blob: 5884b41653440dad4311486ec57b003888928629 [file] [log] [blame]
//
// Copyright (c) 2017-2021 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
#ifdef _WIN32
#include "SparseBindingTest.h"
#include "Tests.h"
#include "VmaUsage.h"
#include "Common.h"
#include <atomic>
static const char* const SHADER_PATH1 = "./";
static const char* const SHADER_PATH2 = "../bin/";
static const wchar_t* const WINDOW_CLASS_NAME = L"VULKAN_MEMORY_ALLOCATOR_SAMPLE";
static const char* const VALIDATION_LAYER_NAME = "VK_LAYER_KHRONOS_validation";
static const char* const APP_TITLE_A = "Vulkan Memory Allocator Sample 2.4.0";
static const wchar_t* const APP_TITLE_W = L"Vulkan Memory Allocator Sample 2.4.0";
static const bool VSYNC = true;
static const uint32_t COMMAND_BUFFER_COUNT = 2;
static void* const CUSTOM_CPU_ALLOCATION_CALLBACK_USER_DATA = (void*)(intptr_t)43564544;
static const bool USE_CUSTOM_CPU_ALLOCATION_CALLBACKS = true;
VkPhysicalDevice g_hPhysicalDevice;
VkDevice g_hDevice;
VmaAllocator g_hAllocator;
VkInstance g_hVulkanInstance;
bool g_EnableValidationLayer = true;
bool VK_KHR_get_memory_requirements2_enabled = false;
bool VK_KHR_get_physical_device_properties2_enabled = false;
bool VK_KHR_dedicated_allocation_enabled = false;
bool VK_KHR_bind_memory2_enabled = false;
bool VK_EXT_memory_budget_enabled = false;
bool VK_AMD_device_coherent_memory_enabled = false;
bool VK_EXT_buffer_device_address_enabled = false;
bool VK_KHR_buffer_device_address_enabled = false;
bool VK_EXT_memory_priority_enabled = false;
bool VK_EXT_debug_utils_enabled = false;
bool g_SparseBindingEnabled = false;
bool g_BufferDeviceAddressEnabled = false;
// # Pointers to functions from extensions
PFN_vkGetBufferDeviceAddressEXT g_vkGetBufferDeviceAddressEXT;
static HINSTANCE g_hAppInstance;
static HWND g_hWnd;
static LONG g_SizeX = 1280, g_SizeY = 720;
static VkSurfaceKHR g_hSurface;
static VkQueue g_hPresentQueue;
static VkSurfaceFormatKHR g_SurfaceFormat;
static VkExtent2D g_Extent;
static VkSwapchainKHR g_hSwapchain;
static std::vector<VkImage> g_SwapchainImages;
static std::vector<VkImageView> g_SwapchainImageViews;
static std::vector<VkFramebuffer> g_Framebuffers;
static VkCommandPool g_hCommandPool;
static VkCommandBuffer g_MainCommandBuffers[COMMAND_BUFFER_COUNT];
static VkFence g_MainCommandBufferExecutedFances[COMMAND_BUFFER_COUNT];
VkFence g_ImmediateFence;
static uint32_t g_NextCommandBufferIndex;
static VkSemaphore g_hImageAvailableSemaphore;
static VkSemaphore g_hRenderFinishedSemaphore;
static uint32_t g_GraphicsQueueFamilyIndex = UINT_MAX;
static uint32_t g_PresentQueueFamilyIndex = UINT_MAX;
static uint32_t g_SparseBindingQueueFamilyIndex = UINT_MAX;
static VkDescriptorSetLayout g_hDescriptorSetLayout;
static VkDescriptorPool g_hDescriptorPool;
static VkDescriptorSet g_hDescriptorSet; // Automatically destroyed with m_DescriptorPool.
static VkSampler g_hSampler;
static VkFormat g_DepthFormat;
static VkImage g_hDepthImage;
static VmaAllocation g_hDepthImageAlloc;
static VkImageView g_hDepthImageView;
static VkSurfaceCapabilitiesKHR g_SurfaceCapabilities;
static std::vector<VkSurfaceFormatKHR> g_SurfaceFormats;
static std::vector<VkPresentModeKHR> g_PresentModes;
static const VkDebugUtilsMessageSeverityFlagsEXT DEBUG_UTILS_MESSENGER_MESSAGE_SEVERITY =
//VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT |
//VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
static const VkDebugUtilsMessageTypeFlagsEXT DEBUG_UTILS_MESSENGER_MESSAGE_TYPE =
VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
static PFN_vkCreateDebugUtilsMessengerEXT vkCreateDebugUtilsMessengerEXT_Func;
static PFN_vkDestroyDebugUtilsMessengerEXT vkDestroyDebugUtilsMessengerEXT_Func;
static VkDebugUtilsMessengerEXT g_DebugUtilsMessenger;
static VkQueue g_hGraphicsQueue;
VkQueue g_hSparseBindingQueue;
VkCommandBuffer g_hTemporaryCommandBuffer;
static VkPipelineLayout g_hPipelineLayout;
static VkRenderPass g_hRenderPass;
static VkPipeline g_hPipeline;
static VkBuffer g_hVertexBuffer;
static VmaAllocation g_hVertexBufferAlloc;
static VkBuffer g_hIndexBuffer;
static VmaAllocation g_hIndexBufferAlloc;
static uint32_t g_VertexCount;
static uint32_t g_IndexCount;
static VkImage g_hTextureImage;
static VmaAllocation g_hTextureImageAlloc;
static VkImageView g_hTextureImageView;
static std::atomic_uint32_t g_CpuAllocCount;
static void* CustomCpuAllocation(
void* pUserData, size_t size, size_t alignment,
VkSystemAllocationScope allocationScope)
{
assert(pUserData == CUSTOM_CPU_ALLOCATION_CALLBACK_USER_DATA);
void* const result = _aligned_malloc(size, alignment);
if(result)
{
++g_CpuAllocCount;
}
return result;
}
static void* CustomCpuReallocation(
void* pUserData, void* pOriginal, size_t size, size_t alignment,
VkSystemAllocationScope allocationScope)
{
assert(pUserData == CUSTOM_CPU_ALLOCATION_CALLBACK_USER_DATA);
void* const result = _aligned_realloc(pOriginal, size, alignment);
if(pOriginal && !result)
{
--g_CpuAllocCount;
}
else if(!pOriginal && result)
{
++g_CpuAllocCount;
}
return result;
}
static void CustomCpuFree(void* pUserData, void* pMemory)
{
assert(pUserData == CUSTOM_CPU_ALLOCATION_CALLBACK_USER_DATA);
if(pMemory)
{
const uint32_t oldAllocCount = g_CpuAllocCount.fetch_sub(1);
TEST(oldAllocCount > 0);
_aligned_free(pMemory);
}
}
static const VkAllocationCallbacks g_CpuAllocationCallbacks = {
CUSTOM_CPU_ALLOCATION_CALLBACK_USER_DATA, // pUserData
&CustomCpuAllocation, // pfnAllocation
&CustomCpuReallocation, // pfnReallocation
&CustomCpuFree // pfnFree
};
const VkAllocationCallbacks* g_Allocs;
void BeginSingleTimeCommands()
{
VkCommandBufferBeginInfo cmdBufBeginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO };
cmdBufBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
ERR_GUARD_VULKAN( vkBeginCommandBuffer(g_hTemporaryCommandBuffer, &cmdBufBeginInfo) );
}
void EndSingleTimeCommands()
{
ERR_GUARD_VULKAN( vkEndCommandBuffer(g_hTemporaryCommandBuffer) );
VkSubmitInfo submitInfo = { VK_STRUCTURE_TYPE_SUBMIT_INFO };
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &g_hTemporaryCommandBuffer;
ERR_GUARD_VULKAN( vkQueueSubmit(g_hGraphicsQueue, 1, &submitInfo, VK_NULL_HANDLE) );
ERR_GUARD_VULKAN( vkQueueWaitIdle(g_hGraphicsQueue) );
}
void LoadShader(std::vector<char>& out, const char* fileName)
{
std::ifstream file(std::string(SHADER_PATH1) + fileName, std::ios::ate | std::ios::binary);
if(file.is_open() == false)
file.open(std::string(SHADER_PATH2) + fileName, std::ios::ate | std::ios::binary);
assert(file.is_open());
size_t fileSize = (size_t)file.tellg();
if(fileSize > 0)
{
out.resize(fileSize);
file.seekg(0);
file.read(out.data(), fileSize);
file.close();
}
else
out.clear();
}
static VkBool32 VKAPI_PTR MyDebugReportCallback(
VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageTypes,
const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData,
void* pUserData)
{
assert(pCallbackData && pCallbackData->pMessageIdName && pCallbackData->pMessage);
switch(messageSeverity)
{
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT:
SetConsoleColor(CONSOLE_COLOR::WARNING);
break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT:
SetConsoleColor(CONSOLE_COLOR::ERROR_);
break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT:
SetConsoleColor(CONSOLE_COLOR::NORMAL);
break;
default: // VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT
SetConsoleColor(CONSOLE_COLOR::INFO);
}
printf("%s \xBA %s\n", pCallbackData->pMessageIdName, pCallbackData->pMessage);
SetConsoleColor(CONSOLE_COLOR::NORMAL);
if(messageSeverity == VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT ||
messageSeverity == VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT)
{
OutputDebugStringA(pCallbackData->pMessage);
OutputDebugStringA("\n");
}
return VK_FALSE;
}
static VkSurfaceFormatKHR ChooseSurfaceFormat()
{
assert(!g_SurfaceFormats.empty());
if((g_SurfaceFormats.size() == 1) && (g_SurfaceFormats[0].format == VK_FORMAT_UNDEFINED))
{
VkSurfaceFormatKHR result = { VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR };
return result;
}
for(const auto& format : g_SurfaceFormats)
{
if((format.format == VK_FORMAT_B8G8R8A8_UNORM) &&
(format.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR))
{
return format;
}
}
return g_SurfaceFormats[0];
}
VkPresentModeKHR ChooseSwapPresentMode()
{
VkPresentModeKHR preferredMode = VSYNC ? VK_PRESENT_MODE_MAILBOX_KHR : VK_PRESENT_MODE_IMMEDIATE_KHR;
if(std::find(g_PresentModes.begin(), g_PresentModes.end(), preferredMode) !=
g_PresentModes.end())
{
return preferredMode;
}
return VK_PRESENT_MODE_FIFO_KHR;
}
static VkExtent2D ChooseSwapExtent()
{
if(g_SurfaceCapabilities.currentExtent.width != UINT_MAX)
return g_SurfaceCapabilities.currentExtent;
VkExtent2D result = {
std::max(g_SurfaceCapabilities.minImageExtent.width,
std::min(g_SurfaceCapabilities.maxImageExtent.width, (uint32_t)g_SizeX)),
std::max(g_SurfaceCapabilities.minImageExtent.height,
std::min(g_SurfaceCapabilities.maxImageExtent.height, (uint32_t)g_SizeY)) };
return result;
}
struct Vertex
{
float pos[3];
float color[3];
float texCoord[2];
};
static void CreateMesh()
{
assert(g_hAllocator);
static Vertex vertices[] = {
// -X
{ { -1.f, -1.f, -1.f}, {1.0f, 0.0f, 0.0f}, {0.f, 0.f} },
{ { -1.f, -1.f, 1.f}, {1.0f, 0.0f, 0.0f}, {1.f, 0.f} },
{ { -1.f, 1.f, -1.f}, {1.0f, 0.0f, 0.0f}, {0.f, 1.f} },
{ { -1.f, 1.f, 1.f}, {1.0f, 0.0f, 0.0f}, {1.f, 1.f} },
// +X
{ { 1.f, -1.f, 1.f}, {0.0f, 1.0f, 0.0f}, {0.f, 0.f} },
{ { 1.f, -1.f, -1.f}, {0.0f, 1.0f, 0.0f}, {1.f, 0.f} },
{ { 1.f, 1.f, 1.f}, {0.0f, 1.0f, 0.0f}, {0.f, 1.f} },
{ { 1.f, 1.f, -1.f}, {0.0f, 1.0f, 0.0f}, {1.f, 1.f} },
// -Z
{ { 1.f, -1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {0.f, 0.f} },
{ {-1.f, -1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {1.f, 0.f} },
{ { 1.f, 1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {0.f, 1.f} },
{ {-1.f, 1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {1.f, 1.f} },
// +Z
{ {-1.f, -1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {0.f, 0.f} },
{ { 1.f, -1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {1.f, 0.f} },
{ {-1.f, 1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {0.f, 1.f} },
{ { 1.f, 1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {1.f, 1.f} },
// -Y
{ {-1.f, -1.f, -1.f}, {0.0f, 1.0f, 1.0f}, {0.f, 0.f} },
{ { 1.f, -1.f, -1.f}, {0.0f, 1.0f, 1.0f}, {1.f, 0.f} },
{ {-1.f, -1.f, 1.f}, {0.0f, 1.0f, 1.0f}, {0.f, 1.f} },
{ { 1.f, -1.f, 1.f}, {0.0f, 1.0f, 1.0f}, {1.f, 1.f} },
// +Y
{ { 1.f, 1.f, -1.f}, {1.0f, 0.0f, 1.0f}, {0.f, 0.f} },
{ {-1.f, 1.f, -1.f}, {1.0f, 0.0f, 1.0f}, {1.f, 0.f} },
{ { 1.f, 1.f, 1.f}, {1.0f, 0.0f, 1.0f}, {0.f, 1.f} },
{ {-1.f, 1.f, 1.f}, {1.0f, 0.0f, 1.0f}, {1.f, 1.f} },
};
static uint16_t indices[] = {
0, 1, 2, 3, USHRT_MAX,
4, 5, 6, 7, USHRT_MAX,
8, 9, 10, 11, USHRT_MAX,
12, 13, 14, 15, USHRT_MAX,
16, 17, 18, 19, USHRT_MAX,
20, 21, 22, 23, USHRT_MAX,
};
size_t vertexBufferSize = sizeof(Vertex) * _countof(vertices);
size_t indexBufferSize = sizeof(uint16_t) * _countof(indices);
g_IndexCount = (uint32_t)_countof(indices);
// Create vertex buffer
VkBufferCreateInfo vbInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
vbInfo.size = vertexBufferSize;
vbInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
vbInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VmaAllocationCreateInfo vbAllocCreateInfo = {};
vbAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
vbAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
VkBuffer stagingVertexBuffer = VK_NULL_HANDLE;
VmaAllocation stagingVertexBufferAlloc = VK_NULL_HANDLE;
VmaAllocationInfo stagingVertexBufferAllocInfo = {};
ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &vbInfo, &vbAllocCreateInfo, &stagingVertexBuffer, &stagingVertexBufferAlloc, &stagingVertexBufferAllocInfo) );
memcpy(stagingVertexBufferAllocInfo.pMappedData, vertices, vertexBufferSize);
// No need to flush stagingVertexBuffer memory because CPU_ONLY memory is always HOST_COHERENT.
vbInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
vbAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
vbAllocCreateInfo.flags = 0;
ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &vbInfo, &vbAllocCreateInfo, &g_hVertexBuffer, &g_hVertexBufferAlloc, nullptr) );
// Create index buffer
VkBufferCreateInfo ibInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
ibInfo.size = indexBufferSize;
ibInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
ibInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VmaAllocationCreateInfo ibAllocCreateInfo = {};
ibAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
ibAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
VkBuffer stagingIndexBuffer = VK_NULL_HANDLE;
VmaAllocation stagingIndexBufferAlloc = VK_NULL_HANDLE;
VmaAllocationInfo stagingIndexBufferAllocInfo = {};
ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &ibInfo, &ibAllocCreateInfo, &stagingIndexBuffer, &stagingIndexBufferAlloc, &stagingIndexBufferAllocInfo) );
memcpy(stagingIndexBufferAllocInfo.pMappedData, indices, indexBufferSize);
// No need to flush stagingIndexBuffer memory because CPU_ONLY memory is always HOST_COHERENT.
ibInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
ibAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
ibAllocCreateInfo.flags = 0;
ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &ibInfo, &ibAllocCreateInfo, &g_hIndexBuffer, &g_hIndexBufferAlloc, nullptr) );
// Copy buffers
BeginSingleTimeCommands();
VkBufferCopy vbCopyRegion = {};
vbCopyRegion.srcOffset = 0;
vbCopyRegion.dstOffset = 0;
vbCopyRegion.size = vbInfo.size;
vkCmdCopyBuffer(g_hTemporaryCommandBuffer, stagingVertexBuffer, g_hVertexBuffer, 1, &vbCopyRegion);
VkBufferCopy ibCopyRegion = {};
ibCopyRegion.srcOffset = 0;
ibCopyRegion.dstOffset = 0;
ibCopyRegion.size = ibInfo.size;
vkCmdCopyBuffer(g_hTemporaryCommandBuffer, stagingIndexBuffer, g_hIndexBuffer, 1, &ibCopyRegion);
EndSingleTimeCommands();
vmaDestroyBuffer(g_hAllocator, stagingIndexBuffer, stagingIndexBufferAlloc);
vmaDestroyBuffer(g_hAllocator, stagingVertexBuffer, stagingVertexBufferAlloc);
}
static void CreateTexture(uint32_t sizeX, uint32_t sizeY)
{
// Create staging buffer.
const VkDeviceSize imageSize = sizeX * sizeY * 4;
VkBufferCreateInfo stagingBufInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
stagingBufInfo.size = imageSize;
stagingBufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
VmaAllocationCreateInfo stagingBufAllocCreateInfo = {};
stagingBufAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
stagingBufAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
VkBuffer stagingBuf = VK_NULL_HANDLE;
VmaAllocation stagingBufAlloc = VK_NULL_HANDLE;
VmaAllocationInfo stagingBufAllocInfo = {};
ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &stagingBufInfo, &stagingBufAllocCreateInfo, &stagingBuf, &stagingBufAlloc, &stagingBufAllocInfo) );
char* const pImageData = (char*)stagingBufAllocInfo.pMappedData;
uint8_t* pRowData = (uint8_t*)pImageData;
for(uint32_t y = 0; y < sizeY; ++y)
{
uint32_t* pPixelData = (uint32_t*)pRowData;
for(uint32_t x = 0; x < sizeY; ++x)
{
*pPixelData =
((x & 0x18) == 0x08 ? 0x000000FF : 0x00000000) |
((x & 0x18) == 0x10 ? 0x0000FFFF : 0x00000000) |
((y & 0x18) == 0x08 ? 0x0000FF00 : 0x00000000) |
((y & 0x18) == 0x10 ? 0x00FF0000 : 0x00000000);
++pPixelData;
}
pRowData += sizeX * 4;
}
// No need to flush stagingImage memory because CPU_ONLY memory is always HOST_COHERENT.
// Create g_hTextureImage in GPU memory.
VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.extent.width = sizeX;
imageInfo.extent.height = sizeY;
imageInfo.extent.depth = 1;
imageInfo.mipLevels = 1;
imageInfo.arrayLayers = 1;
imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageInfo.flags = 0;
VmaAllocationCreateInfo imageAllocCreateInfo = {};
imageAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
ERR_GUARD_VULKAN( vmaCreateImage(g_hAllocator, &imageInfo, &imageAllocCreateInfo, &g_hTextureImage, &g_hTextureImageAlloc, nullptr) );
// Transition image layouts, copy image.
BeginSingleTimeCommands();
VkImageMemoryBarrier imgMemBarrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
imgMemBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imgMemBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imgMemBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imgMemBarrier.subresourceRange.baseMipLevel = 0;
imgMemBarrier.subresourceRange.levelCount = 1;
imgMemBarrier.subresourceRange.baseArrayLayer = 0;
imgMemBarrier.subresourceRange.layerCount = 1;
imgMemBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imgMemBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imgMemBarrier.image = g_hTextureImage;
imgMemBarrier.srcAccessMask = 0;
imgMemBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
vkCmdPipelineBarrier(
g_hTemporaryCommandBuffer,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0,
0, nullptr,
0, nullptr,
1, &imgMemBarrier);
VkBufferImageCopy region = {};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.width = sizeX;
region.imageExtent.height = sizeY;
region.imageExtent.depth = 1;
vkCmdCopyBufferToImage(g_hTemporaryCommandBuffer, stagingBuf, g_hTextureImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
imgMemBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imgMemBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imgMemBarrier.image = g_hTextureImage;
imgMemBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imgMemBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
vkCmdPipelineBarrier(
g_hTemporaryCommandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, nullptr,
0, nullptr,
1, &imgMemBarrier);
EndSingleTimeCommands();
vmaDestroyBuffer(g_hAllocator, stagingBuf, stagingBufAlloc);
// Create ImageView
VkImageViewCreateInfo textureImageViewInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO };
textureImageViewInfo.image = g_hTextureImage;
textureImageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
textureImageViewInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
textureImageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
textureImageViewInfo.subresourceRange.baseMipLevel = 0;
textureImageViewInfo.subresourceRange.levelCount = 1;
textureImageViewInfo.subresourceRange.baseArrayLayer = 0;
textureImageViewInfo.subresourceRange.layerCount = 1;
ERR_GUARD_VULKAN( vkCreateImageView(g_hDevice, &textureImageViewInfo, g_Allocs, &g_hTextureImageView) );
}
struct UniformBufferObject
{
mat4 ModelViewProj;
};
static void RegisterDebugCallbacks()
{
vkCreateDebugUtilsMessengerEXT_Func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(
g_hVulkanInstance, "vkCreateDebugUtilsMessengerEXT");
vkDestroyDebugUtilsMessengerEXT_Func = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(
g_hVulkanInstance, "vkDestroyDebugUtilsMessengerEXT");
assert(vkCreateDebugUtilsMessengerEXT_Func);
assert(vkDestroyDebugUtilsMessengerEXT_Func);
VkDebugUtilsMessengerCreateInfoEXT messengerCreateInfo = { VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT };
messengerCreateInfo.messageSeverity = DEBUG_UTILS_MESSENGER_MESSAGE_SEVERITY;
messengerCreateInfo.messageType = DEBUG_UTILS_MESSENGER_MESSAGE_TYPE;
messengerCreateInfo.pfnUserCallback = MyDebugReportCallback;
ERR_GUARD_VULKAN( vkCreateDebugUtilsMessengerEXT_Func(g_hVulkanInstance, &messengerCreateInfo, g_Allocs, &g_DebugUtilsMessenger) );
}
static void UnregisterDebugCallbacks()
{
if(g_DebugUtilsMessenger)
{
vkDestroyDebugUtilsMessengerEXT_Func(g_hVulkanInstance, g_DebugUtilsMessenger, g_Allocs);
}
}
static bool IsLayerSupported(const VkLayerProperties* pProps, size_t propCount, const char* pLayerName)
{
const VkLayerProperties* propsEnd = pProps + propCount;
return std::find_if(
pProps,
propsEnd,
[pLayerName](const VkLayerProperties& prop) -> bool {
return strcmp(pLayerName, prop.layerName) == 0;
}) != propsEnd;
}
static VkFormat FindSupportedFormat(
const std::vector<VkFormat>& candidates,
VkImageTiling tiling,
VkFormatFeatureFlags features)
{
for (VkFormat format : candidates)
{
VkFormatProperties props;
vkGetPhysicalDeviceFormatProperties(g_hPhysicalDevice, format, &props);
if ((tiling == VK_IMAGE_TILING_LINEAR) &&
((props.linearTilingFeatures & features) == features))
{
return format;
}
else if ((tiling == VK_IMAGE_TILING_OPTIMAL) &&
((props.optimalTilingFeatures & features) == features))
{
return format;
}
}
return VK_FORMAT_UNDEFINED;
}
static VkFormat FindDepthFormat()
{
std::vector<VkFormat> formats;
formats.push_back(VK_FORMAT_D32_SFLOAT);
formats.push_back(VK_FORMAT_D32_SFLOAT_S8_UINT);
formats.push_back(VK_FORMAT_D24_UNORM_S8_UINT);
return FindSupportedFormat(
formats,
VK_IMAGE_TILING_OPTIMAL,
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
}
static void CreateSwapchain()
{
// Query surface formats.
ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfaceCapabilitiesKHR(g_hPhysicalDevice, g_hSurface, &g_SurfaceCapabilities) );
uint32_t formatCount = 0;
ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfaceFormatsKHR(g_hPhysicalDevice, g_hSurface, &formatCount, nullptr) );
g_SurfaceFormats.resize(formatCount);
ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfaceFormatsKHR(g_hPhysicalDevice, g_hSurface, &formatCount, g_SurfaceFormats.data()) );
uint32_t presentModeCount = 0;
ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfacePresentModesKHR(g_hPhysicalDevice, g_hSurface, &presentModeCount, nullptr) );
g_PresentModes.resize(presentModeCount);
ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfacePresentModesKHR(g_hPhysicalDevice, g_hSurface, &presentModeCount, g_PresentModes.data()) );
// Create swap chain
g_SurfaceFormat = ChooseSurfaceFormat();
VkPresentModeKHR presentMode = ChooseSwapPresentMode();
g_Extent = ChooseSwapExtent();
uint32_t imageCount = g_SurfaceCapabilities.minImageCount + 1;
if((g_SurfaceCapabilities.maxImageCount > 0) &&
(imageCount > g_SurfaceCapabilities.maxImageCount))
{
imageCount = g_SurfaceCapabilities.maxImageCount;
}
VkSwapchainCreateInfoKHR swapChainInfo = { VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR };
swapChainInfo.surface = g_hSurface;
swapChainInfo.minImageCount = imageCount;
swapChainInfo.imageFormat = g_SurfaceFormat.format;
swapChainInfo.imageColorSpace = g_SurfaceFormat.colorSpace;
swapChainInfo.imageExtent = g_Extent;
swapChainInfo.imageArrayLayers = 1;
swapChainInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
swapChainInfo.preTransform = g_SurfaceCapabilities.currentTransform;
swapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
swapChainInfo.presentMode = presentMode;
swapChainInfo.clipped = VK_TRUE;
swapChainInfo.oldSwapchain = g_hSwapchain;
uint32_t queueFamilyIndices[] = { g_GraphicsQueueFamilyIndex, g_PresentQueueFamilyIndex };
if(g_PresentQueueFamilyIndex != g_GraphicsQueueFamilyIndex)
{
swapChainInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
swapChainInfo.queueFamilyIndexCount = 2;
swapChainInfo.pQueueFamilyIndices = queueFamilyIndices;
}
else
{
swapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
}
VkSwapchainKHR hNewSwapchain = VK_NULL_HANDLE;
ERR_GUARD_VULKAN( vkCreateSwapchainKHR(g_hDevice, &swapChainInfo, g_Allocs, &hNewSwapchain) );
if(g_hSwapchain != VK_NULL_HANDLE)
vkDestroySwapchainKHR(g_hDevice, g_hSwapchain, g_Allocs);
g_hSwapchain = hNewSwapchain;
// Retrieve swapchain images.
uint32_t swapchainImageCount = 0;
ERR_GUARD_VULKAN( vkGetSwapchainImagesKHR(g_hDevice, g_hSwapchain, &swapchainImageCount, nullptr) );
g_SwapchainImages.resize(swapchainImageCount);
ERR_GUARD_VULKAN( vkGetSwapchainImagesKHR(g_hDevice, g_hSwapchain, &swapchainImageCount, g_SwapchainImages.data()) );
// Create swapchain image views.
for(size_t i = g_SwapchainImageViews.size(); i--; )
vkDestroyImageView(g_hDevice, g_SwapchainImageViews[i], g_Allocs);
g_SwapchainImageViews.clear();
VkImageViewCreateInfo swapchainImageViewInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO };
g_SwapchainImageViews.resize(swapchainImageCount);
for(uint32_t i = 0; i < swapchainImageCount; ++i)
{
swapchainImageViewInfo.image = g_SwapchainImages[i];
swapchainImageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
swapchainImageViewInfo.format = g_SurfaceFormat.format;
swapchainImageViewInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
swapchainImageViewInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
swapchainImageViewInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
swapchainImageViewInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
swapchainImageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
swapchainImageViewInfo.subresourceRange.baseMipLevel = 0;
swapchainImageViewInfo.subresourceRange.levelCount = 1;
swapchainImageViewInfo.subresourceRange.baseArrayLayer = 0;
swapchainImageViewInfo.subresourceRange.layerCount = 1;
ERR_GUARD_VULKAN( vkCreateImageView(g_hDevice, &swapchainImageViewInfo, g_Allocs, &g_SwapchainImageViews[i]) );
}
// Create depth buffer
g_DepthFormat = FindDepthFormat();
assert(g_DepthFormat != VK_FORMAT_UNDEFINED);
VkImageCreateInfo depthImageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
depthImageInfo.imageType = VK_IMAGE_TYPE_2D;
depthImageInfo.extent.width = g_Extent.width;
depthImageInfo.extent.height = g_Extent.height;
depthImageInfo.extent.depth = 1;
depthImageInfo.mipLevels = 1;
depthImageInfo.arrayLayers = 1;
depthImageInfo.format = g_DepthFormat;
depthImageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
depthImageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
depthImageInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
depthImageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
depthImageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
depthImageInfo.flags = 0;
VmaAllocationCreateInfo depthImageAllocCreateInfo = {};
depthImageAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
ERR_GUARD_VULKAN( vmaCreateImage(g_hAllocator, &depthImageInfo, &depthImageAllocCreateInfo, &g_hDepthImage, &g_hDepthImageAlloc, nullptr) );
VkImageViewCreateInfo depthImageViewInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO };
depthImageViewInfo.image = g_hDepthImage;
depthImageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthImageViewInfo.format = g_DepthFormat;
depthImageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
depthImageViewInfo.subresourceRange.baseMipLevel = 0;
depthImageViewInfo.subresourceRange.levelCount = 1;
depthImageViewInfo.subresourceRange.baseArrayLayer = 0;
depthImageViewInfo.subresourceRange.layerCount = 1;
ERR_GUARD_VULKAN( vkCreateImageView(g_hDevice, &depthImageViewInfo, g_Allocs, &g_hDepthImageView) );
// Create pipeline layout
{
if(g_hPipelineLayout != VK_NULL_HANDLE)
{
vkDestroyPipelineLayout(g_hDevice, g_hPipelineLayout, g_Allocs);
g_hPipelineLayout = VK_NULL_HANDLE;
}
VkPushConstantRange pushConstantRanges[1];
ZeroMemory(&pushConstantRanges, sizeof pushConstantRanges);
pushConstantRanges[0].offset = 0;
pushConstantRanges[0].size = sizeof(UniformBufferObject);
pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
VkDescriptorSetLayout descriptorSetLayouts[] = { g_hDescriptorSetLayout };
VkPipelineLayoutCreateInfo pipelineLayoutInfo = { VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO };
pipelineLayoutInfo.setLayoutCount = 1;
pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts;
pipelineLayoutInfo.pushConstantRangeCount = 1;
pipelineLayoutInfo.pPushConstantRanges = pushConstantRanges;
ERR_GUARD_VULKAN( vkCreatePipelineLayout(g_hDevice, &pipelineLayoutInfo, g_Allocs, &g_hPipelineLayout) );
}
// Create render pass
{
if(g_hRenderPass != VK_NULL_HANDLE)
{
vkDestroyRenderPass(g_hDevice, g_hRenderPass, g_Allocs);
g_hRenderPass = VK_NULL_HANDLE;
}
VkAttachmentDescription attachments[2];
ZeroMemory(attachments, sizeof(attachments));
attachments[0].format = g_SurfaceFormat.format;
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
attachments[1].format = g_DepthFormat;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorAttachmentRef = {};
colorAttachmentRef.attachment = 0;
colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthStencilAttachmentRef = {};
depthStencilAttachmentRef.attachment = 1;
depthStencilAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpassDesc = {};
subpassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDesc.colorAttachmentCount = 1;
subpassDesc.pColorAttachments = &colorAttachmentRef;
subpassDesc.pDepthStencilAttachment = &depthStencilAttachmentRef;
VkRenderPassCreateInfo renderPassInfo = { VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
renderPassInfo.attachmentCount = (uint32_t)_countof(attachments);
renderPassInfo.pAttachments = attachments;
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpassDesc;
renderPassInfo.dependencyCount = 0;
ERR_GUARD_VULKAN( vkCreateRenderPass(g_hDevice, &renderPassInfo, g_Allocs, &g_hRenderPass) );
}
// Create pipeline
{
std::vector<char> vertShaderCode;
LoadShader(vertShaderCode, "Shader.vert.spv");
VkShaderModuleCreateInfo shaderModuleInfo = { VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO };
shaderModuleInfo.codeSize = vertShaderCode.size();
shaderModuleInfo.pCode = (const uint32_t*)vertShaderCode.data();
VkShaderModule hVertShaderModule = VK_NULL_HANDLE;
ERR_GUARD_VULKAN( vkCreateShaderModule(g_hDevice, &shaderModuleInfo, g_Allocs, &hVertShaderModule) );
std::vector<char> hFragShaderCode;
LoadShader(hFragShaderCode, "Shader.frag.spv");
shaderModuleInfo.codeSize = hFragShaderCode.size();
shaderModuleInfo.pCode = (const uint32_t*)hFragShaderCode.data();
VkShaderModule fragShaderModule = VK_NULL_HANDLE;
ERR_GUARD_VULKAN( vkCreateShaderModule(g_hDevice, &shaderModuleInfo, g_Allocs, &fragShaderModule) );
VkPipelineShaderStageCreateInfo vertPipelineShaderStageInfo = { VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO };
vertPipelineShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
vertPipelineShaderStageInfo.module = hVertShaderModule;
vertPipelineShaderStageInfo.pName = "main";
VkPipelineShaderStageCreateInfo fragPipelineShaderStageInfo = { VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO };
fragPipelineShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
fragPipelineShaderStageInfo.module = fragShaderModule;
fragPipelineShaderStageInfo.pName = "main";
VkPipelineShaderStageCreateInfo pipelineShaderStageInfos[] = {
vertPipelineShaderStageInfo,
fragPipelineShaderStageInfo
};
VkVertexInputBindingDescription bindingDescription = {};
bindingDescription.binding = 0;
bindingDescription.stride = sizeof(Vertex);
bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
VkVertexInputAttributeDescription attributeDescriptions[3];
ZeroMemory(attributeDescriptions, sizeof(attributeDescriptions));
attributeDescriptions[0].binding = 0;
attributeDescriptions[0].location = 0;
attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT;
attributeDescriptions[0].offset = offsetof(Vertex, pos);
attributeDescriptions[1].binding = 0;
attributeDescriptions[1].location = 1;
attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
attributeDescriptions[1].offset = offsetof(Vertex, color);
attributeDescriptions[2].binding = 0;
attributeDescriptions[2].location = 2;
attributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT;
attributeDescriptions[2].offset = offsetof(Vertex, texCoord);
VkPipelineVertexInputStateCreateInfo pipelineVertexInputStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO };
pipelineVertexInputStateInfo.vertexBindingDescriptionCount = 1;
pipelineVertexInputStateInfo.pVertexBindingDescriptions = &bindingDescription;
pipelineVertexInputStateInfo.vertexAttributeDescriptionCount = _countof(attributeDescriptions);
pipelineVertexInputStateInfo.pVertexAttributeDescriptions = attributeDescriptions;
VkPipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO };
pipelineInputAssemblyStateInfo.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
pipelineInputAssemblyStateInfo.primitiveRestartEnable = VK_TRUE;
VkViewport viewport = {};
viewport.x = 0.f;
viewport.y = 0.f;
viewport.width = (float)g_Extent.width;
viewport.height = (float)g_Extent.height;
viewport.minDepth = 0.f;
viewport.maxDepth = 1.f;
VkRect2D scissor = {};
scissor.offset.x = 0;
scissor.offset.y = 0;
scissor.extent = g_Extent;
VkPipelineViewportStateCreateInfo pipelineViewportStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO };
pipelineViewportStateInfo.viewportCount = 1;
pipelineViewportStateInfo.pViewports = &viewport;
pipelineViewportStateInfo.scissorCount = 1;
pipelineViewportStateInfo.pScissors = &scissor;
VkPipelineRasterizationStateCreateInfo pipelineRasterizationStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO };
pipelineRasterizationStateInfo.depthClampEnable = VK_FALSE;
pipelineRasterizationStateInfo.rasterizerDiscardEnable = VK_FALSE;
pipelineRasterizationStateInfo.polygonMode = VK_POLYGON_MODE_FILL;
pipelineRasterizationStateInfo.lineWidth = 1.f;
pipelineRasterizationStateInfo.cullMode = VK_CULL_MODE_BACK_BIT;
pipelineRasterizationStateInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
pipelineRasterizationStateInfo.depthBiasEnable = VK_FALSE;
pipelineRasterizationStateInfo.depthBiasConstantFactor = 0.f;
pipelineRasterizationStateInfo.depthBiasClamp = 0.f;
pipelineRasterizationStateInfo.depthBiasSlopeFactor = 0.f;
VkPipelineMultisampleStateCreateInfo pipelineMultisampleStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO };
pipelineMultisampleStateInfo.sampleShadingEnable = VK_FALSE;
pipelineMultisampleStateInfo.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
pipelineMultisampleStateInfo.minSampleShading = 1.f;
pipelineMultisampleStateInfo.pSampleMask = nullptr;
pipelineMultisampleStateInfo.alphaToCoverageEnable = VK_FALSE;
pipelineMultisampleStateInfo.alphaToOneEnable = VK_FALSE;
VkPipelineColorBlendAttachmentState pipelineColorBlendAttachmentState = {};
pipelineColorBlendAttachmentState.colorWriteMask =
VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT |
VK_COLOR_COMPONENT_A_BIT;
pipelineColorBlendAttachmentState.blendEnable = VK_FALSE;
pipelineColorBlendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
pipelineColorBlendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
pipelineColorBlendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; // Optional
pipelineColorBlendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
pipelineColorBlendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
pipelineColorBlendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; // Optional
VkPipelineColorBlendStateCreateInfo pipelineColorBlendStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO };
pipelineColorBlendStateInfo.logicOpEnable = VK_FALSE;
pipelineColorBlendStateInfo.logicOp = VK_LOGIC_OP_COPY;
pipelineColorBlendStateInfo.attachmentCount = 1;
pipelineColorBlendStateInfo.pAttachments = &pipelineColorBlendAttachmentState;
VkPipelineDepthStencilStateCreateInfo depthStencilStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO };
depthStencilStateInfo.depthTestEnable = VK_TRUE;
depthStencilStateInfo.depthWriteEnable = VK_TRUE;
depthStencilStateInfo.depthCompareOp = VK_COMPARE_OP_LESS;
depthStencilStateInfo.depthBoundsTestEnable = VK_FALSE;
depthStencilStateInfo.stencilTestEnable = VK_FALSE;
VkGraphicsPipelineCreateInfo pipelineInfo = { VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO };
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = pipelineShaderStageInfos;
pipelineInfo.pVertexInputState = &pipelineVertexInputStateInfo;
pipelineInfo.pInputAssemblyState = &pipelineInputAssemblyStateInfo;
pipelineInfo.pViewportState = &pipelineViewportStateInfo;
pipelineInfo.pRasterizationState = &pipelineRasterizationStateInfo;
pipelineInfo.pMultisampleState = &pipelineMultisampleStateInfo;
pipelineInfo.pDepthStencilState = &depthStencilStateInfo;
pipelineInfo.pColorBlendState = &pipelineColorBlendStateInfo;
pipelineInfo.pDynamicState = nullptr;
pipelineInfo.layout = g_hPipelineLayout;
pipelineInfo.renderPass = g_hRenderPass;
pipelineInfo.subpass = 0;
pipelineInfo.basePipelineHandle = VK_NULL_HANDLE;
pipelineInfo.basePipelineIndex = -1;
ERR_GUARD_VULKAN( vkCreateGraphicsPipelines(
g_hDevice,
VK_NULL_HANDLE,
1,
&pipelineInfo,
g_Allocs,
&g_hPipeline) );
vkDestroyShaderModule(g_hDevice, fragShaderModule, g_Allocs);
vkDestroyShaderModule(g_hDevice, hVertShaderModule, g_Allocs);
}
// Create frambuffers
for(size_t i = g_Framebuffers.size(); i--; )
vkDestroyFramebuffer(g_hDevice, g_Framebuffers[i], g_Allocs);
g_Framebuffers.clear();
g_Framebuffers.resize(g_SwapchainImageViews.size());
for(size_t i = 0; i < g_SwapchainImages.size(); ++i)
{
VkImageView attachments[] = { g_SwapchainImageViews[i], g_hDepthImageView };
VkFramebufferCreateInfo framebufferInfo = { VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO };
framebufferInfo.renderPass = g_hRenderPass;
framebufferInfo.attachmentCount = (uint32_t)_countof(attachments);
framebufferInfo.pAttachments = attachments;
framebufferInfo.width = g_Extent.width;
framebufferInfo.height = g_Extent.height;
framebufferInfo.layers = 1;
ERR_GUARD_VULKAN( vkCreateFramebuffer(g_hDevice, &framebufferInfo, g_Allocs, &g_Framebuffers[i]) );
}
// Create semaphores
if(g_hImageAvailableSemaphore != VK_NULL_HANDLE)
{
vkDestroySemaphore(g_hDevice, g_hImageAvailableSemaphore, g_Allocs);
g_hImageAvailableSemaphore = VK_NULL_HANDLE;
}
if(g_hRenderFinishedSemaphore != VK_NULL_HANDLE)
{
vkDestroySemaphore(g_hDevice, g_hRenderFinishedSemaphore, g_Allocs);
g_hRenderFinishedSemaphore = VK_NULL_HANDLE;
}
VkSemaphoreCreateInfo semaphoreInfo = { VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO };
ERR_GUARD_VULKAN( vkCreateSemaphore(g_hDevice, &semaphoreInfo, g_Allocs, &g_hImageAvailableSemaphore) );
ERR_GUARD_VULKAN( vkCreateSemaphore(g_hDevice, &semaphoreInfo, g_Allocs, &g_hRenderFinishedSemaphore) );
}
static void DestroySwapchain(bool destroyActualSwapchain)
{
if(g_hImageAvailableSemaphore != VK_NULL_HANDLE)
{
vkDestroySemaphore(g_hDevice, g_hImageAvailableSemaphore, g_Allocs);
g_hImageAvailableSemaphore = VK_NULL_HANDLE;
}
if(g_hRenderFinishedSemaphore != VK_NULL_HANDLE)
{
vkDestroySemaphore(g_hDevice, g_hRenderFinishedSemaphore, g_Allocs);
g_hRenderFinishedSemaphore = VK_NULL_HANDLE;
}
for(size_t i = g_Framebuffers.size(); i--; )
vkDestroyFramebuffer(g_hDevice, g_Framebuffers[i], g_Allocs);
g_Framebuffers.clear();
if(g_hDepthImageView != VK_NULL_HANDLE)
{
vkDestroyImageView(g_hDevice, g_hDepthImageView, g_Allocs);
g_hDepthImageView = VK_NULL_HANDLE;
}
if(g_hDepthImage != VK_NULL_HANDLE)
{
vmaDestroyImage(g_hAllocator, g_hDepthImage, g_hDepthImageAlloc);
g_hDepthImage = VK_NULL_HANDLE;
}
if(g_hPipeline != VK_NULL_HANDLE)
{
vkDestroyPipeline(g_hDevice, g_hPipeline, g_Allocs);
g_hPipeline = VK_NULL_HANDLE;
}
if(g_hRenderPass != VK_NULL_HANDLE)
{
vkDestroyRenderPass(g_hDevice, g_hRenderPass, g_Allocs);
g_hRenderPass = VK_NULL_HANDLE;
}
if(g_hPipelineLayout != VK_NULL_HANDLE)
{
vkDestroyPipelineLayout(g_hDevice, g_hPipelineLayout, g_Allocs);
g_hPipelineLayout = VK_NULL_HANDLE;
}
for(size_t i = g_SwapchainImageViews.size(); i--; )
vkDestroyImageView(g_hDevice, g_SwapchainImageViews[i], g_Allocs);
g_SwapchainImageViews.clear();
if(destroyActualSwapchain && (g_hSwapchain != VK_NULL_HANDLE))
{
vkDestroySwapchainKHR(g_hDevice, g_hSwapchain, g_Allocs);
g_hSwapchain = VK_NULL_HANDLE;
}
}
static constexpr uint32_t GetVulkanApiVersion()
{
#if VMA_VULKAN_VERSION == 1002000
return VK_API_VERSION_1_2;
#elif VMA_VULKAN_VERSION == 1001000
return VK_API_VERSION_1_1;
#elif VMA_VULKAN_VERSION == 1000000
return VK_API_VERSION_1_0;
#else
#error Invalid VMA_VULKAN_VERSION.
return UINT32_MAX;
#endif
}
static void PrintEnabledFeatures()
{
wprintf(L"Enabled extensions and features:\n");
wprintf(L"Validation layer: %d\n", g_EnableValidationLayer ? 1 : 0);
wprintf(L"Sparse binding: %d\n", g_SparseBindingEnabled ? 1 : 0);
wprintf(L"Buffer device address: %d\n", g_BufferDeviceAddressEnabled ? 1 : 0);
if(GetVulkanApiVersion() == VK_API_VERSION_1_0)
{
wprintf(L"VK_KHR_get_memory_requirements2: %d\n", VK_KHR_get_memory_requirements2_enabled ? 1 : 0);
wprintf(L"VK_KHR_get_physical_device_properties2: %d\n", VK_KHR_get_physical_device_properties2_enabled ? 1 : 0);
wprintf(L"VK_KHR_dedicated_allocation: %d\n", VK_KHR_dedicated_allocation_enabled ? 1 : 0);
wprintf(L"VK_KHR_bind_memory2: %d\n", VK_KHR_bind_memory2_enabled ? 1 : 0);
}
wprintf(L"VK_EXT_memory_budget: %d\n", VK_EXT_memory_budget_enabled ? 1 : 0);
wprintf(L"VK_AMD_device_coherent_memory: %d\n", VK_AMD_device_coherent_memory_enabled ? 1 : 0);
wprintf(L"VK_KHR_buffer_device_address: %d\n", VK_KHR_buffer_device_address_enabled ? 1 : 0);
wprintf(L"VK_EXT_buffer_device_address: %d\n", VK_EXT_buffer_device_address_enabled ? 1 : 0);
wprintf(L"VK_EXT_memory_priority: %d\n", VK_EXT_memory_priority ? 1 : 0);
}
void SetAllocatorCreateInfo(VmaAllocatorCreateInfo& outInfo)
{
outInfo = {};
outInfo.physicalDevice = g_hPhysicalDevice;
outInfo.device = g_hDevice;
outInfo.instance = g_hVulkanInstance;
outInfo.vulkanApiVersion = GetVulkanApiVersion();
if(VK_KHR_dedicated_allocation_enabled)
{
outInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
}
if(VK_KHR_bind_memory2_enabled)
{
outInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT;
}
#if !defined(VMA_MEMORY_BUDGET) || VMA_MEMORY_BUDGET == 1
if(VK_EXT_memory_budget_enabled && (
GetVulkanApiVersion() >= VK_API_VERSION_1_1 || VK_KHR_get_physical_device_properties2_enabled))
{
outInfo.flags |= VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT;
}
#endif
if(VK_AMD_device_coherent_memory_enabled)
{
outInfo.flags |= VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT;
}
if(g_BufferDeviceAddressEnabled)
{
outInfo.flags |= VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT;
}
#if !defined(VMA_MEMORY_PRIORITY) || VMA_MEMORY_PRIORITY == 1
if(VK_EXT_memory_priority_enabled)
{
outInfo.flags |= VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT;
}
#endif
if(USE_CUSTOM_CPU_ALLOCATION_CALLBACKS)
{
outInfo.pAllocationCallbacks = &g_CpuAllocationCallbacks;
}
// Uncomment to enable recording to CSV file.
/*
static VmaRecordSettings recordSettings = {};
recordSettings.pFilePath = "VulkanSample.csv";
outInfo.pRecordSettings = &recordSettings;
*/
// Uncomment to enable HeapSizeLimit.
/*
static std::array<VkDeviceSize, VK_MAX_MEMORY_HEAPS> heapSizeLimit;
std::fill(heapSizeLimit.begin(), heapSizeLimit.end(), VK_WHOLE_SIZE);
heapSizeLimit[0] = 512ull * 1024 * 1024;
outInfo.pHeapSizeLimit = heapSizeLimit.data();
*/
}
static void PrintPhysicalDeviceProperties(const VkPhysicalDeviceProperties& properties)
{
wprintf(L"physicalDeviceProperties:\n");
wprintf(L" driverVersion: 0x%X\n", properties.driverVersion);
wprintf(L" vendorID: 0x%X (%s)\n", properties.vendorID, VendorIDToStr(properties.vendorID));
wprintf(L" deviceID: 0x%X\n", properties.deviceID);
wprintf(L" deviceType: %u (%s)\n", properties.deviceType, PhysicalDeviceTypeToStr(properties.deviceType));
wprintf(L" deviceName: %hs\n", properties.deviceName);
wprintf(L" limits:\n");
wprintf(L" maxMemoryAllocationCount: %u\n", properties.limits.maxMemoryAllocationCount);
wprintf(L" bufferImageGranularity: %llu B\n", properties.limits.bufferImageGranularity);
wprintf(L" nonCoherentAtomSize: %llu B\n", properties.limits.nonCoherentAtomSize);
}
#if VMA_VULKAN_VERSION >= 1002000
static void PrintPhysicalDeviceVulkan11Properties(const VkPhysicalDeviceVulkan11Properties& properties)
{
wprintf(L"physicalDeviceVulkan11Properties:\n");
std::wstring sizeStr = SizeToStr(properties.maxMemoryAllocationSize);
wprintf(L" maxMemoryAllocationSize: %llu B (%s)\n", properties.maxMemoryAllocationSize, sizeStr.c_str());
}
static void PrintPhysicalDeviceVulkan12Properties(const VkPhysicalDeviceVulkan12Properties& properties)
{
wprintf(L"physicalDeviceVulkan12Properties:\n");
std::wstring str = DriverIDToStr(properties.driverID);
wprintf(L" driverID: %u (%s)\n", properties.driverID, str.c_str());
wprintf(L" driverName: %hs\n", properties.driverName);
wprintf(L" driverInfo: %hs\n", properties.driverInfo);
}
#endif // #if VMA_VULKAN_VERSION > 1002000
static void AddFlagToStr(std::wstring& inout, const wchar_t* flagStr)
{
if(!inout.empty())
inout += L", ";
inout += flagStr;
}
static std::wstring HeapFlagsToStr(VkMemoryHeapFlags flags)
{
std::wstring result;
if(flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT)
AddFlagToStr(result, L"DEVICE_LOCAL");
if(flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT)
AddFlagToStr(result, L"MULTI_INSTANCE");
return result;
}
static std::wstring PropertyFlagsToStr(VkMemoryPropertyFlags flags)
{
std::wstring result;
if(flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
AddFlagToStr(result, L"DEVICE_LOCAL");
if(flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
AddFlagToStr(result, L"HOST_VISIBLE");
if(flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
AddFlagToStr(result, L"HOST_COHERENT");
if(flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT)
AddFlagToStr(result, L"HOST_CACHED");
if(flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT)
AddFlagToStr(result, L"LAZILY_ALLOCATED");
#if VMA_VULKAN_VERSION >= 1001000
if(flags & VK_MEMORY_PROPERTY_PROTECTED_BIT)
AddFlagToStr(result, L"PROTECTED");
#endif
#if VK_AMD_device_coherent_memory
if(flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD)
AddFlagToStr(result, L"DEVICE_COHERENT (AMD)");
if(flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD)
AddFlagToStr(result, L"DEVICE_UNCACHED (AMD)");
#endif
return result;
}
static void PrintMemoryTypes()
{
wprintf(L"MEMORY HEAPS:\n");
const VkPhysicalDeviceMemoryProperties* memProps = nullptr;
vmaGetMemoryProperties(g_hAllocator, &memProps);
wprintf(L"heapCount=%u, typeCount=%u\n", memProps->memoryHeapCount, memProps->memoryTypeCount);
std::wstring sizeStr, flagsStr;
for(uint32_t heapIndex = 0; heapIndex < memProps->memoryHeapCount; ++heapIndex)
{
const VkMemoryHeap& heap = memProps->memoryHeaps[heapIndex];
sizeStr = SizeToStr(heap.size);
flagsStr = HeapFlagsToStr(heap.flags);
wprintf(L"Heap %u: %llu B (%s) %s\n", heapIndex, heap.size, sizeStr.c_str(), flagsStr.c_str());
for(uint32_t typeIndex = 0; typeIndex < memProps->memoryTypeCount; ++typeIndex)
{
const VkMemoryType& type = memProps->memoryTypes[typeIndex];
if(type.heapIndex == heapIndex)
{
flagsStr = PropertyFlagsToStr(type.propertyFlags);
wprintf(L" Type %u: %s\n", typeIndex, flagsStr.c_str());
}
}
}
}
#if 0
template<typename It, typename MapFunc>
inline VkDeviceSize MapSum(It beg, It end, MapFunc mapFunc)
{
VkDeviceSize result = 0;
for(It it = beg; it != end; ++it)
result += mapFunc(*it);
return result;
}
#endif
static bool CanCreateVertexBuffer(uint32_t allowedMemoryTypeBits)
{
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
bufCreateInfo.size = 0x10000;
bufCreateInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
VkBuffer buf = VK_NULL_HANDLE;
VkResult res = vkCreateBuffer(g_hDevice, &bufCreateInfo, g_Allocs, &buf);
assert(res == VK_SUCCESS);
VkMemoryRequirements memReq = {};
vkGetBufferMemoryRequirements(g_hDevice, buf, &memReq);
vkDestroyBuffer(g_hDevice, buf, g_Allocs);
return (memReq.memoryTypeBits & allowedMemoryTypeBits) != 0;
}
static bool CanCreateOptimalSampledImage(uint32_t allowedMemoryTypeBits)
{
VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
imgCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imgCreateInfo.extent.width = 256;
imgCreateInfo.extent.height = 256;
imgCreateInfo.extent.depth = 1;
imgCreateInfo.mipLevels = 1;
imgCreateInfo.arrayLayers = 1;
imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imgCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
VkImage img = VK_NULL_HANDLE;
VkResult res = vkCreateImage(g_hDevice, &imgCreateInfo, g_Allocs, &img);
assert(res == VK_SUCCESS);
VkMemoryRequirements memReq = {};
vkGetImageMemoryRequirements(g_hDevice, img, &memReq);
vkDestroyImage(g_hDevice, img, g_Allocs);
return (memReq.memoryTypeBits & allowedMemoryTypeBits) != 0;
}
static void PrintMemoryConclusions()
{
wprintf(L"Conclusions:\n");
const VkPhysicalDeviceProperties* props = nullptr;
const VkPhysicalDeviceMemoryProperties* memProps = nullptr;
vmaGetPhysicalDeviceProperties(g_hAllocator, &props);
vmaGetMemoryProperties(g_hAllocator, &memProps);
const uint32_t heapCount = memProps->memoryHeapCount;
uint32_t deviceLocalHeapCount = 0;
uint32_t hostVisibleHeapCount = 0;
uint32_t deviceLocalAndHostVisibleHeapCount = 0;
VkDeviceSize deviceLocalHeapSumSize = 0;
VkDeviceSize hostVisibleHeapSumSize = 0;
VkDeviceSize deviceLocalAndHostVisibleHeapSumSize = 0;
for(uint32_t heapIndex = 0; heapIndex < heapCount; ++heapIndex)
{
const VkMemoryHeap& heap = memProps->memoryHeaps[heapIndex];
const bool isDeviceLocal = (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0;
bool isHostVisible = false;
for(uint32_t typeIndex = 0; typeIndex < memProps->memoryTypeCount; ++typeIndex)
{
const VkMemoryType& type = memProps->memoryTypes[typeIndex];
if(type.heapIndex == heapIndex && (type.propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))
{
isHostVisible = true;
break;
}
}
if(isDeviceLocal)
{
++deviceLocalHeapCount;
deviceLocalHeapSumSize += heap.size;
}
if(isHostVisible)
{
++hostVisibleHeapCount;
hostVisibleHeapSumSize += heap.size;
if(isDeviceLocal)
{
++deviceLocalAndHostVisibleHeapCount;
deviceLocalAndHostVisibleHeapSumSize += heap.size;
}
}
}
uint32_t hostVisibleNotHostCoherentTypeCount = 0;
uint32_t notDeviceLocalNotHostVisibleTypeCount = 0;
uint32_t amdSpecificTypeCount = 0;
uint32_t lazilyAllocatedTypeCount = 0;
uint32_t allTypeBits = 0;
uint32_t deviceLocalTypeBits = 0;
for(uint32_t typeIndex = 0; typeIndex < memProps->memoryTypeCount; ++typeIndex)
{
const VkMemoryType& type = memProps->memoryTypes[typeIndex];
allTypeBits |= 1u << typeIndex;
if(type.propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
{
deviceLocalTypeBits |= 1u << typeIndex;
}
if((type.propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) &&
(type.propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)
{
++hostVisibleNotHostCoherentTypeCount;
}
if((type.propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) == 0 &&
(type.propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
{
++notDeviceLocalNotHostVisibleTypeCount;
}
if(type.propertyFlags & (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD))
{
++amdSpecificTypeCount;
}
if(type.propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT)
{
++lazilyAllocatedTypeCount;
}
}
assert(deviceLocalHeapCount > 0);
if(deviceLocalHeapCount == heapCount)
wprintf(L"- All heaps are DEVICE_LOCAL.\n");
else
wprintf(L"- %u heaps are DEVICE_LOCAL, total %s.\n", deviceLocalHeapCount, SizeToStr(deviceLocalHeapSumSize).c_str());
assert(hostVisibleHeapCount > 0);
if(hostVisibleHeapCount == heapCount)
wprintf(L"- All heaps are HOST_VISIBLE.\n");
else
wprintf(L"- %u heaps are HOST_VISIBLE, total %s.\n", deviceLocalHeapCount, SizeToStr(hostVisibleHeapSumSize).c_str());
if(deviceLocalHeapCount < heapCount && hostVisibleHeapCount < heapCount)
{
if(deviceLocalAndHostVisibleHeapCount == 0)
wprintf(L"- No heaps are DEVICE_LOCAL and HOST_VISIBLE.\n");
if(deviceLocalAndHostVisibleHeapCount == heapCount)
wprintf(L"- All heaps are DEVICE_LOCAL and HOST_VISIBLE.\n");
else
wprintf(L"- %u heaps are DEVICE_LOCAL and HOST_VISIBLE, total %s.\n", deviceLocalHeapCount, SizeToStr(deviceLocalAndHostVisibleHeapSumSize).c_str());
}
if(hostVisibleNotHostCoherentTypeCount == 0)
wprintf(L"- No types are HOST_VISIBLE but not HOST_COHERENT.\n");
else
wprintf(L"- %u types are HOST_VISIBLE but not HOST_COHERENT.\n", hostVisibleNotHostCoherentTypeCount);
if(notDeviceLocalNotHostVisibleTypeCount == 0)
wprintf(L"- No types are not DEVICE_LOCAL and not HOST_VISIBLE.\n");
else
wprintf(L"- %u types are not DEVICE_LOCAL and not HOST_VISIBLE.\n", notDeviceLocalNotHostVisibleTypeCount);
if(amdSpecificTypeCount == 0)
wprintf(L"- No types are AMD-specific DEVICE_COHERENT or DEVICE_UNCACHED.\n");
else
wprintf(L"- %u types are AMD-specific DEVICE_COHERENT or DEVICE_UNCACHED.\n", amdSpecificTypeCount);
if(lazilyAllocatedTypeCount == 0)
wprintf(L"- No types are LAZILY_ALLOCATED.\n");
else
wprintf(L"- %u types are LAZILY_ALLOCATED.\n", lazilyAllocatedTypeCount);
if(props->vendorID == VENDOR_ID_AMD &&
props->deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU &&
deviceLocalAndHostVisibleHeapSumSize > 256llu * 1024 * 1024)
{
wprintf(L"- AMD Smart Access Memory (SAM) is enabled!\n");
}
if(deviceLocalHeapCount < heapCount)
{
const uint32_t nonDeviceLocalTypeBits = ~deviceLocalTypeBits & allTypeBits;
if(CanCreateVertexBuffer(nonDeviceLocalTypeBits))
wprintf(L"- A buffer with VERTEX_BUFFER usage can be created in some non-DEVICE_LOCAL type.\n");
else
wprintf(L"- A buffer with VERTEX_BUFFER usage cannot be created in some non-DEVICE_LOCAL type.\n");
if(CanCreateOptimalSampledImage(nonDeviceLocalTypeBits))
wprintf(L"- An image with OPTIMAL tiling and SAMPLED usage can be created in some non-DEVICE_LOCAL type.\n");
else
wprintf(L"- An image with OPTIMAL tiling and SAMPLED usage cannot be created in some non-DEVICE_LOCAL type.\n");
}
//wprintf(L"\n");
}
static void InitializeApplication()
{
if(USE_CUSTOM_CPU_ALLOCATION_CALLBACKS)
{
g_Allocs = &g_CpuAllocationCallbacks;
}
uint32_t instanceLayerPropCount = 0;
ERR_GUARD_VULKAN( vkEnumerateInstanceLayerProperties(&instanceLayerPropCount, nullptr) );
std::vector<VkLayerProperties> instanceLayerProps(instanceLayerPropCount);
if(instanceLayerPropCount > 0)
{
ERR_GUARD_VULKAN( vkEnumerateInstanceLayerProperties(&instanceLayerPropCount, instanceLayerProps.data()) );
}
if(g_EnableValidationLayer)
{
if(IsLayerSupported(instanceLayerProps.data(), instanceLayerProps.size(), VALIDATION_LAYER_NAME) == false)
{
wprintf(L"Layer \"%hs\" not supported.", VALIDATION_LAYER_NAME);
g_EnableValidationLayer = false;
}
}
uint32_t availableInstanceExtensionCount = 0;
ERR_GUARD_VULKAN( vkEnumerateInstanceExtensionProperties(nullptr, &availableInstanceExtensionCount, nullptr) );
std::vector<VkExtensionProperties> availableInstanceExtensions(availableInstanceExtensionCount);
if(availableInstanceExtensionCount > 0)
{
ERR_GUARD_VULKAN( vkEnumerateInstanceExtensionProperties(nullptr, &availableInstanceExtensionCount, availableInstanceExtensions.data()) );
}
std::vector<const char*> enabledInstanceExtensions;
enabledInstanceExtensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
enabledInstanceExtensions.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
std::vector<const char*> instanceLayers;
if(g_EnableValidationLayer)
{
instanceLayers.push_back(VALIDATION_LAYER_NAME);
}
for(const auto& extensionProperties : availableInstanceExtensions)
{
if(strcmp(extensionProperties.extensionName, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME) == 0)
{
if(GetVulkanApiVersion() == VK_API_VERSION_1_0)
{
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
VK_KHR_get_physical_device_properties2_enabled = true;
}
}
else if(strcmp(extensionProperties.extensionName, VK_EXT_DEBUG_UTILS_EXTENSION_NAME) == 0)
{
enabledInstanceExtensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
VK_EXT_debug_utils_enabled = true;
}
}
VkApplicationInfo appInfo = { VK_STRUCTURE_TYPE_APPLICATION_INFO };
appInfo.pApplicationName = APP_TITLE_A;
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "Adam Sawicki Engine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = GetVulkanApiVersion();
VkInstanceCreateInfo instInfo = { VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO };
instInfo.pApplicationInfo = &appInfo;
instInfo.enabledExtensionCount = static_cast<uint32_t>(enabledInstanceExtensions.size());
instInfo.ppEnabledExtensionNames = enabledInstanceExtensions.data();
instInfo.enabledLayerCount = static_cast<uint32_t>(instanceLayers.size());
instInfo.ppEnabledLayerNames = instanceLayers.data();
wprintf(L"Vulkan API version used: ");
switch(appInfo.apiVersion)
{
case VK_API_VERSION_1_0: wprintf(L"1.0\n"); break;
case VK_API_VERSION_1_1: wprintf(L"1.1\n"); break;
case VK_API_VERSION_1_2: wprintf(L"1.2\n"); break;
default: assert(0);
}
ERR_GUARD_VULKAN( vkCreateInstance(&instInfo, g_Allocs, &g_hVulkanInstance) );
if(VK_EXT_debug_utils_enabled)
{
RegisterDebugCallbacks();
}
// Create VkSurfaceKHR.
VkWin32SurfaceCreateInfoKHR surfaceInfo = { VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR };
surfaceInfo.hinstance = g_hAppInstance;
surfaceInfo.hwnd = g_hWnd;
VkResult result = vkCreateWin32SurfaceKHR(g_hVulkanInstance, &surfaceInfo, g_Allocs, &g_hSurface);
assert(result == VK_SUCCESS);
// Find physical device
uint32_t deviceCount = 0;
ERR_GUARD_VULKAN( vkEnumeratePhysicalDevices(g_hVulkanInstance, &deviceCount, nullptr) );
assert(deviceCount > 0);
std::vector<VkPhysicalDevice> physicalDevices(deviceCount);
ERR_GUARD_VULKAN( vkEnumeratePhysicalDevices(g_hVulkanInstance, &deviceCount, physicalDevices.data()) );
g_hPhysicalDevice = physicalDevices[0];
// Query for device extensions
uint32_t physicalDeviceExtensionPropertyCount = 0;
ERR_GUARD_VULKAN( vkEnumerateDeviceExtensionProperties(g_hPhysicalDevice, nullptr, &physicalDeviceExtensionPropertyCount, nullptr) );
std::vector<VkExtensionProperties> physicalDeviceExtensionProperties{physicalDeviceExtensionPropertyCount};
if(physicalDeviceExtensionPropertyCount)
{
ERR_GUARD_VULKAN( vkEnumerateDeviceExtensionProperties(
g_hPhysicalDevice,
nullptr,
&physicalDeviceExtensionPropertyCount,
physicalDeviceExtensionProperties.data()) );
}
for(uint32_t i = 0; i < physicalDeviceExtensionPropertyCount; ++i)
{
if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME) == 0)
{
if(GetVulkanApiVersion() == VK_API_VERSION_1_0)
{
VK_KHR_get_memory_requirements2_enabled = true;
}
}
else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME) == 0)
{
if(GetVulkanApiVersion() == VK_API_VERSION_1_0)
{
VK_KHR_dedicated_allocation_enabled = true;
}
}
else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_KHR_BIND_MEMORY_2_EXTENSION_NAME) == 0)
{
if(GetVulkanApiVersion() == VK_API_VERSION_1_0)
{
VK_KHR_bind_memory2_enabled = true;
}
}
else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_EXT_MEMORY_BUDGET_EXTENSION_NAME) == 0)
VK_EXT_memory_budget_enabled = true;
else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_AMD_DEVICE_COHERENT_MEMORY_EXTENSION_NAME) == 0)
VK_AMD_device_coherent_memory_enabled = true;
else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME) == 0)
{
if(GetVulkanApiVersion() < VK_API_VERSION_1_2)
{
VK_KHR_buffer_device_address_enabled = true;
}
}
else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_EXT_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME) == 0)
{
if(GetVulkanApiVersion() < VK_API_VERSION_1_2)
{
VK_EXT_buffer_device_address_enabled = true;
}
}
else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_EXT_MEMORY_PRIORITY_EXTENSION_NAME) == 0)
VK_EXT_memory_priority_enabled = true;
}
if(VK_EXT_buffer_device_address_enabled && VK_KHR_buffer_device_address_enabled)
VK_EXT_buffer_device_address_enabled = false;
// Query for features
#if VMA_VULKAN_VERSION >= 1001000
VkPhysicalDeviceProperties2 physicalDeviceProperties2 = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2 };
#if VMA_VULKAN_VERSION >= 1002000
// Vulkan spec says structure VkPhysicalDeviceVulkan11Properties is "Provided by VK_VERSION_1_2" - is this a mistake? Assuming not...
VkPhysicalDeviceVulkan11Properties physicalDeviceVulkan11Properties = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES };
VkPhysicalDeviceVulkan12Properties physicalDeviceVulkan12Properties = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES };
PnextChainPushFront(&physicalDeviceProperties2, &physicalDeviceVulkan11Properties);
PnextChainPushFront(&physicalDeviceProperties2, &physicalDeviceVulkan12Properties);
#endif
vkGetPhysicalDeviceProperties2(g_hPhysicalDevice, &physicalDeviceProperties2);
PrintPhysicalDeviceProperties(physicalDeviceProperties2.properties);
#if VMA_VULKAN_VERSION >= 1002000
PrintPhysicalDeviceVulkan11Properties(physicalDeviceVulkan11Properties);
PrintPhysicalDeviceVulkan12Properties(physicalDeviceVulkan12Properties);
#endif
#else // #if VMA_VULKAN_VERSION >= 1001000
VkPhysicalDeviceProperties physicalDeviceProperties = {};
vkGetPhysicalDeviceProperties(g_hPhysicalDevice, &physicalDeviceProperties);
PrintPhysicalDeviceProperties(physicalDeviceProperties);
#endif // #if VMA_VULKAN_VERSION >= 1001000
wprintf(L"\n");
VkPhysicalDeviceFeatures2 physicalDeviceFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2 };
VkPhysicalDeviceCoherentMemoryFeaturesAMD physicalDeviceCoherentMemoryFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD };
if(VK_AMD_device_coherent_memory_enabled)
{
PnextChainPushFront(&physicalDeviceFeatures, &physicalDeviceCoherentMemoryFeatures);
}
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT physicalDeviceBufferDeviceAddressFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT };
if(VK_KHR_buffer_device_address_enabled || VK_EXT_buffer_device_address_enabled || GetVulkanApiVersion() >= VK_API_VERSION_1_2)
{
PnextChainPushFront(&physicalDeviceFeatures, &physicalDeviceBufferDeviceAddressFeatures);
}
VkPhysicalDeviceMemoryPriorityFeaturesEXT physicalDeviceMemoryPriorityFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT };
if(VK_EXT_memory_priority_enabled)
{
PnextChainPushFront(&physicalDeviceFeatures, &physicalDeviceMemoryPriorityFeatures);
}
vkGetPhysicalDeviceFeatures2(g_hPhysicalDevice, &physicalDeviceFeatures);
g_SparseBindingEnabled = physicalDeviceFeatures.features.sparseBinding != 0;
// The extension is supported as fake with no real support for this feature? Don't use it.
if(VK_AMD_device_coherent_memory_enabled && !physicalDeviceCoherentMemoryFeatures.deviceCoherentMemory)
VK_AMD_device_coherent_memory_enabled = false;
if(VK_KHR_buffer_device_address_enabled || VK_EXT_buffer_device_address_enabled || GetVulkanApiVersion() >= VK_API_VERSION_1_2)
g_BufferDeviceAddressEnabled = physicalDeviceBufferDeviceAddressFeatures.bufferDeviceAddress != VK_FALSE;
if(VK_EXT_memory_priority_enabled && !physicalDeviceMemoryPriorityFeatures.memoryPriority)
VK_EXT_memory_priority_enabled = false;
// Find queue family index
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(g_hPhysicalDevice, &queueFamilyCount, nullptr);
assert(queueFamilyCount > 0);
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(g_hPhysicalDevice, &queueFamilyCount, queueFamilies.data());
for(uint32_t i = 0;
(i < queueFamilyCount) &&
(g_GraphicsQueueFamilyIndex == UINT_MAX ||
g_PresentQueueFamilyIndex == UINT_MAX ||
(g_SparseBindingEnabled && g_SparseBindingQueueFamilyIndex == UINT_MAX));
++i)
{
if(queueFamilies[i].queueCount > 0)
{
const uint32_t flagsForGraphicsQueue = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT;
if((g_GraphicsQueueFamilyIndex != 0) &&
((queueFamilies[i].queueFlags & flagsForGraphicsQueue) == flagsForGraphicsQueue))
{
g_GraphicsQueueFamilyIndex = i;
}
VkBool32 surfaceSupported = 0;
VkResult res = vkGetPhysicalDeviceSurfaceSupportKHR(g_hPhysicalDevice, i, g_hSurface, &surfaceSupported);
if((res >= 0) && (surfaceSupported == VK_TRUE))
{
g_PresentQueueFamilyIndex = i;
}
if(g_SparseBindingEnabled &&
g_SparseBindingQueueFamilyIndex == UINT32_MAX &&
(queueFamilies[i].queueFlags & VK_QUEUE_SPARSE_BINDING_BIT) != 0)
{
g_SparseBindingQueueFamilyIndex = i;
}
}
}
assert(g_GraphicsQueueFamilyIndex != UINT_MAX);
g_SparseBindingEnabled = g_SparseBindingEnabled && g_SparseBindingQueueFamilyIndex != UINT32_MAX;
// Create logical device
const float queuePriority = 1.f;
VkDeviceQueueCreateInfo queueCreateInfo[3] = {};
uint32_t queueCount = 1;
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo[0].queueFamilyIndex = g_GraphicsQueueFamilyIndex;
queueCreateInfo[0].queueCount = 1;
queueCreateInfo[0].pQueuePriorities = &queuePriority;
if(g_PresentQueueFamilyIndex != g_GraphicsQueueFamilyIndex)
{
queueCreateInfo[queueCount].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo[queueCount].queueFamilyIndex = g_PresentQueueFamilyIndex;
queueCreateInfo[queueCount].queueCount = 1;
queueCreateInfo[queueCount].pQueuePriorities = &queuePriority;
++queueCount;
}
if(g_SparseBindingEnabled &&
g_SparseBindingQueueFamilyIndex != g_GraphicsQueueFamilyIndex &&
g_SparseBindingQueueFamilyIndex != g_PresentQueueFamilyIndex)
{
queueCreateInfo[queueCount].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo[queueCount].queueFamilyIndex = g_SparseBindingQueueFamilyIndex;
queueCreateInfo[queueCount].queueCount = 1;
queueCreateInfo[queueCount].pQueuePriorities = &queuePriority;
++queueCount;
}
std::vector<const char*> enabledDeviceExtensions;
enabledDeviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
if(VK_KHR_get_memory_requirements2_enabled)
enabledDeviceExtensions.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
if(VK_KHR_dedicated_allocation_enabled)
enabledDeviceExtensions.push_back(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME);
if(VK_KHR_bind_memory2_enabled)
enabledDeviceExtensions.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
if(VK_EXT_memory_budget_enabled)
enabledDeviceExtensions.push_back(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME);
if(VK_AMD_device_coherent_memory_enabled)
enabledDeviceExtensions.push_back(VK_AMD_DEVICE_COHERENT_MEMORY_EXTENSION_NAME);
if(VK_KHR_buffer_device_address_enabled)
enabledDeviceExtensions.push_back(VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
if(VK_EXT_buffer_device_address_enabled)
enabledDeviceExtensions.push_back(VK_EXT_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
if(VK_EXT_memory_priority_enabled)
enabledDeviceExtensions.push_back(VK_EXT_MEMORY_PRIORITY_EXTENSION_NAME);
VkPhysicalDeviceFeatures2 deviceFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2 };
deviceFeatures.features.samplerAnisotropy = VK_TRUE;
deviceFeatures.features.sparseBinding = g_SparseBindingEnabled ? VK_TRUE : VK_FALSE;
if(VK_AMD_device_coherent_memory_enabled)
{
physicalDeviceCoherentMemoryFeatures.deviceCoherentMemory = VK_TRUE;
PnextChainPushBack(&deviceFeatures, &physicalDeviceCoherentMemoryFeatures);
}
if(g_BufferDeviceAddressEnabled)
{
physicalDeviceBufferDeviceAddressFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT };
physicalDeviceBufferDeviceAddressFeatures.bufferDeviceAddress = VK_TRUE;
PnextChainPushBack(&deviceFeatures, &physicalDeviceBufferDeviceAddressFeatures);
}
if(VK_EXT_memory_priority_enabled)
{
PnextChainPushBack(&deviceFeatures, &physicalDeviceMemoryPriorityFeatures);
}
VkDeviceCreateInfo deviceCreateInfo = { VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO };
deviceCreateInfo.pNext = &deviceFeatures;
deviceCreateInfo.enabledLayerCount = 0;
deviceCreateInfo.ppEnabledLayerNames = nullptr;
deviceCreateInfo.enabledExtensionCount = (uint32_t)enabledDeviceExtensions.size();
deviceCreateInfo.ppEnabledExtensionNames = !enabledDeviceExtensions.empty() ? enabledDeviceExtensions.data() : nullptr;
deviceCreateInfo.queueCreateInfoCount = queueCount;
deviceCreateInfo.pQueueCreateInfos = queueCreateInfo;
ERR_GUARD_VULKAN( vkCreateDevice(g_hPhysicalDevice, &deviceCreateInfo, g_Allocs, &g_hDevice) );
// Fetch pointers to extension functions
if(g_BufferDeviceAddressEnabled)
{
if(GetVulkanApiVersion() >= VK_API_VERSION_1_2)
{
g_vkGetBufferDeviceAddressEXT = (PFN_vkGetBufferDeviceAddressEXT)vkGetDeviceProcAddr(g_hDevice, "vkGetBufferDeviceAddress");
//assert(g_vkGetBufferDeviceAddressEXT != nullptr);
/*
For some reason this doesn't work, the pointer is NULL :( None of the below methods help.
Validation layers also report following error:
[ VUID-VkMemoryAllocateInfo-flags-03331 ] Object: VK_NULL_HANDLE (Type = 0) | If VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR is set, bufferDeviceAddress must be enabled. The Vulkan spec states: If VkMemoryAllocateFlagsInfo::flags includes VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT, the bufferDeviceAddress feature must be enabled (https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VUID-VkMemoryAllocateInfo-flags-03331)
Despite I'm posting VkPhysicalDeviceBufferDeviceAddressFeaturesEXT::bufferDeviceAddress = VK_TRUE in VkDeviceCreateInfo::pNext chain.
if(g_vkGetBufferDeviceAddressEXT == nullptr)
{
g_vkGetBufferDeviceAddressEXT = &vkGetBufferDeviceAddress; // Doesn't run, cannot find entry point...
}
if(g_vkGetBufferDeviceAddressEXT == nullptr)
{
g_vkGetBufferDeviceAddressEXT = (PFN_vkGetBufferDeviceAddressEXT)vkGetInstanceProcAddr(g_hVulkanInstance, "vkGetBufferDeviceAddress");
}
if(g_vkGetBufferDeviceAddressEXT == nullptr)
{
g_vkGetBufferDeviceAddressEXT = (PFN_vkGetBufferDeviceAddressEXT)vkGetDeviceProcAddr(g_hDevice, "vkGetBufferDeviceAddressKHR");
}
if(g_vkGetBufferDeviceAddressEXT == nullptr)
{
g_vkGetBufferDeviceAddressEXT = (PFN_vkGetBufferDeviceAddressEXT)vkGetDeviceProcAddr(g_hDevice, "vkGetBufferDeviceAddressEXT");
}
*/
}
else if(VK_KHR_buffer_device_address_enabled)
{
g_vkGetBufferDeviceAddressEXT = (PFN_vkGetBufferDeviceAddressEXT)vkGetDeviceProcAddr(g_hDevice, "vkGetBufferDeviceAddressKHR");
assert(g_vkGetBufferDeviceAddressEXT != nullptr);
}
else if(VK_EXT_buffer_device_address_enabled)
{
g_vkGetBufferDeviceAddressEXT = (PFN_vkGetBufferDeviceAddressEXT)vkGetDeviceProcAddr(g_hDevice, "vkGetBufferDeviceAddressEXT");
assert(g_vkGetBufferDeviceAddressEXT != nullptr);
}
}
// Create memory allocator
VmaAllocatorCreateInfo allocatorInfo = {};
SetAllocatorCreateInfo(allocatorInfo);
ERR_GUARD_VULKAN( vmaCreateAllocator(&allocatorInfo, &g_hAllocator) );
PrintMemoryTypes();
wprintf(L"\n");
PrintMemoryConclusions();
wprintf(L"\n");
PrintEnabledFeatures();
wprintf(L"\n");
// Retrieve queues (don't need to be destroyed).
vkGetDeviceQueue(g_hDevice, g_GraphicsQueueFamilyIndex, 0, &g_hGraphicsQueue);
vkGetDeviceQueue(g_hDevice, g_PresentQueueFamilyIndex, 0, &g_hPresentQueue);
assert(g_hGraphicsQueue);
assert(g_hPresentQueue);
if(g_SparseBindingEnabled)
{
vkGetDeviceQueue(g_hDevice, g_SparseBindingQueueFamilyIndex, 0, &g_hSparseBindingQueue);
assert(g_hSparseBindingQueue);
}
// Create command pool
VkCommandPoolCreateInfo commandPoolInfo = { VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO };
commandPoolInfo.queueFamilyIndex = g_GraphicsQueueFamilyIndex;
commandPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
ERR_GUARD_VULKAN( vkCreateCommandPool(g_hDevice, &commandPoolInfo, g_Allocs, &g_hCommandPool) );
VkCommandBufferAllocateInfo commandBufferInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO };
commandBufferInfo.commandPool = g_hCommandPool;
commandBufferInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
commandBufferInfo.commandBufferCount = COMMAND_BUFFER_COUNT;
ERR_GUARD_VULKAN( vkAllocateCommandBuffers(g_hDevice, &commandBufferInfo, g_MainCommandBuffers) );
VkFenceCreateInfo fenceInfo = { VK_STRUCTURE_TYPE_FENCE_CREATE_INFO };
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
for(size_t i = 0; i < COMMAND_BUFFER_COUNT; ++i)
{
ERR_GUARD_VULKAN( vkCreateFence(g_hDevice, &fenceInfo, g_Allocs, &g_MainCommandBufferExecutedFances[i]) );
}
ERR_GUARD_VULKAN( vkCreateFence(g_hDevice, &fenceInfo, g_Allocs, &g_ImmediateFence) );
commandBufferInfo.commandBufferCount = 1;
ERR_GUARD_VULKAN( vkAllocateCommandBuffers(g_hDevice, &commandBufferInfo, &g_hTemporaryCommandBuffer) );
// Create texture sampler
VkSamplerCreateInfo samplerInfo = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO };
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.anisotropyEnable = VK_TRUE;
samplerInfo.maxAnisotropy = 16;
samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
samplerInfo.unnormalizedCoordinates = VK_FALSE;
samplerInfo.compareEnable = VK_FALSE;
samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.mipLodBias = 0.f;
samplerInfo.minLod = 0.f;
samplerInfo.maxLod = FLT_MAX;
ERR_GUARD_VULKAN( vkCreateSampler(g_hDevice, &samplerInfo, g_Allocs, &g_hSampler) );
CreateTexture(128, 128);
CreateMesh();
VkDescriptorSetLayoutBinding samplerLayoutBinding = {};
samplerLayoutBinding.binding = 1;
samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
samplerLayoutBinding.descriptorCount = 1;
samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
descriptorSetLayoutInfo.bindingCount = 1;
descriptorSetLayoutInfo.pBindings = &samplerLayoutBinding;
ERR_GUARD_VULKAN( vkCreateDescriptorSetLayout(g_hDevice, &descriptorSetLayoutInfo, g_Allocs, &g_hDescriptorSetLayout) );
// Create descriptor pool
VkDescriptorPoolSize descriptorPoolSizes[2];
ZeroMemory(descriptorPoolSizes, sizeof(descriptorPoolSizes));
descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorPoolSizes[0].descriptorCount = 1;
descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorPoolSizes[1].descriptorCount = 1;
VkDescriptorPoolCreateInfo descriptorPoolInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO };
descriptorPoolInfo.poolSizeCount = (uint32_t)_countof(descriptorPoolSizes);
descriptorPoolInfo.pPoolSizes = descriptorPoolSizes;
descriptorPoolInfo.maxSets = 1;
ERR_GUARD_VULKAN( vkCreateDescriptorPool(g_hDevice, &descriptorPoolInfo, g_Allocs, &g_hDescriptorPool) );
// Create descriptor set layout
VkDescriptorSetLayout descriptorSetLayouts[] = { g_hDescriptorSetLayout };
VkDescriptorSetAllocateInfo descriptorSetInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO };
descriptorSetInfo.descriptorPool = g_hDescriptorPool;
descriptorSetInfo.descriptorSetCount = 1;
descriptorSetInfo.pSetLayouts = descriptorSetLayouts;
ERR_GUARD_VULKAN( vkAllocateDescriptorSets(g_hDevice, &descriptorSetInfo, &g_hDescriptorSet) );
VkDescriptorImageInfo descriptorImageInfo = {};
descriptorImageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
descriptorImageInfo.imageView = g_hTextureImageView;
descriptorImageInfo.sampler = g_hSampler;
VkWriteDescriptorSet writeDescriptorSet = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET };
writeDescriptorSet.dstSet = g_hDescriptorSet;
writeDescriptorSet.dstBinding = 1;
writeDescriptorSet.dstArrayElement = 0;
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeDescriptorSet.descriptorCount = 1;
writeDescriptorSet.pImageInfo = &descriptorImageInfo;
vkUpdateDescriptorSets(g_hDevice, 1, &writeDescriptorSet, 0, nullptr);
CreateSwapchain();
}
static void FinalizeApplication()
{
vkDeviceWaitIdle(g_hDevice);
DestroySwapchain(true);
if(g_hDescriptorPool != VK_NULL_HANDLE)
{
vkDestroyDescriptorPool(g_hDevice, g_hDescriptorPool, g_Allocs);
g_hDescriptorPool = VK_NULL_HANDLE;
}
if(g_hDescriptorSetLayout != VK_NULL_HANDLE)
{
vkDestroyDescriptorSetLayout(g_hDevice, g_hDescriptorSetLayout, g_Allocs);
g_hDescriptorSetLayout = VK_NULL_HANDLE;
}
if(g_hTextureImageView != VK_NULL_HANDLE)
{
vkDestroyImageView(g_hDevice, g_hTextureImageView, g_Allocs);
g_hTextureImageView = VK_NULL_HANDLE;
}
if(g_hTextureImage != VK_NULL_HANDLE)
{
vmaDestroyImage(g_hAllocator, g_hTextureImage, g_hTextureImageAlloc);
g_hTextureImage = VK_NULL_HANDLE;
}
if(g_hIndexBuffer != VK_NULL_HANDLE)
{
vmaDestroyBuffer(g_hAllocator, g_hIndexBuffer, g_hIndexBufferAlloc);
g_hIndexBuffer = VK_NULL_HANDLE;
}
if(g_hVertexBuffer != VK_NULL_HANDLE)
{
vmaDestroyBuffer(g_hAllocator, g_hVertexBuffer, g_hVertexBufferAlloc);
g_hVertexBuffer = VK_NULL_HANDLE;
}
if(g_hSampler != VK_NULL_HANDLE)
{
vkDestroySampler(g_hDevice, g_hSampler, g_Allocs);
g_hSampler = VK_NULL_HANDLE;
}
if(g_ImmediateFence)
{
vkDestroyFence(g_hDevice, g_ImmediateFence, g_Allocs);
g_ImmediateFence = VK_NULL_HANDLE;
}
for(size_t i = COMMAND_BUFFER_COUNT; i--; )
{
if(g_MainCommandBufferExecutedFances[i] != VK_NULL_HANDLE)
{
vkDestroyFence(g_hDevice, g_MainCommandBufferExecutedFances[i], g_Allocs);
g_MainCommandBufferExecutedFances[i] = VK_NULL_HANDLE;
}
}
if(g_MainCommandBuffers[0] != VK_NULL_HANDLE)
{
vkFreeCommandBuffers(g_hDevice, g_hCommandPool, COMMAND_BUFFER_COUNT, g_MainCommandBuffers);
ZeroMemory(g_MainCommandBuffers, sizeof(g_MainCommandBuffers));
}
if(g_hTemporaryCommandBuffer != VK_NULL_HANDLE)
{
vkFreeCommandBuffers(g_hDevice, g_hCommandPool, 1, &g_hTemporaryCommandBuffer);
g_hTemporaryCommandBuffer = VK_NULL_HANDLE;
}
if(g_hCommandPool != VK_NULL_HANDLE)
{
vkDestroyCommandPool(g_hDevice, g_hCommandPool, g_Allocs);
g_hCommandPool = VK_NULL_HANDLE;
}
if(g_hAllocator != VK_NULL_HANDLE)
{
vmaDestroyAllocator(g_hAllocator);
g_hAllocator = nullptr;
}
if(g_hDevice != VK_NULL_HANDLE)
{
vkDestroyDevice(g_hDevice, g_Allocs);
g_hDevice = nullptr;
}
if(g_hSurface != VK_NULL_HANDLE)
{
vkDestroySurfaceKHR(g_hVulkanInstance, g_hSurface, g_Allocs);
g_hSurface = VK_NULL_HANDLE;
}
UnregisterDebugCallbacks();
if(g_hVulkanInstance != VK_NULL_HANDLE)
{
vkDestroyInstance(g_hVulkanInstance, g_Allocs);
g_hVulkanInstance = VK_NULL_HANDLE;
}
}
static void PrintAllocatorStats()
{
#if VMA_STATS_STRING_ENABLED
char* statsString = nullptr;
vmaBuildStatsString(g_hAllocator, &statsString, true);
printf("%s\n", statsString);
vmaFreeStatsString(g_hAllocator, statsString);
#endif
}
static void RecreateSwapChain()
{
vkDeviceWaitIdle(g_hDevice);
DestroySwapchain(false);
CreateSwapchain();
}
static void DrawFrame()
{
// Begin main command buffer
size_t cmdBufIndex = (g_NextCommandBufferIndex++) % COMMAND_BUFFER_COUNT;
VkCommandBuffer hCommandBuffer = g_MainCommandBuffers[cmdBufIndex];
VkFence hCommandBufferExecutedFence = g_MainCommandBufferExecutedFances[cmdBufIndex];
ERR_GUARD_VULKAN( vkWaitForFences(g_hDevice, 1, &hCommandBufferExecutedFence, VK_TRUE, UINT64_MAX) );
ERR_GUARD_VULKAN( vkResetFences(g_hDevice, 1, &hCommandBufferExecutedFence) );
VkCommandBufferBeginInfo commandBufferBeginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO };
commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
ERR_GUARD_VULKAN( vkBeginCommandBuffer(hCommandBuffer, &commandBufferBeginInfo) );
// Acquire swapchain image
uint32_t imageIndex = 0;
VkResult res = vkAcquireNextImageKHR(g_hDevice, g_hSwapchain, UINT64_MAX, g_hImageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);
if(res == VK_ERROR_OUT_OF_DATE_KHR)
{
RecreateSwapChain();
return;
}
else if(res < 0)
{
ERR_GUARD_VULKAN(res);
}
// Record geometry pass
VkClearValue clearValues[2];
ZeroMemory(clearValues, sizeof(clearValues));
clearValues[0].color.float32[0] = 0.25f;
clearValues[0].color.float32[1] = 0.25f;
clearValues[0].color.float32[2] = 0.5f;
clearValues[0].color.float32[3] = 1.0f;
clearValues[1].depthStencil.depth = 1.0f;
VkRenderPassBeginInfo renderPassBeginInfo = { VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO };
renderPassBeginInfo.renderPass = g_hRenderPass;
renderPassBeginInfo.framebuffer = g_Framebuffers[imageIndex];
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent = g_Extent;
renderPassBeginInfo.clearValueCount = (uint32_t)_countof(clearValues);
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(hCommandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(
hCommandBuffer,
VK_PIPELINE_BIND_POINT_GRAPHICS,
g_hPipeline);
mat4 view = mat4::LookAt(
vec3(0.f, 0.f, 0.f),
vec3(0.f, -2.f, 4.f),
vec3(0.f, 1.f, 0.f));
mat4 proj = mat4::Perspective(
1.0471975511966f, // 60 degrees
(float)g_Extent.width / (float)g_Extent.height,
0.1f,
1000.f);
mat4 viewProj = view * proj;
vkCmdBindDescriptorSets(
hCommandBuffer,
VK_PIPELINE_BIND_POINT_GRAPHICS,
g_hPipelineLayout,
0,
1,
&g_hDescriptorSet,
0,
nullptr);
float rotationAngle = (float)GetTickCount() * 0.001f * (float)PI * 0.2f;
mat4 model = mat4::RotationY(rotationAngle);
UniformBufferObject ubo = {};
ubo.ModelViewProj = model * viewProj;
vkCmdPushConstants(hCommandBuffer, g_hPipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(UniformBufferObject), &ubo);
VkBuffer vertexBuffers[] = { g_hVertexBuffer };
VkDeviceSize offsets[] = { 0 };
vkCmdBindVertexBuffers(hCommandBuffer, 0, 1, vertexBuffers, offsets);
vkCmdBindIndexBuffer(hCommandBuffer, g_hIndexBuffer, 0, VK_INDEX_TYPE_UINT16);
vkCmdDrawIndexed(hCommandBuffer, g_IndexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(hCommandBuffer);
vkEndCommandBuffer(hCommandBuffer);
// Submit command buffer
VkSemaphore submitWaitSemaphores[] = { g_hImageAvailableSemaphore };
VkPipelineStageFlags submitWaitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
VkSemaphore submitSignalSemaphores[] = { g_hRenderFinishedSemaphore };
VkSubmitInfo submitInfo = { VK_STRUCTURE_TYPE_SUBMIT_INFO };
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = submitWaitSemaphores;
submitInfo.pWaitDstStageMask = submitWaitStages;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &hCommandBuffer;
submitInfo.signalSemaphoreCount = _countof(submitSignalSemaphores);
submitInfo.pSignalSemaphores = submitSignalSemaphores;
ERR_GUARD_VULKAN( vkQueueSubmit(g_hGraphicsQueue, 1, &submitInfo, hCommandBufferExecutedFence) );
VkSemaphore presentWaitSemaphores[] = { g_hRenderFinishedSemaphore };
VkSwapchainKHR swapchains[] = { g_hSwapchain };
VkPresentInfoKHR presentInfo = { VK_STRUCTURE_TYPE_PRESENT_INFO_KHR };
presentInfo.waitSemaphoreCount = _countof(presentWaitSemaphores);
presentInfo.pWaitSemaphores = presentWaitSemaphores;
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = swapchains;
presentInfo.pImageIndices = &imageIndex;
presentInfo.pResults = nullptr;
res = vkQueuePresentKHR(g_hPresentQueue, &presentInfo);
if(res == VK_ERROR_OUT_OF_DATE_KHR)
{
RecreateSwapChain();
}
else
ERR_GUARD_VULKAN(res);
}
static void HandlePossibleSizeChange()
{
RECT clientRect;
GetClientRect(g_hWnd, &clientRect);
LONG newSizeX = clientRect.right - clientRect.left;
LONG newSizeY = clientRect.bottom - clientRect.top;
if((newSizeX > 0) &&
(newSizeY > 0) &&
((newSizeX != g_SizeX) || (newSizeY != g_SizeY)))
{
g_SizeX = newSizeX;
g_SizeY = newSizeY;
RecreateSwapChain();
}
}
static LRESULT WINAPI WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
switch(msg)
{
case WM_CREATE:
// This is intentionally assigned here because we are now inside CreateWindow, before it returns.
g_hWnd = hWnd;
InitializeApplication();
//PrintAllocatorStats();
return 0;
case WM_DESTROY:
FinalizeApplication();
PostQuitMessage(0);
return 0;
// This prevents app from freezing when left Alt is pressed
// (which normally enters modal menu loop).
case WM_SYSKEYDOWN:
case WM_SYSKEYUP:
return 0;
case WM_SIZE:
if((wParam == SIZE_MAXIMIZED) || (wParam == SIZE_RESTORED))
HandlePossibleSizeChange();
return 0;
case WM_EXITSIZEMOVE:
HandlePossibleSizeChange();
return 0;
case WM_KEYDOWN:
switch(wParam)
{
case VK_ESCAPE:
PostMessage(hWnd, WM_CLOSE, 0, 0);
break;
case 'T':
try
{
Test();
}
catch(const std::exception& ex)
{
printf("ERROR: %s\n", ex.what());
}
break;
case 'S':
try
{
if(g_SparseBindingEnabled)
{
TestSparseBinding();
}
else
{
printf("Sparse binding not supported.\n");
}
}
catch(const std::exception& ex)
{
printf("ERROR: %s\n", ex.what());
}
break;
}
return 0;
default:
break;
}
return DefWindowProc(hWnd, msg, wParam, lParam);
}
int main()
{
g_hAppInstance = (HINSTANCE)GetModuleHandle(NULL);
WNDCLASSEX wndClassDesc = { sizeof(WNDCLASSEX) };
wndClassDesc.style = CS_VREDRAW | CS_HREDRAW | CS_DBLCLKS;
wndClassDesc.hbrBackground = NULL;
wndClassDesc.hCursor = LoadCursor(NULL, IDC_CROSS);
wndClassDesc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndClassDesc.hInstance = g_hAppInstance;
wndClassDesc.lpfnWndProc = WndProc;
wndClassDesc.lpszClassName = WINDOW_CLASS_NAME;
const ATOM hWndClass = RegisterClassEx(&wndClassDesc);
assert(hWndClass);
const DWORD style = WS_VISIBLE | WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX | WS_MAXIMIZEBOX | WS_THICKFRAME;
const DWORD exStyle = 0;
RECT rect = { 0, 0, g_SizeX, g_SizeY };
AdjustWindowRectEx(&rect, style, FALSE, exStyle);
CreateWindowEx(
exStyle, WINDOW_CLASS_NAME, APP_TITLE_W, style,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
NULL, NULL, g_hAppInstance, NULL);
MSG msg;
for(;;)
{
if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{
if(msg.message == WM_QUIT)
break;
TranslateMessage(&msg);
DispatchMessage(&msg);
}
if(g_hDevice != VK_NULL_HANDLE)
DrawFrame();
}
TEST(g_CpuAllocCount.load() == 0);
return 0;
}
#else // #ifdef _WIN32
#include "VmaUsage.h"
int main()
{
}
#endif // #ifdef _WIN32