext& transformation_context) const override;
// - Adds a clone of the propagated instruction into every acceptable
// successor of |block_id|.
// - Removes the original instruction.
// - Creates an OpPhi instruction if possible, that tries to group created
// clones.
// - If the original instruction's id was irrelevant - marks created
// instructions as irrelevant. Otherwise, marks the created instructions as
// synonymous to each other if possible (i.e. skips instructions, copied
// into dead blocks).
void Apply(opt::IRContext* ir_context,
TransformationContext* transformation_context) const override;
protobufs::Transformation ToMessage() const override;
// Returns true if this transformation can be applied to the block with id
// |block_id|. Concretely, returns true iff:
// - |block_id| is a result id of some reachable basic block in the module.
// - the block has an instruction to propagate (see
// GetInstructionToPropagate method).
// - the block has at least one acceptable successor (see
// GetAcceptableSuccessors method).
// - none of the acceptable successors have OpPhi instructions that use the
// original instruction.
// - it is possible to replace every use of the original instruction with some
// of the propagated instructions (or an OpPhi if we can create it - see
// GetOpPhiBlockId method).
static bool IsApplicableToBlock(opt::IRContext* ir_context,
uint32_t block_id);
// Returns ids of successors of |block_id|, that can be used to propagate an
// instruction into. Concretely, a successor block is acceptable if all
// dependencies of the propagated instruction dominate it. Note that this
// implies that an acceptable successor must be reachable in the CFG.
// For example:
// %1 = OpLabel
// OpSelectionMerge %2 None
// OpBranchConditional %cond %2 %3
// %3 = OpLabel
// %4 = OpUndef %int
// %5 = OpCopyObject %int %4
// OpBranch %2
// %2 = OpLabel
// ...
// In this example, %2 is not an acceptable successor of %3 since one of the
// dependencies (%4) of the propagated instruction (%5) does not dominate it.
static std::unordered_set<uint32_t> GetAcceptableSuccessors(
opt::IRContext* ir_context, uint32_t block_id);
std::unordered_set<uint32_t> GetFreshIds() const override;
private:
// Returns the last possible instruction in the |block_id| that satisfies the
// following properties:
// - has result id
// - has type id
// - has supported opcode (see IsOpcodeSupported method)
// - has no users in its basic block.
// Returns nullptr if no such an instruction exists. For example:
// %1 = OpLabel
// %2 = OpUndef %int
// %3 = OpUndef %int
// OpStore %var %3
// OpBranch %some_block
// In this example:
// - We cannot propagate OpBranch nor OpStore since they both have unsupported
// opcodes and have neither result ids nor type ids.
// - We cannot propagate %3 either since it is used by OpStore.
// - We can propagate %2 since it satisfies all our conditions.
// The basic idea behind this method it to make sure that the returned
// instruction will not break domination rules in its original block when
// propagated.
static opt::Instruction* GetInstructionToPropagate(opt::IRContext* ir_context,
uint32_t block_id);
// Returns true if |opcode| is supported by this transformation.
static bool IsOpcodeSupported(SpvOp opcode);
// Returns the first instruction in the |block| that allows us to insert
// |opcode| above itself. Returns nullptr is no such instruction exists.
static opt::Instruction* GetFirstInsertBeforeInstruction(
opt::IRContext* ir_context, uint32_t block_id, SpvOp opcode);
// Returns a result id of a basic block, where an OpPhi instruction can be
// inserted. Returns nullptr if it's not possible to create an OpPhi. The
// created OpPhi instruction groups all the propagated clones of the original
// instruction. |block_id| is a result id of the block we propagate the
// instruction from. |successor_ids| contains result ids of the successors we
// propagate the instruction into. Concretely, returns a non-null value if:
// - |block_id| is in some construct.
// - The merge block of that construct is reachable.
// - |block_id| dominates that merge block.
// - That merge block may not be an acceptable successor of |block_id|.
// - There must be at least one |block_id|'s acceptable successor for every
// predecessor of the merge block, dominating that predecessor.
// - We can't create an OpPhi if the module has neither VariablePointers nor
// VariablePointersStorageBuffer capabilities.
// A simple example of when we can insert an OpPhi instruction is:
// - This snippet of code:
// %1 = OpLabel
// %2 = OpUndef %int
// OpSelectionMerge %5 None
// OpBranchConditional %cond %3 %4
// %3 = OpLabel
// OpBranch %5
// %4 = OpLabel
// OpBranch %5
// %5 = OpLabel
// ...
// will be transformed into the following one (if %2 is propagated):
// %1 = OpLabel
// OpSelectionMerge %5 None
// OpBranchConditional %cond %3 %4
// %3 = OpLabel
// %6 = OpUndef %int
// OpBranch %5
// %4 = OpLabel
// %7 = OpUndef %int
// OpBranch %5
// %5 = OpLabel
// %8 = OpPhi %int %6 %3 %7 %4
// ...
// The fact that we introduce an OpPhi allows us to increase the applicability
// of the transformation. Concretely, we wouldn't be able to apply it in the
// example above if %2 were used in %5. Some more complicated examples can be
// found in unit tests.
static uint32_t GetOpPhiBlockId(
opt::IRContext* ir_context, uint32_t block_id,
const opt::Instruction& inst_to_propagate,
const std::unordered_set<uint32_t>& successor_ids);
protobufs::TransformationPropagateInstructionDown message_;
};
} // namespace fuzz
} // namespace spvtools
#endif // SOURCE_FUZZ_TRANSFORMATION_PROPAGATE_INSTRUCTION_DOWN_H_