blob: d1d893b53f20f14730172fc0111b5db30cac2436 [file] [log] [blame]
// basisu_transcoder.h
// Copyright (C) 2019-2020 Binomial LLC. All Rights Reserved.
// Important: If compiling with gcc, be sure strict aliasing is disabled: -fno-strict-aliasing
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
// Set BASISU_FORCE_DEVEL_MESSAGES to 1 to enable debug printf()'s whenever an error occurs, for easier debugging during development.
#ifndef BASISU_FORCE_DEVEL_MESSAGES
#define BASISU_FORCE_DEVEL_MESSAGES 0
#endif
/**** start inlining basisu_transcoder_internal.h ****/
// basisu_transcoder_internal.h - Universal texture format transcoder library.
// Copyright (C) 2019-2020 Binomial LLC. All Rights Reserved.
//
// Important: If compiling with gcc, be sure strict aliasing is disabled: -fno-strict-aliasing
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef _MSC_VER
#pragma warning (disable: 4127) // conditional expression is constant
#endif
#define BASISD_LIB_VERSION 112
#define BASISD_VERSION_STRING "01.12"
#ifdef _DEBUG
#define BASISD_BUILD_DEBUG
#else
#define BASISD_BUILD_RELEASE
#endif
/**** start inlining basisu.h ****/
// basisu.h
// Copyright (C) 2019-2020 Binomial LLC. All Rights Reserved.
// Important: If compiling with gcc, be sure strict aliasing is disabled: -fno-strict-aliasing
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef _MSC_VER
#pragma warning (disable : 4201)
#pragma warning (disable : 4127) // warning C4127: conditional expression is constant
#pragma warning (disable : 4530) // C++ exception handler used, but unwind semantics are not enabled.
#ifndef BASISU_NO_ITERATOR_DEBUG_LEVEL
//#define _HAS_ITERATOR_DEBUGGING 0
#if defined(_DEBUG) || defined(DEBUG)
// This is madness, but we need to disable iterator debugging in debug builds or the encoder is unsable because MSVC's iterator debugging implementation is totally broken.
#ifndef _ITERATOR_DEBUG_LEVEL
#define _ITERATOR_DEBUG_LEVEL 1
#endif
#ifndef _SECURE_SCL
#define _SECURE_SCL 1
#endif
#else // defined(_DEBUG) || defined(DEBUG)
#ifndef _SECURE_SCL
#define _SECURE_SCL 0
#endif
#ifndef _ITERATOR_DEBUG_LEVEL
#define _ITERATOR_DEBUG_LEVEL 0
#endif
#endif // defined(_DEBUG) || defined(DEBUG)
#ifndef NOMINMAX
#define NOMINMAX
#endif
#endif // BASISU_NO_ITERATOR_DEBUG_LEVEL
#endif // _MSC_VER
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>
#include <string.h>
#include <memory.h>
#include <limits.h>
#include <stdint.h>
#include <algorithm>
#include <limits>
#include <functional>
#include <iterator>
#include <type_traits>
#include <vector>
#include <assert.h>
#include <random>
#ifdef max
#undef max
#endif
#ifdef min
#undef min
#endif
#ifdef _WIN32
#define strcasecmp _stricmp
#endif
// Set to one to enable debug printf()'s when any errors occur, for development/debugging. Especially useful for WebGL development.
#ifndef BASISU_FORCE_DEVEL_MESSAGES
#define BASISU_FORCE_DEVEL_MESSAGES 0
#endif
#define BASISU_NOTE_UNUSED(x) (void)(x)
#define BASISU_ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
#define BASISU_NO_EQUALS_OR_COPY_CONSTRUCT(x) x(const x &) = delete; x& operator= (const x &) = delete;
#define BASISU_ASSUME(x) static_assert(x, #x);
#define BASISU_OFFSETOF(s, m) (uint32_t)(intptr_t)(&((s *)(0))->m)
#define BASISU_STRINGIZE(x) #x
#define BASISU_STRINGIZE2(x) BASISU_STRINGIZE(x)
#if BASISU_FORCE_DEVEL_MESSAGES
#define BASISU_DEVEL_ERROR(...) do { basisu::debug_printf(__VA_ARGS__); } while(0)
#else
#define BASISU_DEVEL_ERROR(...)
#endif
namespace basisu
{
// Types/utilities
#ifdef _WIN32
const char BASISU_PATH_SEPERATOR_CHAR = '\\';
#else
const char BASISU_PATH_SEPERATOR_CHAR = '/';
#endif
typedef std::vector<uint8_t> uint8_vec;
typedef std::vector<int16_t> int16_vec;
typedef std::vector<uint16_t> uint16_vec;
typedef std::vector<uint32_t> uint_vec;
typedef std::vector<uint64_t> uint64_vec;
typedef std::vector<int> int_vec;
typedef std::vector<bool> bool_vec;
void enable_debug_printf(bool enabled);
void debug_printf(const char *pFmt, ...);
template <typename T> inline void clear_obj(T& obj) { memset(&obj, 0, sizeof(obj)); }
template <typename T0, typename T1> inline T0 lerp(T0 a, T0 b, T1 c) { return a + (b - a) * c; }
template <typename S> inline S maximum(S a, S b) { return (a > b) ? a : b; }
template <typename S> inline S maximum(S a, S b, S c) { return maximum(maximum(a, b), c); }
template <typename S> inline S maximum(S a, S b, S c, S d) { return maximum(maximum(maximum(a, b), c), d); }
template <typename S> inline S minimum(S a, S b) { return (a < b) ? a : b; }
template <typename S> inline S minimum(S a, S b, S c) { return minimum(minimum(a, b), c); }
template <typename S> inline S minimum(S a, S b, S c, S d) { return minimum(minimum(minimum(a, b), c), d); }
inline float clampf(float value, float low, float high) { if (value < low) value = low; else if (value > high) value = high; return value; }
inline float saturate(float value) { return clampf(value, 0, 1.0f); }
inline uint8_t minimumub(uint8_t a, uint8_t b) { return (a < b) ? a : b; }
inline uint32_t minimumu(uint32_t a, uint32_t b) { return (a < b) ? a : b; }
inline int32_t minimumi(int32_t a, int32_t b) { return (a < b) ? a : b; }
inline float minimumf(float a, float b) { return (a < b) ? a : b; }
inline uint8_t maximumub(uint8_t a, uint8_t b) { return (a > b) ? a : b; }
inline uint32_t maximumu(uint32_t a, uint32_t b) { return (a > b) ? a : b; }
inline int32_t maximumi(int32_t a, int32_t b) { return (a > b) ? a : b; }
inline float maximumf(float a, float b) { return (a > b) ? a : b; }
inline int squarei(int i) { return i * i; }
inline float squaref(float i) { return i * i; }
template<typename T> inline T square(T a) { return a * a; }
template <typename S> inline S clamp(S value, S low, S high) { return (value < low) ? low : ((value > high) ? high : value); }
inline uint32_t iabs(int32_t i) { return (i < 0) ? static_cast<uint32_t>(-i) : static_cast<uint32_t>(i); }
inline uint64_t iabs64(int64_t i) { return (i < 0) ? static_cast<uint64_t>(-i) : static_cast<uint64_t>(i); }
template<typename T> inline void clear_vector(T &vec) { vec.erase(vec.begin(), vec.end()); }
template<typename T> inline typename T::value_type *enlarge_vector(T &vec, size_t n) { size_t cs = vec.size(); vec.resize(cs + n); return &vec[cs]; }
inline bool is_pow2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); }
inline bool is_pow2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); }
template<typename T> inline T open_range_check(T v, T minv, T maxv) { assert(v >= minv && v < maxv); BASISU_NOTE_UNUSED(minv); BASISU_NOTE_UNUSED(maxv); return v; }
template<typename T> inline T open_range_check(T v, T maxv) { assert(v < maxv); BASISU_NOTE_UNUSED(maxv); return v; }
inline uint32_t total_bits(uint32_t v) { uint32_t l = 0; for ( ; v > 0U; ++l) v >>= 1; return l; }
template<typename T> inline T saturate(T val) { return clamp(val, 0.0f, 1.0f); }
template<typename T, typename R> inline void append_vector(T &vec, const R *pObjs, size_t n)
{
if (n)
{
const size_t cur_s = vec.size();
vec.resize(cur_s + n);
memcpy(&vec[cur_s], pObjs, sizeof(R) * n);
}
}
template<typename T> inline void append_vector(T &vec, const T &other_vec)
{
if (other_vec.size())
append_vector(vec, &other_vec[0], other_vec.size());
}
template<typename T> inline void vector_ensure_element_is_valid(T &vec, size_t idx)
{
if (idx >= vec.size())
vec.resize(idx + 1);
}
template<typename T> inline void vector_sort(T &vec)
{
if (vec.size())
std::sort(vec.begin(), vec.end());
}
template<typename T, typename U> inline bool unordered_set_contains(T& set, const U&obj)
{
return set.find(obj) != set.end();
}
template<typename T> int vector_find(const T &vec, const typename T::value_type &obj)
{
assert(vec.size() <= INT_MAX);
for (size_t i = 0; i < vec.size(); i++)
if (vec[i] == obj)
return static_cast<int>(i);
return -1;
}
template<typename T> void vector_set_all(T &vec, const typename T::value_type &obj)
{
for (size_t i = 0; i < vec.size(); i++)
vec[i] = obj;
}
inline uint64_t read_be64(const void *p)
{
uint64_t val = 0;
for (uint32_t i = 0; i < 8; i++)
val |= (static_cast<uint64_t>(static_cast<const uint8_t *>(p)[7 - i]) << (i * 8));
return val;
}
inline void write_be64(void *p, uint64_t x)
{
for (uint32_t i = 0; i < 8; i++)
static_cast<uint8_t *>(p)[7 - i] = static_cast<uint8_t>(x >> (i * 8));
}
static inline uint16_t byteswap16(uint16_t x) { return static_cast<uint16_t>((x << 8) | (x >> 8)); }
static inline uint32_t byteswap32(uint32_t x) { return ((x << 24) | ((x << 8) & 0x00FF0000) | ((x >> 8) & 0x0000FF00) | (x >> 24)); }
inline uint32_t floor_log2i(uint32_t v)
{
uint32_t b = 0;
for (; v > 1U; ++b)
v >>= 1;
return b;
}
inline uint32_t ceil_log2i(uint32_t v)
{
uint32_t b = floor_log2i(v);
if ((b != 32) && (v > (1U << b)))
++b;
return b;
}
inline int posmod(int x, int y)
{
if (x >= 0)
return (x < y) ? x : (x % y);
int m = (-x) % y;
return (m != 0) ? (y - m) : m;
}
inline bool do_excl_ranges_overlap(int la, int ha, int lb, int hb)
{
assert(la < ha && lb < hb);
if ((ha <= lb) || (la >= hb)) return false;
return true;
}
// Always little endian 2-4 byte unsigned int
template<uint32_t NumBytes>
struct packed_uint
{
uint8_t m_bytes[NumBytes];
inline packed_uint() { static_assert(NumBytes <= 4, "NumBytes <= 4"); }
inline packed_uint(uint32_t v) { *this = v; }
inline packed_uint(const packed_uint& other) { *this = other; }
inline packed_uint& operator= (uint32_t v) { for (uint32_t i = 0; i < NumBytes; i++) m_bytes[i] = static_cast<uint8_t>(v >> (i * 8)); return *this; }
inline packed_uint& operator= (const packed_uint& rhs) { memcpy(m_bytes, rhs.m_bytes, sizeof(m_bytes)); return *this; }
inline operator uint32_t() const
{
switch (NumBytes)
{
case 1: return m_bytes[0];
case 2: return (m_bytes[1] << 8U) | m_bytes[0];
case 3: return (m_bytes[2] << 16U) | (m_bytes[1] << 8U) | (m_bytes[0]);
default: return (m_bytes[3] << 24U) | (m_bytes[2] << 16U) | (m_bytes[1] << 8U) | (m_bytes[0]);
}
}
};
enum eZero { cZero };
enum eNoClamp { cNoClamp };
// Rice/Huffman entropy coding
// This is basically Deflate-style canonical Huffman, except we allow for a lot more symbols.
enum
{
cHuffmanMaxSupportedCodeSize = 16, cHuffmanMaxSupportedInternalCodeSize = 31,
cHuffmanFastLookupBits = 10, cHuffmanFastLookupSize = 1 << cHuffmanFastLookupBits,
cHuffmanMaxSymsLog2 = 14, cHuffmanMaxSyms = 1 << cHuffmanMaxSymsLog2,
// Small zero runs
cHuffmanSmallZeroRunSizeMin = 3, cHuffmanSmallZeroRunSizeMax = 10, cHuffmanSmallZeroRunExtraBits = 3,
// Big zero run
cHuffmanBigZeroRunSizeMin = 11, cHuffmanBigZeroRunSizeMax = 138, cHuffmanBigZeroRunExtraBits = 7,
// Small non-zero run
cHuffmanSmallRepeatSizeMin = 3, cHuffmanSmallRepeatSizeMax = 6, cHuffmanSmallRepeatExtraBits = 2,
// Big non-zero run
cHuffmanBigRepeatSizeMin = 7, cHuffmanBigRepeatSizeMax = 134, cHuffmanBigRepeatExtraBits = 7,
cHuffmanTotalCodelengthCodes = 21, cHuffmanSmallZeroRunCode = 17, cHuffmanBigZeroRunCode = 18, cHuffmanSmallRepeatCode = 19, cHuffmanBigRepeatCode = 20
};
static const uint8_t g_huffman_sorted_codelength_codes[] = { cHuffmanSmallZeroRunCode, cHuffmanBigZeroRunCode, cHuffmanSmallRepeatCode, cHuffmanBigRepeatCode, 0, 8, 7, 9, 6, 0xA, 5, 0xB, 4, 0xC, 3, 0xD, 2, 0xE, 1, 0xF, 0x10 };
const uint32_t cHuffmanTotalSortedCodelengthCodes = sizeof(g_huffman_sorted_codelength_codes) / sizeof(g_huffman_sorted_codelength_codes[0]);
// GPU texture formats
enum class texture_format
{
cInvalidTextureFormat = -1,
// Block-based formats
cETC1, // ETC1
cETC1S, // ETC1 (subset: diff colors only, no subblocks)
cETC2_RGB, // ETC2 color block (basisu doesn't support ETC2 planar/T/H modes - just basic ETC1)
cETC2_RGBA, // ETC2 EAC alpha block followed by ETC2 color block
cETC2_ALPHA, // ETC2 EAC alpha block
cBC1, // DXT1
cBC3, // DXT5 (BC4/DXT5A block followed by a BC1/DXT1 block)
cBC4, // DXT5A
cBC5, // 3DC/DXN (two BC4/DXT5A blocks)
cBC7,
cASTC4x4, // LDR only
cPVRTC1_4_RGB,
cPVRTC1_4_RGBA,
cATC_RGB,
cATC_RGBA_INTERPOLATED_ALPHA,
cFXT1_RGB,
cPVRTC2_4_RGBA,
cETC2_R11_EAC,
cETC2_RG11_EAC,
cUASTC4x4,
// Uncompressed/raw pixels
cRGBA32,
cRGB565,
cBGR565,
cRGBA4444,
cABGR4444
};
inline uint32_t get_bytes_per_block(texture_format fmt)
{
switch (fmt)
{
case texture_format::cETC1:
case texture_format::cETC1S:
case texture_format::cETC2_RGB:
case texture_format::cETC2_ALPHA:
case texture_format::cBC1:
case texture_format::cBC4:
case texture_format::cPVRTC1_4_RGB:
case texture_format::cPVRTC1_4_RGBA:
case texture_format::cATC_RGB:
case texture_format::cPVRTC2_4_RGBA:
case texture_format::cETC2_R11_EAC:
return 8;
case texture_format::cRGBA32:
return sizeof(uint32_t) * 16;
default:
break;
}
return 16;
}
inline uint32_t get_qwords_per_block(texture_format fmt)
{
return get_bytes_per_block(fmt) >> 3;
}
inline uint32_t get_block_width(texture_format fmt)
{
BASISU_NOTE_UNUSED(fmt);
switch (fmt)
{
case texture_format::cFXT1_RGB:
return 8;
default:
break;
}
return 4;
}
inline uint32_t get_block_height(texture_format fmt)
{
BASISU_NOTE_UNUSED(fmt);
return 4;
}
} // namespace basisu
/**** ended inlining basisu.h ****/
#define BASISD_znew (z = 36969 * (z & 65535) + (z >> 16))
namespace basisu
{
extern bool g_debug_printf;
}
namespace basist
{
// Low-level formats directly supported by the transcoder (other supported texture formats are combinations of these low-level block formats).
// You probably don't care about these enum's unless you are going pretty low-level and calling the transcoder to decode individual slices.
enum class block_format
{
cETC1, // ETC1S RGB
cETC2_RGBA, // full ETC2 EAC RGBA8 block
cBC1, // DXT1 RGB
cBC3, // BC4 block followed by a four color BC1 block
cBC4, // DXT5A (alpha block only)
cBC5, // two BC4 blocks
cPVRTC1_4_RGB, // opaque-only PVRTC1 4bpp
cPVRTC1_4_RGBA, // PVRTC1 4bpp RGBA
cBC7, // Full BC7 block, any mode
cBC7_M5_COLOR, // RGB BC7 mode 5 color (writes an opaque mode 5 block)
cBC7_M5_ALPHA, // alpha portion of BC7 mode 5 (cBC7_M5_COLOR output data must have been written to the output buffer first to set the mode/rot fields etc.)
cETC2_EAC_A8, // alpha block of ETC2 EAC (first 8 bytes of the 16-bit ETC2 EAC RGBA format)
cASTC_4x4, // ASTC 4x4 (either color-only or color+alpha). Note that the transcoder always currently assumes sRGB is not enabled when outputting ASTC
// data. If you use a sRGB ASTC format you'll get ~1 LSB of additional error, because of the different way ASTC decoders scale 8-bit endpoints to 16-bits during unpacking.
cATC_RGB,
cATC_RGBA_INTERPOLATED_ALPHA,
cFXT1_RGB, // Opaque-only, has oddball 8x4 pixel block size
cPVRTC2_4_RGB,
cPVRTC2_4_RGBA,
cETC2_EAC_R11,
cETC2_EAC_RG11,
cIndices, // Used internally: Write 16-bit endpoint and selector indices directly to output (output block must be at least 32-bits)
cRGB32, // Writes RGB components to 32bpp output pixels
cRGBA32, // Writes RGB255 components to 32bpp output pixels
cA32, // Writes alpha component to 32bpp output pixels
cRGB565,
cBGR565,
cRGBA4444_COLOR,
cRGBA4444_ALPHA,
cRGBA4444_COLOR_OPAQUE,
cRGBA4444,
cTotalBlockFormats
};
const int COLOR5_PAL0_PREV_HI = 9, COLOR5_PAL0_DELTA_LO = -9, COLOR5_PAL0_DELTA_HI = 31;
const int COLOR5_PAL1_PREV_HI = 21, COLOR5_PAL1_DELTA_LO = -21, COLOR5_PAL1_DELTA_HI = 21;
const int COLOR5_PAL2_PREV_HI = 31, COLOR5_PAL2_DELTA_LO = -31, COLOR5_PAL2_DELTA_HI = 9;
const int COLOR5_PAL_MIN_DELTA_B_RUNLEN = 3, COLOR5_PAL_DELTA_5_RUNLEN_VLC_BITS = 3;
const uint32_t ENDPOINT_PRED_TOTAL_SYMBOLS = (4 * 4 * 4 * 4) + 1;
const uint32_t ENDPOINT_PRED_REPEAT_LAST_SYMBOL = ENDPOINT_PRED_TOTAL_SYMBOLS - 1;
const uint32_t ENDPOINT_PRED_MIN_REPEAT_COUNT = 3;
const uint32_t ENDPOINT_PRED_COUNT_VLC_BITS = 4;
const uint32_t NUM_ENDPOINT_PREDS = 3;// BASISU_ARRAY_SIZE(g_endpoint_preds);
const uint32_t CR_ENDPOINT_PRED_INDEX = NUM_ENDPOINT_PREDS - 1;
const uint32_t NO_ENDPOINT_PRED_INDEX = 3;//NUM_ENDPOINT_PREDS;
const uint32_t MAX_SELECTOR_HISTORY_BUF_SIZE = 64;
const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH = 3;
const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_BITS = 6;
const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL = (1 << SELECTOR_HISTORY_BUF_RLE_COUNT_BITS);
uint16_t crc16(const void *r, size_t size, uint16_t crc);
class huffman_decoding_table
{
friend class bitwise_decoder;
public:
huffman_decoding_table()
{
}
void clear()
{
basisu::clear_vector(m_code_sizes);
basisu::clear_vector(m_lookup);
basisu::clear_vector(m_tree);
}
bool init(uint32_t total_syms, const uint8_t *pCode_sizes)
{
if (!total_syms)
{
clear();
return true;
}
m_code_sizes.resize(total_syms);
memcpy(&m_code_sizes[0], pCode_sizes, total_syms);
m_lookup.resize(0);
m_lookup.resize(basisu::cHuffmanFastLookupSize);
m_tree.resize(0);
m_tree.resize(total_syms * 2);
uint32_t syms_using_codesize[basisu::cHuffmanMaxSupportedInternalCodeSize + 1];
basisu::clear_obj(syms_using_codesize);
for (uint32_t i = 0; i < total_syms; i++)
{
if (pCode_sizes[i] > basisu::cHuffmanMaxSupportedInternalCodeSize)
return false;
syms_using_codesize[pCode_sizes[i]]++;
}
uint32_t next_code[basisu::cHuffmanMaxSupportedInternalCodeSize + 1];
next_code[0] = next_code[1] = 0;
uint32_t used_syms = 0, total = 0;
for (uint32_t i = 1; i < basisu::cHuffmanMaxSupportedInternalCodeSize; i++)
{
used_syms += syms_using_codesize[i];
next_code[i + 1] = (total = ((total + syms_using_codesize[i]) << 1));
}
if (((1U << basisu::cHuffmanMaxSupportedInternalCodeSize) != total) && (used_syms > 1U))
return false;
for (int tree_next = -1, sym_index = 0; sym_index < (int)total_syms; ++sym_index)
{
uint32_t rev_code = 0, l, cur_code, code_size = pCode_sizes[sym_index];
if (!code_size)
continue;
cur_code = next_code[code_size]++;
for (l = code_size; l > 0; l--, cur_code >>= 1)
rev_code = (rev_code << 1) | (cur_code & 1);
if (code_size <= basisu::cHuffmanFastLookupBits)
{
uint32_t k = (code_size << 16) | sym_index;
while (rev_code < basisu::cHuffmanFastLookupSize)
{
if (m_lookup[rev_code] != 0)
{
// Supplied codesizes can't create a valid prefix code.
return false;
}
m_lookup[rev_code] = k;
rev_code += (1 << code_size);
}
continue;
}
int tree_cur;
if (0 == (tree_cur = m_lookup[rev_code & (basisu::cHuffmanFastLookupSize - 1)]))
{
const uint32_t idx = rev_code & (basisu::cHuffmanFastLookupSize - 1);
if (m_lookup[idx] != 0)
{
// Supplied codesizes can't create a valid prefix code.
return false;
}
m_lookup[idx] = tree_next;
tree_cur = tree_next;
tree_next -= 2;
}
if (tree_cur >= 0)
{
// Supplied codesizes can't create a valid prefix code.
return false;
}
rev_code >>= (basisu::cHuffmanFastLookupBits - 1);
for (int j = code_size; j > (basisu::cHuffmanFastLookupBits + 1); j--)
{
tree_cur -= ((rev_code >>= 1) & 1);
const int idx = -tree_cur - 1;
if (idx < 0)
return false;
else if (idx >= (int)m_tree.size())
m_tree.resize(idx + 1);
if (!m_tree[idx])
{
m_tree[idx] = (int16_t)tree_next;
tree_cur = tree_next;
tree_next -= 2;
}
else
{
tree_cur = m_tree[idx];
if (tree_cur >= 0)
{
// Supplied codesizes can't create a valid prefix code.
return false;
}
}
}
tree_cur -= ((rev_code >>= 1) & 1);
const int idx = -tree_cur - 1;
if (idx < 0)
return false;
else if (idx >= (int)m_tree.size())
m_tree.resize(idx + 1);
if (m_tree[idx] != 0)
{
// Supplied codesizes can't create a valid prefix code.
return false;
}
m_tree[idx] = (int16_t)sym_index;
}
return true;
}
const basisu::uint8_vec &get_code_sizes() const { return m_code_sizes; }
bool is_valid() const { return m_code_sizes.size() > 0; }
private:
basisu::uint8_vec m_code_sizes;
basisu::int_vec m_lookup;
basisu::int16_vec m_tree;
};
class bitwise_decoder
{
public:
bitwise_decoder() :
m_buf_size(0),
m_pBuf(nullptr),
m_pBuf_start(nullptr),
m_pBuf_end(nullptr),
m_bit_buf(0),
m_bit_buf_size(0)
{
}
void clear()
{
m_buf_size = 0;
m_pBuf = nullptr;
m_pBuf_start = nullptr;
m_pBuf_end = nullptr;
m_bit_buf = 0;
m_bit_buf_size = 0;
}
bool init(const uint8_t *pBuf, uint32_t buf_size)
{
if ((!pBuf) && (buf_size))
return false;
m_buf_size = buf_size;
m_pBuf = pBuf;
m_pBuf_start = pBuf;
m_pBuf_end = pBuf + buf_size;
m_bit_buf = 0;
m_bit_buf_size = 0;
return true;
}
void stop()
{
}
inline uint32_t peek_bits(uint32_t num_bits)
{
if (!num_bits)
return 0;
assert(num_bits <= 25);
while (m_bit_buf_size < num_bits)
{
uint32_t c = 0;
if (m_pBuf < m_pBuf_end)
c = *m_pBuf++;
m_bit_buf |= (c << m_bit_buf_size);
m_bit_buf_size += 8;
assert(m_bit_buf_size <= 32);
}
return m_bit_buf & ((1 << num_bits) - 1);
}
void remove_bits(uint32_t num_bits)
{
assert(m_bit_buf_size >= num_bits);
m_bit_buf >>= num_bits;
m_bit_buf_size -= num_bits;
}
uint32_t get_bits(uint32_t num_bits)
{
if (num_bits > 25)
{
assert(num_bits <= 32);
const uint32_t bits0 = peek_bits(25);
m_bit_buf >>= 25;
m_bit_buf_size -= 25;
num_bits -= 25;
const uint32_t bits = peek_bits(num_bits);
m_bit_buf >>= num_bits;
m_bit_buf_size -= num_bits;
return bits0 | (bits << 25);
}
const uint32_t bits = peek_bits(num_bits);
m_bit_buf >>= num_bits;
m_bit_buf_size -= num_bits;
return bits;
}
uint32_t decode_truncated_binary(uint32_t n)
{
assert(n >= 2);
const uint32_t k = basisu::floor_log2i(n);
const uint32_t u = (1 << (k + 1)) - n;
uint32_t result = get_bits(k);
if (result >= u)
result = ((result << 1) | get_bits(1)) - u;
return result;
}
uint32_t decode_rice(uint32_t m)
{
assert(m);
uint32_t q = 0;
for (;;)
{
uint32_t k = peek_bits(16);
uint32_t l = 0;
while (k & 1)
{
l++;
k >>= 1;
}
q += l;
remove_bits(l);
if (l < 16)
break;
}
return (q << m) + (get_bits(m + 1) >> 1);
}
inline uint32_t decode_vlc(uint32_t chunk_bits)
{
assert(chunk_bits);
const uint32_t chunk_size = 1 << chunk_bits;
const uint32_t chunk_mask = chunk_size - 1;
uint32_t v = 0;
uint32_t ofs = 0;
for ( ; ; )
{
uint32_t s = get_bits(chunk_bits + 1);
v |= ((s & chunk_mask) << ofs);
ofs += chunk_bits;
if ((s & chunk_size) == 0)
break;
if (ofs >= 32)
{
assert(0);
break;
}
}
return v;
}
inline uint32_t decode_huffman(const huffman_decoding_table &ct)
{
assert(ct.m_code_sizes.size());
while (m_bit_buf_size < 16)
{
uint32_t c = 0;
if (m_pBuf < m_pBuf_end)
c = *m_pBuf++;
m_bit_buf |= (c << m_bit_buf_size);
m_bit_buf_size += 8;
assert(m_bit_buf_size <= 32);
}
int code_len;
int sym;
if ((sym = ct.m_lookup[m_bit_buf & (basisu::cHuffmanFastLookupSize - 1)]) >= 0)
{
code_len = sym >> 16;
sym &= 0xFFFF;
}
else
{
code_len = basisu::cHuffmanFastLookupBits;
do
{
sym = ct.m_tree[~sym + ((m_bit_buf >> code_len++) & 1)]; // ~sym = -sym - 1
} while (sym < 0);
}
m_bit_buf >>= code_len;
m_bit_buf_size -= code_len;
return sym;
}
bool read_huffman_table(huffman_decoding_table &ct)
{
ct.clear();
const uint32_t total_used_syms = get_bits(basisu::cHuffmanMaxSymsLog2);
if (!total_used_syms)
return true;
if (total_used_syms > basisu::cHuffmanMaxSyms)
return false;
uint8_t code_length_code_sizes[basisu::cHuffmanTotalCodelengthCodes];
basisu::clear_obj(code_length_code_sizes);
const uint32_t num_codelength_codes = get_bits(5);
if ((num_codelength_codes < 1) || (num_codelength_codes > basisu::cHuffmanTotalCodelengthCodes))
return false;
for (uint32_t i = 0; i < num_codelength_codes; i++)
code_length_code_sizes[basisu::g_huffman_sorted_codelength_codes[i]] = static_cast<uint8_t>(get_bits(3));
huffman_decoding_table code_length_table;
if (!code_length_table.init(basisu::cHuffmanTotalCodelengthCodes, code_length_code_sizes))
return false;
if (!code_length_table.is_valid())
return false;
basisu::uint8_vec code_sizes(total_used_syms);
uint32_t cur = 0;
while (cur < total_used_syms)
{
int c = decode_huffman(code_length_table);
if (c <= 16)
code_sizes[cur++] = static_cast<uint8_t>(c);
else if (c == basisu::cHuffmanSmallZeroRunCode)
cur += get_bits(basisu::cHuffmanSmallZeroRunExtraBits) + basisu::cHuffmanSmallZeroRunSizeMin;
else if (c == basisu::cHuffmanBigZeroRunCode)
cur += get_bits(basisu::cHuffmanBigZeroRunExtraBits) + basisu::cHuffmanBigZeroRunSizeMin;
else
{
if (!cur)
return false;
uint32_t l;
if (c == basisu::cHuffmanSmallRepeatCode)
l = get_bits(basisu::cHuffmanSmallRepeatExtraBits) + basisu::cHuffmanSmallRepeatSizeMin;
else
l = get_bits(basisu::cHuffmanBigRepeatExtraBits) + basisu::cHuffmanBigRepeatSizeMin;
const uint8_t prev = code_sizes[cur - 1];
if (prev == 0)
return false;
do
{
if (cur >= total_used_syms)
return false;
code_sizes[cur++] = prev;
} while (--l > 0);
}
}
if (cur != total_used_syms)
return false;
return ct.init(total_used_syms, &code_sizes[0]);
}
private:
uint32_t m_buf_size;
const uint8_t *m_pBuf;
const uint8_t *m_pBuf_start;
const uint8_t *m_pBuf_end;
uint32_t m_bit_buf;
uint32_t m_bit_buf_size;
};
inline uint32_t basisd_rand(uint32_t seed)
{
if (!seed)
seed++;
uint32_t z = seed;
BASISD_znew;
return z;
}
// Returns random number in [0,limit). Max limit is 0xFFFF.
inline uint32_t basisd_urand(uint32_t& seed, uint32_t limit)
{
seed = basisd_rand(seed);
return (((seed ^ (seed >> 16)) & 0xFFFF) * limit) >> 16;
}
class approx_move_to_front
{
public:
approx_move_to_front(uint32_t n)
{
init(n);
}
void init(uint32_t n)
{
m_values.resize(n);
m_rover = n / 2;
}
const basisu::int_vec& get_values() const { return m_values; }
basisu::int_vec& get_values() { return m_values; }
uint32_t size() const { return (uint32_t)m_values.size(); }
const int& operator[] (uint32_t index) const { return m_values[index]; }
int operator[] (uint32_t index) { return m_values[index]; }
void add(int new_value)
{
m_values[m_rover++] = new_value;
if (m_rover == m_values.size())
m_rover = (uint32_t)m_values.size() / 2;
}
void use(uint32_t index)
{
if (index)
{
//std::swap(m_values[index / 2], m_values[index]);
int x = m_values[index / 2];
int y = m_values[index];
m_values[index / 2] = y;
m_values[index] = x;
}
}
// returns -1 if not found
int find(int value) const
{
for (uint32_t i = 0; i < m_values.size(); i++)
if (m_values[i] == value)
return i;
return -1;
}
void reset()
{
const uint32_t n = (uint32_t)m_values.size();
m_values.clear();
init(n);
}
private:
basisu::int_vec m_values;
uint32_t m_rover;
};
struct decoder_etc_block;
inline uint8_t clamp255(int32_t i)
{
return (uint8_t)((i & 0xFFFFFF00U) ? (~(i >> 31)) : i);
}
enum eNoClamp
{
cNoClamp = 0
};
struct color32
{
union
{
struct
{
uint8_t r;
uint8_t g;
uint8_t b;
uint8_t a;
};
uint8_t c[4];
uint32_t m;
};
color32() { }
color32(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { set(vr, vg, vb, va); }
color32(eNoClamp unused, uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { (void)unused; set_noclamp_rgba(vr, vg, vb, va); }
void set(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { c[0] = static_cast<uint8_t>(vr); c[1] = static_cast<uint8_t>(vg); c[2] = static_cast<uint8_t>(vb); c[3] = static_cast<uint8_t>(va); }
void set_noclamp_rgb(uint32_t vr, uint32_t vg, uint32_t vb) { c[0] = static_cast<uint8_t>(vr); c[1] = static_cast<uint8_t>(vg); c[2] = static_cast<uint8_t>(vb); }
void set_noclamp_rgba(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { set(vr, vg, vb, va); }
void set_clamped(int vr, int vg, int vb, int va) { c[0] = clamp255(vr); c[1] = clamp255(vg); c[2] = clamp255(vb); c[3] = clamp255(va); }
uint8_t operator[] (uint32_t idx) const { assert(idx < 4); return c[idx]; }
uint8_t &operator[] (uint32_t idx) { assert(idx < 4); return c[idx]; }
bool operator== (const color32&rhs) const { return m == rhs.m; }
static color32 comp_min(const color32& a, const color32& b) { return color32(cNoClamp, std::min(a[0], b[0]), std::min(a[1], b[1]), std::min(a[2], b[2]), std::min(a[3], b[3])); }
static color32 comp_max(const color32& a, const color32& b) { return color32(cNoClamp, std::max(a[0], b[0]), std::max(a[1], b[1]), std::max(a[2], b[2]), std::max(a[3], b[3])); }
};
struct endpoint
{
color32 m_color5;
uint8_t m_inten5;
};
struct selector
{
// Plain selectors (2-bits per value)
uint8_t m_selectors[4];
// ETC1 selectors
uint8_t m_bytes[4];
uint8_t m_lo_selector, m_hi_selector;
uint8_t m_num_unique_selectors;
void init_flags()
{
uint32_t hist[4] = { 0, 0, 0, 0 };
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
uint32_t s = get_selector(x, y);
hist[s]++;
}
}
m_lo_selector = 3;
m_hi_selector = 0;
m_num_unique_selectors = 0;
for (uint32_t i = 0; i < 4; i++)
{
if (hist[i])
{
m_num_unique_selectors++;
if (i < m_lo_selector) m_lo_selector = static_cast<uint8_t>(i);
if (i > m_hi_selector) m_hi_selector = static_cast<uint8_t>(i);
}
}
}
// Returned selector value ranges from 0-3 and is a direct index into g_etc1_inten_tables.
inline uint32_t get_selector(uint32_t x, uint32_t y) const
{
assert((x < 4) && (y < 4));
return (m_selectors[y] >> (x * 2)) & 3;
}
void set_selector(uint32_t x, uint32_t y, uint32_t val)
{
static const uint8_t s_selector_index_to_etc1[4] = { 3, 2, 0, 1 };
assert((x | y | val) < 4);
m_selectors[y] &= ~(3 << (x * 2));
m_selectors[y] |= (val << (x * 2));
const uint32_t etc1_bit_index = x * 4 + y;
uint8_t *p = &m_bytes[3 - (etc1_bit_index >> 3)];
const uint32_t byte_bit_ofs = etc1_bit_index & 7;
const uint32_t mask = 1 << byte_bit_ofs;
const uint32_t etc1_val = s_selector_index_to_etc1[val];
const uint32_t lsb = etc1_val & 1;
const uint32_t msb = etc1_val >> 1;
p[0] &= ~mask;
p[0] |= (lsb << byte_bit_ofs);
p[-2] &= ~mask;
p[-2] |= (msb << byte_bit_ofs);
}
};
bool basis_block_format_is_uncompressed(block_format tex_type);
} // namespace basist
/**** ended inlining basisu_transcoder_internal.h ****/
/**** start inlining basisu_transcoder_uastc.h ****/
// basisu_transcoder_uastc.h
/**** skipping file: basisu_transcoder_internal.h ****/
namespace basist
{
struct color_quad_u8
{
uint8_t m_c[4];
};
const uint32_t TOTAL_UASTC_MODES = 19;
const uint32_t UASTC_MODE_INDEX_SOLID_COLOR = 8;
const uint32_t TOTAL_ASTC_BC7_COMMON_PARTITIONS2 = 30;
const uint32_t TOTAL_ASTC_BC7_COMMON_PARTITIONS3 = 11;
const uint32_t TOTAL_BC7_3_ASTC2_COMMON_PARTITIONS = 19;
extern const uint8_t g_uastc_mode_weight_bits[TOTAL_UASTC_MODES];
extern const uint8_t g_uastc_mode_weight_ranges[TOTAL_UASTC_MODES];
extern const uint8_t g_uastc_mode_endpoint_ranges[TOTAL_UASTC_MODES];
extern const uint8_t g_uastc_mode_subsets[TOTAL_UASTC_MODES];
extern const uint8_t g_uastc_mode_planes[TOTAL_UASTC_MODES];
extern const uint8_t g_uastc_mode_comps[TOTAL_UASTC_MODES];
extern const uint8_t g_uastc_mode_has_etc1_bias[TOTAL_UASTC_MODES];
extern const uint8_t g_uastc_mode_has_bc1_hint0[TOTAL_UASTC_MODES];
extern const uint8_t g_uastc_mode_has_bc1_hint1[TOTAL_UASTC_MODES];
extern const uint8_t g_uastc_mode_has_alpha[TOTAL_UASTC_MODES];
extern const uint8_t g_uastc_mode_is_la[TOTAL_UASTC_MODES];
struct astc_bc7_common_partition2_desc
{
uint8_t m_bc7;
uint16_t m_astc;
bool m_invert;
};
extern const astc_bc7_common_partition2_desc g_astc_bc7_common_partitions2[TOTAL_ASTC_BC7_COMMON_PARTITIONS2];
struct bc73_astc2_common_partition_desc
{
uint8_t m_bc73;
uint16_t m_astc2;
uint8_t k; // 0-5 - how to modify the BC7 3-subset pattern to match the ASTC pattern (LSB=invert)
};
extern const bc73_astc2_common_partition_desc g_bc7_3_astc2_common_partitions[TOTAL_BC7_3_ASTC2_COMMON_PARTITIONS];
struct astc_bc7_common_partition3_desc
{
uint8_t m_bc7;
uint16_t m_astc;
uint8_t m_astc_to_bc7_perm; // converts ASTC to BC7 partition using g_astc_bc7_partition_index_perm_tables[][]
};
extern const astc_bc7_common_partition3_desc g_astc_bc7_common_partitions3[TOTAL_ASTC_BC7_COMMON_PARTITIONS3];
extern const uint8_t g_astc_bc7_patterns2[TOTAL_ASTC_BC7_COMMON_PARTITIONS2][16];
extern const uint8_t g_astc_bc7_patterns3[TOTAL_ASTC_BC7_COMMON_PARTITIONS3][16];
extern const uint8_t g_bc7_3_astc2_patterns2[TOTAL_BC7_3_ASTC2_COMMON_PARTITIONS][16];
extern const uint8_t g_astc_bc7_pattern2_anchors[TOTAL_ASTC_BC7_COMMON_PARTITIONS2][3];
extern const uint8_t g_astc_bc7_pattern3_anchors[TOTAL_ASTC_BC7_COMMON_PARTITIONS3][3];
extern const uint8_t g_bc7_3_astc2_patterns2_anchors[TOTAL_BC7_3_ASTC2_COMMON_PARTITIONS][3];
extern const uint32_t g_uastc_mode_huff_codes[TOTAL_UASTC_MODES + 1][2];
extern const uint8_t g_astc_to_bc7_partition_index_perm_tables[6][3];
extern const uint8_t g_bc7_to_astc_partition_index_perm_tables[6][3]; // inverse of g_astc_to_bc7_partition_index_perm_tables
extern const uint8_t* s_uastc_to_bc1_weights[6];
uint32_t bc7_convert_partition_index_3_to_2(uint32_t p, uint32_t k);
inline uint32_t astc_interpolate(uint32_t l, uint32_t h, uint32_t w, bool srgb)
{
if (srgb)
{
l = (l << 8) | 0x80;
h = (h << 8) | 0x80;
}
else
{
l = (l << 8) | l;
h = (h << 8) | h;
}
uint32_t k = (l * (64 - w) + h * w + 32) >> 6;
return k >> 8;
}
struct astc_block_desc
{
int m_weight_range; // weight BISE range
int m_subsets; // number of ASTC partitions
int m_partition_seed; // partition pattern seed
int m_cem; // color endpoint mode used by all subsets
int m_ccs; // color component selector (dual plane only)
bool m_dual_plane; // true if dual plane
// Weight and endpoint BISE values.
// Note these values are NOT linear, they must be BISE encoded. See Table 97 and Table 107.
uint8_t m_endpoints[18]; // endpoint values, in RR GG BB etc. order
uint8_t m_weights[64]; // weight index values, raster order, in P0 P1, P0 P1, etc. or P0, P0, P0, P0, etc. order
};
const uint32_t BC7ENC_TOTAL_ASTC_RANGES = 21;
// See tables 81, 93, 18.13.Endpoint Unquantization
const uint32_t TOTAL_ASTC_RANGES = 21;
extern const int g_astc_bise_range_table[TOTAL_ASTC_RANGES][3];
struct astc_quant_bin
{
uint8_t m_unquant; // unquantized value
uint8_t m_index; // sorted index
};
extern astc_quant_bin g_astc_unquant[BC7ENC_TOTAL_ASTC_RANGES][256]; // [ASTC encoded endpoint index]
int astc_get_levels(int range);
bool astc_is_valid_endpoint_range(uint32_t range);
uint32_t unquant_astc_endpoint(uint32_t packed_bits, uint32_t packed_trits, uint32_t packed_quints, uint32_t range);
uint32_t unquant_astc_endpoint_val(uint32_t packed_val, uint32_t range);
const uint8_t* get_anchor_indices(uint32_t subsets, uint32_t mode, uint32_t common_pattern, const uint8_t*& pPartition_pattern);
// BC7
const uint32_t BC7ENC_BLOCK_SIZE = 16;
struct bc7_block
{
uint64_t m_qwords[2];
};
struct bc7_optimization_results
{
uint32_t m_mode;
uint32_t m_partition;
uint8_t m_selectors[16];
uint8_t m_alpha_selectors[16];
color_quad_u8 m_low[3];
color_quad_u8 m_high[3];
uint32_t m_pbits[3][2];
uint32_t m_index_selector;
uint32_t m_rotation;
};
extern const uint32_t g_bc7_weights1[2];
extern const uint32_t g_bc7_weights2[4];
extern const uint32_t g_bc7_weights3[8];
extern const uint32_t g_bc7_weights4[16];
extern const uint32_t g_astc_weights4[16];
extern const uint32_t g_astc_weights5[32];
extern const uint32_t g_astc_weights_3levels[3];
extern const uint8_t g_bc7_partition1[16];
extern const uint8_t g_bc7_partition2[64 * 16];
extern const uint8_t g_bc7_partition3[64 * 16];
extern const uint8_t g_bc7_table_anchor_index_second_subset[64];
extern const uint8_t g_bc7_table_anchor_index_third_subset_1[64];
extern const uint8_t g_bc7_table_anchor_index_third_subset_2[64];
extern const uint8_t g_bc7_num_subsets[8];
extern const uint8_t g_bc7_partition_bits[8];
extern const uint8_t g_bc7_color_index_bitcount[8];
extern const uint8_t g_bc7_mode_has_p_bits[8];
extern const uint8_t g_bc7_mode_has_shared_p_bits[8];
extern const uint8_t g_bc7_color_precision_table[8];
extern const int8_t g_bc7_alpha_precision_table[8];
extern const uint8_t g_bc7_alpha_index_bitcount[8];
inline bool get_bc7_mode_has_seperate_alpha_selectors(int mode) { return (mode == 4) || (mode == 5); }
inline int get_bc7_color_index_size(int mode, int index_selection_bit) { return g_bc7_color_index_bitcount[mode] + index_selection_bit; }
inline int get_bc7_alpha_index_size(int mode, int index_selection_bit) { return g_bc7_alpha_index_bitcount[mode] - index_selection_bit; }
struct endpoint_err
{
uint16_t m_error; uint8_t m_lo; uint8_t m_hi;
};
extern endpoint_err g_bc7_mode_6_optimal_endpoints[256][2]; // [c][pbit]
const uint32_t BC7ENC_MODE_6_OPTIMAL_INDEX = 5;
extern endpoint_err g_bc7_mode_5_optimal_endpoints[256]; // [c]
const uint32_t BC7ENC_MODE_5_OPTIMAL_INDEX = 1;
// Packs a BC7 block from a high-level description. Handles all BC7 modes.
void encode_bc7_block(void* pBlock, const bc7_optimization_results* pResults);
// Packs an ASTC block
// Constraints: Always 4x4, all subset CEM's must be equal, only tested with LDR CEM's.
bool pack_astc_block(uint32_t* pDst, const astc_block_desc* pBlock, uint32_t mode);
void pack_astc_solid_block(void* pDst_block, const color32& color);
#ifdef _DEBUG
int astc_compute_texel_partition(int seed, int x, int y, int z, int partitioncount, bool small_block);
#endif
struct uastc_block
{
union
{
uint8_t m_bytes[16];
uint32_t m_dwords[4];
uint64_t m_qwords[2];
};
};
struct unpacked_uastc_block
{
astc_block_desc m_astc;
uint32_t m_mode;
uint32_t m_common_pattern;
color32 m_solid_color;
bool m_bc1_hint0;
bool m_bc1_hint1;
bool m_etc1_flip;
bool m_etc1_diff;
uint32_t m_etc1_inten0;
uint32_t m_etc1_inten1;
uint32_t m_etc1_bias;
uint32_t m_etc2_hints;
uint32_t m_etc1_selector;
uint32_t m_etc1_r, m_etc1_g, m_etc1_b;
};
color32 apply_etc1_bias(const color32 &block_color, uint32_t bias, uint32_t limit, uint32_t subblock);
struct decoder_etc_block;
struct eac_block;
bool unpack_uastc(uint32_t mode, uint32_t common_pattern, const color32& solid_color, const astc_block_desc& astc, color32* pPixels, bool srgb);
bool unpack_uastc(const unpacked_uastc_block& unpacked_blk, color32* pPixels, bool srgb);
bool unpack_uastc(const uastc_block& blk, color32* pPixels, bool srgb);
bool unpack_uastc(const uastc_block& blk, unpacked_uastc_block& unpacked, bool undo_blue_contract, bool read_hints = true);
bool transcode_uastc_to_astc(const uastc_block& src_blk, void* pDst);
bool transcode_uastc_to_bc7(const unpacked_uastc_block& unpacked_src_blk, bc7_optimization_results& dst_blk);
bool transcode_uastc_to_bc7(const uastc_block& src_blk, bc7_optimization_results& dst_blk);
bool transcode_uastc_to_bc7(const uastc_block& src_blk, void* pDst);
void transcode_uastc_to_etc1(unpacked_uastc_block& unpacked_src_blk, color32 block_pixels[4][4], void* pDst);
bool transcode_uastc_to_etc1(const uastc_block& src_blk, void* pDst);
bool transcode_uastc_to_etc1(const uastc_block& src_blk, void* pDst, uint32_t channel);
void transcode_uastc_to_etc2_eac_a8(unpacked_uastc_block& unpacked_src_blk, color32 block_pixels[4][4], void* pDst);
bool transcode_uastc_to_etc2_rgba(const uastc_block& src_blk, void* pDst);
// Packs 16 scalar values to BC4. Same PSNR as stb_dxt's BC4 encoder, around 13% faster.
void encode_bc4(void* pDst, const uint8_t* pPixels, uint32_t stride);
void encode_bc1_solid_block(void* pDst, uint32_t fr, uint32_t fg, uint32_t fb);
enum
{
cEncodeBC1HighQuality = 1,
cEncodeBC1HigherQuality = 2,
cEncodeBC1UseSelectors = 4,
};
void encode_bc1(void* pDst, const uint8_t* pPixels, uint32_t flags);
// Alternate PCA-free encoder, around 15% faster, same (or slightly higher) avg. PSNR
void encode_bc1_alt(void* pDst, const uint8_t* pPixels, uint32_t flags);
void transcode_uastc_to_bc1_hint0(const unpacked_uastc_block& unpacked_src_blk, void* pDst);
void transcode_uastc_to_bc1_hint1(const unpacked_uastc_block& unpacked_src_blk, const color32 block_pixels[4][4], void* pDst, bool high_quality);
bool transcode_uastc_to_bc1(const uastc_block& src_blk, void* pDst, bool high_quality);
bool transcode_uastc_to_bc3(const uastc_block& src_blk, void* pDst, bool high_quality);
bool transcode_uastc_to_bc4(const uastc_block& src_blk, void* pDst, bool high_quality, uint32_t chan0);
bool transcode_uastc_to_bc5(const uastc_block& src_blk, void* pDst, bool high_quality, uint32_t chan0, uint32_t chan1);
bool transcode_uastc_to_etc2_eac_r11(const uastc_block& src_blk, void* pDst, bool high_quality, uint32_t chan0);
bool transcode_uastc_to_etc2_eac_rg11(const uastc_block& src_blk, void* pDst, bool high_quality, uint32_t chan0, uint32_t chan1);
bool transcode_uastc_to_pvrtc1_4_rgb(const uastc_block* pSrc_blocks, void* pDst_blocks, uint32_t num_blocks_x, uint32_t num_blocks_y, bool high_quality, bool from_alpha);
bool transcode_uastc_to_pvrtc1_4_rgba(const uastc_block* pSrc_blocks, void* pDst_blocks, uint32_t num_blocks_x, uint32_t num_blocks_y, bool high_quality);
// uastc_init() MUST be called before using this module.
void uastc_init();
} // namespace basist
/**** ended inlining basisu_transcoder_uastc.h ****/
/**** start inlining basisu_global_selector_palette.h ****/
// basisu_global_selector_palette.h
// Copyright (C) 2019-2020 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**** skipping file: basisu_transcoder_internal.h ****/
#include <algorithm>
namespace basist
{
class etc1_global_palette_entry_modifier
{
public:
enum { cTotalBits = 15, cTotalValues = 1 << cTotalBits };
etc1_global_palette_entry_modifier(uint32_t index = 0)
{
#ifdef _DEBUG
static bool s_tested;
if (!s_tested)
{
s_tested = true;
for (uint32_t i = 0; i < cTotalValues; i++)
{
etc1_global_palette_entry_modifier m(i);
etc1_global_palette_entry_modifier n = m;
assert(n.get_index() == i);
}
}
#endif
set_index(index);
}
void set_index(uint32_t index)
{
assert(index < cTotalValues);
m_rot = index & 3;
m_flip = (index >> 2) & 1;
m_inv = (index >> 3) & 1;
m_contrast = (index >> 4) & 3;
m_shift = (index >> 6) & 1;
m_median = (index >> 7) & 1;
m_div = (index >> 8) & 1;
m_rand = (index >> 9) & 1;
m_dilate = (index >> 10) & 1;
m_shift_x = (index >> 11) & 1;
m_shift_y = (index >> 12) & 1;
m_erode = (index >> 13) & 1;
m_high_pass = (index >> 14) & 1;
}
uint32_t get_index() const
{
return m_rot | (m_flip << 2) | (m_inv << 3) | (m_contrast << 4) | (m_shift << 6) | (m_median << 7) | (m_div << 8) | (m_rand << 9) | (m_dilate << 10) | (m_shift_x << 11) | (m_shift_y << 12) | (m_erode << 13) | (m_high_pass << 14);
}
void clear()
{
basisu::clear_obj(*this);
}
uint8_t m_contrast;
bool m_rand;
bool m_median;
bool m_div;
bool m_shift;
bool m_inv;
bool m_flip;
bool m_dilate;
bool m_shift_x;
bool m_shift_y;
bool m_erode;
bool m_high_pass;
uint8_t m_rot;
};
enum modifier_types
{
cModifierContrast,
cModifierRand,
cModifierMedian,
cModifierDiv,
cModifierShift,
cModifierInv,
cModifierFlippedAndRotated,
cModifierDilate,
cModifierShiftX,
cModifierShiftY,
cModifierErode,
cModifierHighPass,
cTotalModifiers
};
#define ETC1_GLOBAL_SELECTOR_CODEBOOK_MAX_MOD_BITS (etc1_global_palette_entry_modifier::cTotalBits)
struct etc1_selector_palette_entry
{
etc1_selector_palette_entry()
{
clear();
}
void clear()
{
basisu::clear_obj(*this);
}
uint8_t operator[] (uint32_t i) const { assert(i < 16); return m_selectors[i]; }
uint8_t&operator[] (uint32_t i) { assert(i < 16); return m_selectors[i]; }
void set_uint32(uint32_t v)
{
for (uint32_t byte_index = 0; byte_index < 4; byte_index++)
{
uint32_t b = (v >> (byte_index * 8)) & 0xFF;
m_selectors[byte_index * 4 + 0] = b & 3;
m_selectors[byte_index * 4 + 1] = (b >> 2) & 3;
m_selectors[byte_index * 4 + 2] = (b >> 4) & 3;
m_selectors[byte_index * 4 + 3] = (b >> 6) & 3;
}
}
uint32_t get_uint32() const
{
return get_byte(0) | (get_byte(1) << 8) | (get_byte(2) << 16) | (get_byte(3) << 24);
}
uint32_t get_byte(uint32_t byte_index) const
{
assert(byte_index < 4);
return m_selectors[byte_index * 4 + 0] |
(m_selectors[byte_index * 4 + 1] << 2) |
(m_selectors[byte_index * 4 + 2] << 4) |
(m_selectors[byte_index * 4 + 3] << 6);
}
uint8_t operator()(uint32_t x, uint32_t y) const { assert((x < 4) && (y < 4)); return m_selectors[x + y * 4]; }
uint8_t&operator()(uint32_t x, uint32_t y) { assert((x < 4) && (y < 4)); return m_selectors[x + y * 4]; }
uint32_t calc_distance(const etc1_selector_palette_entry &other) const
{
uint32_t dist = 0;
for (uint32_t i = 0; i < 8; i++)
{
int delta = static_cast<int>(m_selectors[i]) - static_cast<int>(other.m_selectors[i]);
dist += delta * delta;
}
return dist;
}
#if 0
uint32_t calc_hamming_dist(const etc1_selector_palette_entry &other) const
{
uint32_t dist = 0;
for (uint32_t i = 0; i < 4; i++)
dist += g_hamming_dist[get_byte(i) ^ other.get_byte(i)];
return dist;
}
#endif
etc1_selector_palette_entry get_inverted() const
{
etc1_selector_palette_entry result;
for (uint32_t i = 0; i < 16; i++)
result.m_selectors[i] = 3 - m_selectors[i];
return result;
}
etc1_selector_palette_entry get_divided() const
{
etc1_selector_palette_entry result;
const uint8_t div_selector[4] = { 2, 0, 3, 1 };
for (uint32_t i = 0; i < 16; i++)
result.m_selectors[i] = div_selector[m_selectors[i]];
return result;
}
etc1_selector_palette_entry get_shifted(int delta) const
{
etc1_selector_palette_entry result;
for (uint32_t i = 0; i < 16; i++)
result.m_selectors[i] = static_cast<uint8_t>(basisu::clamp<int>(m_selectors[i] + delta, 0, 3));
return result;
}
etc1_selector_palette_entry get_randomized() const
{
uint32_t seed = get_uint32();
etc1_selector_palette_entry result;
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
int s = (*this)(x, y);
// between 0 and 10
uint32_t i = basisd_urand(seed, 6) + basisd_urand(seed, 6);
if (i == 0)
s -= 2;
else if (i == 10)
s += 2;
else if (i < 3)
s -= 1;
else if (i > 7)
s += 1;
result(x, y) = static_cast<uint8_t>(basisu::clamp<int>(s, 0, 3));
}
}
return result;
}
etc1_selector_palette_entry get_contrast(int table_index) const
{
assert(table_index < 4);
etc1_selector_palette_entry result;
static const uint8_t s_contrast_tables[4][4] =
{
{ 0, 1, 2, 3 }, // not used
{ 0, 0, 3, 3 },
{ 1, 1, 2, 2 },
{ 1, 1, 3, 3 }
};
for (uint32_t i = 0; i < 16; i++)
{
result[i] = s_contrast_tables[table_index][(*this)[i]];
}
return result;
}
etc1_selector_palette_entry get_dilated() const
{
etc1_selector_palette_entry result;
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
uint32_t max_selector = 0;
for (int yd = -1; yd <= 1; yd++)
{
int fy = y + yd;
if ((fy < 0) || (fy > 3))
continue;
for (int xd = -1; xd <= 1; xd++)
{
int fx = x + xd;
if ((fx < 0) || (fx > 3))
continue;
max_selector = basisu::maximum<uint32_t>(max_selector, (*this)(fx, fy));
}
}
result(x, y) = static_cast<uint8_t>(max_selector);
}
}
return result;
}
etc1_selector_palette_entry get_eroded() const
{
etc1_selector_palette_entry result;
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
uint32_t min_selector = 99;
for (int yd = -1; yd <= 1; yd++)
{
int fy = y + yd;
if ((fy < 0) || (fy > 3))
continue;
for (int xd = -1; xd <= 1; xd++)
{
int fx = x + xd;
if ((fx < 0) || (fx > 3))
continue;
min_selector = basisu::minimum<uint32_t>(min_selector, (*this)(fx, fy));
}
}
result(x, y) = static_cast<uint8_t>(min_selector);
}
}
return result;
}
etc1_selector_palette_entry get_shift_x() const
{
etc1_selector_palette_entry result;
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
int sx = x - 1;
if (sx < 0)
sx = 0;
result(x, y) = (*this)(sx, y);
}
}
return result;
}
etc1_selector_palette_entry get_shift_y() const
{
etc1_selector_palette_entry result;
for (uint32_t y = 0; y < 4; y++)
{
int sy = y - 1;
if (sy < 0)
sy = 3;
for (uint32_t x = 0; x < 4; x++)
result(x, y) = (*this)(x, sy);
}
return result;
}
etc1_selector_palette_entry get_median() const
{
etc1_selector_palette_entry result;
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
// ABC
// D F
// GHI
uint8_t selectors[8];
uint32_t n = 0;
for (int yd = -1; yd <= 1; yd++)
{
int fy = y + yd;
if ((fy < 0) || (fy > 3))
continue;
for (int xd = -1; xd <= 1; xd++)
{
if ((xd | yd) == 0)
continue;
int fx = x + xd;
if ((fx < 0) || (fx > 3))
continue;
selectors[n++] = (*this)(fx, fy);
}
}
std::sort(selectors, selectors + n);
result(x, y) = selectors[n / 2];
}
}
return result;
}
etc1_selector_palette_entry get_high_pass() const
{
etc1_selector_palette_entry result;
static const int kernel[3][3] =
{
{ 0, -1, 0 },
{ -1, 8, -1 },
{ 0, -1, 0 }
};
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
// ABC
// D F
// GHI
int sum = 0;
for (int yd = -1; yd <= 1; yd++)
{
int fy = y + yd;
fy = basisu::clamp<int>(fy, 0, 3);
for (int xd = -1; xd <= 1; xd++)
{
int fx = x + xd;
fx = basisu::clamp<int>(fx, 0, 3);
int k = (*this)(fx, fy);
sum += k * kernel[yd + 1][xd + 1];
}
}
sum = sum / 4;
result(x, y) = static_cast<uint8_t>(basisu::clamp<int>(sum, 0, 3));
}
}
return result;
}
etc1_selector_palette_entry get_flipped_and_rotated(bool flip, uint32_t rotation_index) const
{
etc1_selector_palette_entry temp;
if (flip)
{
for (uint32_t y = 0; y < 4; y++)
for (uint32_t x = 0; x < 4; x++)
temp(x, y) = (*this)(x, 3 - y);
}
else
{
temp = *this;
}
etc1_selector_palette_entry result;
switch (rotation_index)
{
case 0:
result = temp;
break;
case 1:
for (uint32_t y = 0; y < 4; y++)
for (uint32_t x = 0; x < 4; x++)
result(x, y) = temp(y, 3 - x);
break;
case 2:
for (uint32_t y = 0; y < 4; y++)
for (uint32_t x = 0; x < 4; x++)
result(x, y) = temp(3 - x, 3 - y);
break;
case 3:
for (uint32_t y = 0; y < 4; y++)
for (uint32_t x = 0; x < 4; x++)
result(x, y) = temp(3 - y, x);
break;
default:
assert(0);
break;
}
return result;
}
etc1_selector_palette_entry get_modified(const etc1_global_palette_entry_modifier &modifier) const
{
etc1_selector_palette_entry r(*this);
if (modifier.m_shift_x)
r = r.get_shift_x();
if (modifier.m_shift_y)
r = r.get_shift_y();
r = r.get_flipped_and_rotated(modifier.m_flip != 0, modifier.m_rot);
if (modifier.m_dilate)
r = r.get_dilated();
if (modifier.m_erode)
r = r.get_eroded();
if (modifier.m_high_pass)
r = r.get_high_pass();
if (modifier.m_rand)
r = r.get_randomized();
if (modifier.m_div)
r = r.get_divided();
if (modifier.m_shift)
r = r.get_shifted(1);
if (modifier.m_contrast)
r = r.get_contrast(modifier.m_contrast);
if (modifier.m_inv)
r = r.get_inverted();
if (modifier.m_median)
r = r.get_median();
return r;
}
etc1_selector_palette_entry apply_modifier(modifier_types mod_type, const etc1_global_palette_entry_modifier &modifier) const
{
switch (mod_type)
{
case cModifierContrast:
return get_contrast(modifier.m_contrast);
case cModifierRand:
return get_randomized();
case cModifierMedian:
return get_median();
case cModifierDiv:
return get_divided();
case cModifierShift:
return get_shifted(1);
case cModifierInv:
return get_inverted();
case cModifierFlippedAndRotated:
return get_flipped_and_rotated(modifier.m_flip != 0, modifier.m_rot);
case cModifierDilate:
return get_dilated();
case cModifierShiftX:
return get_shift_x();
case cModifierShiftY:
return get_shift_y();
case cModifierErode:
return get_eroded();
case cModifierHighPass:
return get_high_pass();
default:
assert(0);
break;
}
return *this;
}
etc1_selector_palette_entry get_modified(const etc1_global_palette_entry_modifier &modifier, uint32_t num_order, const modifier_types *pOrder) const
{
etc1_selector_palette_entry r(*this);
for (uint32_t i = 0; i < num_order; i++)
{
r = r.apply_modifier(pOrder[i], modifier);
}
return r;
}
bool operator< (const etc1_selector_palette_entry &other) const
{
for (uint32_t i = 0; i < 16; i++)
{
if (m_selectors[i] < other.m_selectors[i])
return true;
else if (m_selectors[i] != other.m_selectors[i])
return false;
}
return false;
}
bool operator== (const etc1_selector_palette_entry &other) const
{
for (uint32_t i = 0; i < 16; i++)
{
if (m_selectors[i] != other.m_selectors[i])
return false;
}
return true;
}
private:
uint8_t m_selectors[16];
};
typedef std::vector<etc1_selector_palette_entry> etc1_selector_palette_entry_vec;
extern const uint32_t g_global_selector_cb[];
extern const uint32_t g_global_selector_cb_size;
#define ETC1_GLOBAL_SELECTOR_CODEBOOK_MAX_PAL_BITS (12)
struct etc1_global_selector_codebook_entry_id
{
uint32_t m_palette_index;
etc1_global_palette_entry_modifier m_modifier;
etc1_global_selector_codebook_entry_id(uint32_t palette_index, const etc1_global_palette_entry_modifier &modifier) : m_palette_index(palette_index), m_modifier(modifier) { }
etc1_global_selector_codebook_entry_id() { }
void set(uint32_t palette_index, const etc1_global_palette_entry_modifier &modifier) { m_palette_index = palette_index; m_modifier = modifier; }
};
typedef std::vector<etc1_global_selector_codebook_entry_id> etc1_global_selector_codebook_entry_id_vec;
class etc1_global_selector_codebook
{
public:
etc1_global_selector_codebook() { }
etc1_global_selector_codebook(uint32_t N, const uint32_t *pEntries) { init(N, pEntries); }
void init(uint32_t N, const uint32_t* pEntries);
void print_code(FILE *pFile);
void clear()
{
m_palette.clear();
}
uint32_t size() const { return (uint32_t)m_palette.size(); }
const etc1_selector_palette_entry_vec &get_palette() const
{
return m_palette;
}
etc1_selector_palette_entry get_entry(uint32_t palette_index) const
{
return m_palette[palette_index];
}
etc1_selector_palette_entry get_entry(uint32_t palette_index, const etc1_global_palette_entry_modifier &modifier) const
{
return m_palette[palette_index].get_modified(modifier);
}
etc1_selector_palette_entry get_entry(const etc1_global_selector_codebook_entry_id &id) const
{
return m_palette[id.m_palette_index].get_modified(id.m_modifier);
}
etc1_selector_palette_entry_vec m_palette;
};
} // namespace basist
/**** ended inlining basisu_global_selector_palette.h ****/
/**** start inlining basisu_file_headers.h ****/
// basis_file_headers.h
// Copyright (C) 2019-2020 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**** skipping file: basisu_transcoder_internal.h ****/
namespace basist
{
// Slice desc header flags
enum basis_slice_desc_flags
{
cSliceDescFlagsHasAlpha = 1,
cSliceDescFlagsFrameIsIFrame = 2 // Video only: Frame doesn't refer to previous frame (no usage of conditional replenishment pred symbols)
};
#pragma pack(push)
#pragma pack(1)
struct basis_slice_desc
{
basisu::packed_uint<3> m_image_index; // The index of the source image provided to the encoder (will always appear in order from first to last, first image index is 0, no skipping allowed)
basisu::packed_uint<1> m_level_index; // The mipmap level index (mipmaps will always appear from largest to smallest)
basisu::packed_uint<1> m_flags; // enum basis_slice_desc_flags
basisu::packed_uint<2> m_orig_width; // The original image width (may not be a multiple of 4 pixels)
basisu::packed_uint<2> m_orig_height; // The original image height (may not be a multiple of 4 pixels)
basisu::packed_uint<2> m_num_blocks_x; // The slice's block X dimensions. Each block is 4x4 pixels. The slice's pixel resolution may or may not be a power of 2.
basisu::packed_uint<2> m_num_blocks_y; // The slice's block Y dimensions.
basisu::packed_uint<4> m_file_ofs; // Offset from the header to the start of the slice's data
basisu::packed_uint<4> m_file_size; // The size of the compressed slice data in bytes
basisu::packed_uint<2> m_slice_data_crc16; // The CRC16 of the compressed slice data, for extra-paranoid use cases
};
// File header files
enum basis_header_flags
{
cBASISHeaderFlagETC1S = 1, // Always set for ETC1S files. Not set for UASTC files.
cBASISHeaderFlagYFlipped = 2, // Set if the texture had to be Y flipped before encoding
cBASISHeaderFlagHasAlphaSlices = 4 // True if any slices contain alpha (for ETC1S, if the odd slices contain alpha data)
};
// The image type field attempts to describe how to interpret the image data in a Basis file.
// The encoder library doesn't really do anything special or different with these texture types, this is mostly here for the benefit of the user.
// We do make sure the various constraints are followed (2DArray/cubemap/videoframes/volume implies that each image has the same resolution and # of mipmap levels, etc., cubemap implies that the # of image slices is a multiple of 6)
enum basis_texture_type
{
cBASISTexType2D = 0, // An arbitrary array of 2D RGB or RGBA images with optional mipmaps, array size = # images, each image may have a different resolution and # of mipmap levels
cBASISTexType2DArray = 1, // An array of 2D RGB or RGBA images with optional mipmaps, array size = # images, each image has the same resolution and mipmap levels
cBASISTexTypeCubemapArray = 2, // an array of cubemap levels, total # of images must be divisable by 6, in X+, X-, Y+, Y-, Z+, Z- order, with optional mipmaps
cBASISTexTypeVideoFrames = 3, // An array of 2D video frames, with optional mipmaps, # frames = # images, each image has the same resolution and # of mipmap levels
cBASISTexTypeVolume = 4, // A 3D texture with optional mipmaps, Z dimension = # images, each image has the same resolution and # of mipmap levels
cBASISTexTypeTotal
};
enum
{
cBASISMaxUSPerFrame = 0xFFFFFF
};
enum class basis_tex_format
{
cETC1S = 0,
cUASTC4x4 = 1
};
struct basis_file_header
{
enum
{
cBASISSigValue = ('B' << 8) | 's',
cBASISFirstVersion = 0x10
};
basisu::packed_uint<2> m_sig; // 2 byte file signature
basisu::packed_uint<2> m_ver; // Baseline file version
basisu::packed_uint<2> m_header_size; // Header size in bytes, sizeof(basis_file_header)
basisu::packed_uint<2> m_header_crc16; // crc16 of the remaining header data
basisu::packed_uint<4> m_data_size; // The total size of all data after the header
basisu::packed_uint<2> m_data_crc16; // The CRC16 of all data after the header
basisu::packed_uint<3> m_total_slices; // The total # of compressed slices (1 slice per image, or 2 for alpha basis files)
basisu::packed_uint<3> m_total_images; // The total # of images
basisu::packed_uint<1> m_tex_format; // enum basis_tex_format
basisu::packed_uint<2> m_flags; // enum basist::header_flags
basisu::packed_uint<1> m_tex_type; // enum basist::basis_texture_type
basisu::packed_uint<3> m_us_per_frame; // Framerate of video, in microseconds per frame
basisu::packed_uint<4> m_reserved; // For future use
basisu::packed_uint<4> m_userdata0; // For client use
basisu::packed_uint<4> m_userdata1; // For client use
basisu::packed_uint<2> m_total_endpoints; // The number of endpoints in the endpoint codebook
basisu::packed_uint<4> m_endpoint_cb_file_ofs; // The compressed endpoint codebook's file offset relative to the header
basisu::packed_uint<3> m_endpoint_cb_file_size; // The compressed endpoint codebook's size in bytes
basisu::packed_uint<2> m_total_selectors; // The number of selectors in the endpoint codebook
basisu::packed_uint<4> m_selector_cb_file_ofs; // The compressed selectors codebook's file offset relative to the header
basisu::packed_uint<3> m_selector_cb_file_size; // The compressed selector codebook's size in bytes
basisu::packed_uint<4> m_tables_file_ofs; // The file offset of the compressed Huffman codelength tables, for decompressing slices
basisu::packed_uint<4> m_tables_file_size; // The file size in bytes of the compressed huffman codelength tables
basisu::packed_uint<4> m_slice_desc_file_ofs; // The file offset to the slice description array, usually follows the header
basisu::packed_uint<4> m_extended_file_ofs; // The file offset of the "extended" header and compressed data, for future use
basisu::packed_uint<4> m_extended_file_size; // The file size in bytes of the "extended" header and compressed data, for future use
};
#pragma pack (pop)
} // namespace basist
/**** ended inlining basisu_file_headers.h ****/
namespace basist
{
// High-level composite texture formats supported by the transcoder.
// Each of these texture formats directly correspond to OpenGL/D3D/Vulkan etc. texture formats.
// Notes:
// - If you specify a texture format that supports alpha, but the .basis file doesn't have alpha, the transcoder will automatically output a
// fully opaque (255) alpha channel.
// - The PVRTC1 texture formats only support power of 2 dimension .basis files, but this may be relaxed in a future version.
// - The PVRTC1 transcoders are real-time encoders, so don't expect the highest quality. We may add a slower encoder with improved quality.
// - These enums must be kept in sync with Javascript code that calls the transcoder.
enum class transcoder_texture_format
{
// Compressed formats
// ETC1-2
cTFETC1_RGB = 0, // Opaque only, returns RGB or alpha data if cDecodeFlagsTranscodeAlphaDataToOpaqueFormats flag is specified
cTFETC2_RGBA = 1, // Opaque+alpha, ETC2_EAC_A8 block followed by a ETC1 block, alpha channel will be opaque for opaque .basis files
// BC1-5, BC7 (desktop, some mobile devices)
cTFBC1_RGB = 2, // Opaque only, no punchthrough alpha support yet, transcodes alpha slice if cDecodeFlagsTranscodeAlphaDataToOpaqueFormats flag is specified
cTFBC3_RGBA = 3, // Opaque+alpha, BC4 followed by a BC1 block, alpha channel will be opaque for opaque .basis files
cTFBC4_R = 4, // Red only, alpha slice is transcoded to output if cDecodeFlagsTranscodeAlphaDataToOpaqueFormats flag is specified
cTFBC5_RG = 5, // XY: Two BC4 blocks, X=R and Y=Alpha, .basis file should have alpha data (if not Y will be all 255's)
cTFBC7_RGBA = 6, // RGB or RGBA, mode 5 for ETC1S, modes (1,2,3,5,6,7) for UASTC
// PVRTC1 4bpp (mobile, PowerVR devices)
cTFPVRTC1_4_RGB = 8, // Opaque only, RGB or alpha if cDecodeFlagsTranscodeAlphaDataToOpaqueFormats flag is specified, nearly lowest quality of any texture format.
cTFPVRTC1_4_RGBA = 9, // Opaque+alpha, most useful for simple opacity maps. If .basis file doesn't have alpha cTFPVRTC1_4_RGB will be used instead. Lowest quality of any supported texture format.
// ASTC (mobile, Intel devices, hopefully all desktop GPU's one day)
cTFASTC_4x4_RGBA = 10, // Opaque+alpha, ASTC 4x4, alpha channel will be opaque for opaque .basis files. Transcoder uses RGB/RGBA/L/LA modes, void extent, and up to two ([0,47] and [0,255]) endpoint precisions.
// ATC (mobile, Adreno devices, this is a niche format)
cTFATC_RGB = 11, // Opaque, RGB or alpha if cDecodeFlagsTranscodeAlphaDataToOpaqueFormats flag is specified. ATI ATC (GL_ATC_RGB_AMD)
cTFATC_RGBA = 12, // Opaque+alpha, alpha channel will be opaque for opaque .basis files. ATI ATC (GL_ATC_RGBA_INTERPOLATED_ALPHA_AMD)
// FXT1 (desktop, Intel devices, this is a super obscure format)
cTFFXT1_RGB = 17, // Opaque only, uses exclusively CC_MIXED blocks. Notable for having a 8x4 block size. GL_3DFX_texture_compression_FXT1 is supported on Intel integrated GPU's (such as HD 630).
// Punch-through alpha is relatively easy to support, but full alpha is harder. This format is only here for completeness so opaque-only is fine for now.
// See the BASISU_USE_ORIGINAL_3DFX_FXT1_ENCODING macro in basisu_transcoder_internal.h.
cTFPVRTC2_4_RGB = 18, // Opaque-only, almost BC1 quality, much faster to transcode and supports arbitrary texture dimensions (unlike PVRTC1 RGB).
cTFPVRTC2_4_RGBA = 19, // Opaque+alpha, slower to encode than cTFPVRTC2_4_RGB. Premultiplied alpha is highly recommended, otherwise the color channel can leak into the alpha channel on transparent blocks.
cTFETC2_EAC_R11 = 20, // R only (ETC2 EAC R11 unsigned)
cTFETC2_EAC_RG11 = 21, // RG only (ETC2 EAC RG11 unsigned), R=opaque.r, G=alpha - for tangent space normal maps
// Uncompressed (raw pixel) formats
cTFRGBA32 = 13, // 32bpp RGBA image stored in raster (not block) order in memory, R is first byte, A is last byte.
cTFRGB565 = 14, // 166pp RGB image stored in raster (not block) order in memory, R at bit position 11
cTFBGR565 = 15, // 16bpp RGB image stored in raster (not block) order in memory, R at bit position 0
cTFRGBA4444 = 16, // 16bpp RGBA image stored in raster (not block) order in memory, R at bit position 12, A at bit position 0
cTFTotalTextureFormats = 22,
// Old enums for compatibility with code compiled against previous versions
cTFETC1 = cTFETC1_RGB,
cTFETC2 = cTFETC2_RGBA,
cTFBC1 = cTFBC1_RGB,
cTFBC3 = cTFBC3_RGBA,
cTFBC4 = cTFBC4_R,
cTFBC5 = cTFBC5_RG,
// Previously, the caller had some control over which BC7 mode the transcoder output. We've simplified this due to UASTC, which supports numerous modes.
cTFBC7_M6_RGB = cTFBC7_RGBA, // Opaque only, RGB or alpha if cDecodeFlagsTranscodeAlphaDataToOpaqueFormats flag is specified. Highest quality of all the non-ETC1 formats.
cTFBC7_M5_RGBA = cTFBC7_RGBA, // Opaque+alpha, alpha channel will be opaque for opaque .basis files
cTFBC7_M6_OPAQUE_ONLY = cTFBC7_RGBA,
cTFBC7_M5 = cTFBC7_RGBA,
cTFBC7_ALT = 7,
cTFASTC_4x4 = cTFASTC_4x4_RGBA,
cTFATC_RGBA_INTERPOLATED_ALPHA = cTFATC_RGBA,
};
// For compressed texture formats, this returns the # of bytes per block. For uncompressed, it returns the # of bytes per pixel.
// NOTE: Previously, this function was called basis_get_bytes_per_block(), and it always returned 16*bytes_per_pixel for uncompressed formats which was confusing.
uint32_t basis_get_bytes_per_block_or_pixel(transcoder_texture_format fmt);
// Returns format's name in ASCII
const char* basis_get_format_name(transcoder_texture_format fmt);
// Returns true if the format supports an alpha channel.
bool basis_transcoder_format_has_alpha(transcoder_texture_format fmt);
// Returns the basisu::texture_format corresponding to the specified transcoder_texture_format.
basisu::texture_format basis_get_basisu_texture_format(transcoder_texture_format fmt);
// Returns the texture type's name in ASCII.
const char* basis_get_texture_type_name(basis_texture_type tex_type);
// Returns true if the transcoder texture type is an uncompressed (raw pixel) format.
bool basis_transcoder_format_is_uncompressed(transcoder_texture_format tex_type);
// Returns the # of bytes per pixel for uncompressed formats, or 0 for block texture formats.
uint32_t basis_get_uncompressed_bytes_per_pixel(transcoder_texture_format fmt);
// Returns the block width for the specified texture format, which is currently either 4 or 8 for FXT1.
uint32_t basis_get_block_width(transcoder_texture_format tex_type);
// Returns the block height for the specified texture format, which is currently always 4.
uint32_t basis_get_block_height(transcoder_texture_format tex_type);
// Returns true if the specified format was enabled at compile time.
bool basis_is_format_supported(transcoder_texture_format tex_type, basis_tex_format fmt = basis_tex_format::cETC1S);
class basisu_transcoder;
// This struct holds all state used during transcoding. For video, it needs to persist between image transcodes (it holds the previous frame).
// For threading you can use one state per thread.
struct basisu_transcoder_state
{
struct block_preds
{
uint16_t m_endpoint_index;
uint8_t m_pred_bits;
};
std::vector<block_preds> m_block_endpoint_preds[2];
enum { cMaxPrevFrameLevels = 16 };
std::vector<uint32_t> m_prev_frame_indices[2][cMaxPrevFrameLevels]; // [alpha_flag][level_index]
};
// Low-level helper class that does the actual transcoding.
class basisu_lowlevel_etc1s_transcoder
{
friend class basisu_transcoder;
public:
basisu_lowlevel_etc1s_transcoder(const basist::etc1_global_selector_codebook *pGlobal_sel_codebook);
bool decode_palettes(
uint32_t num_endpoints, const uint8_t *pEndpoints_data, uint32_t endpoints_data_size,
uint32_t num_selectors, const uint8_t *pSelectors_data, uint32_t selectors_data_size);
bool decode_tables(const uint8_t *pTable_data, uint32_t table_data_size);
bool transcode_slice(void *pDst_blocks, uint32_t num_blocks_x, uint32_t num_blocks_y, const uint8_t *pImage_data, uint32_t image_data_size, block_format fmt,
uint32_t output_block_or_pixel_stride_in_bytes, bool bc1_allow_threecolor_blocks, const basis_file_header &header, const basis_slice_desc& slice_desc, uint32_t output_row_pitch_in_blocks_or_pixels = 0,
basisu_transcoder_state *pState = nullptr, bool astc_transcode_alpha = false, void* pAlpha_blocks = nullptr, uint32_t output_rows_in_pixels = 0);
void clear()
{
m_endpoints.clear();
m_selectors.clear();
m_endpoint_pred_model.clear();
m_delta_endpoint_model.clear();
m_selector_model.clear();
m_selector_history_buf_rle_model.clear();
m_selector_history_buf_size = 0;
}
private:
typedef std::vector<endpoint> endpoint_vec;
endpoint_vec m_endpoints;
typedef std::vector<selector> selector_vec;
selector_vec m_selectors;
const etc1_global_selector_codebook *m_pGlobal_sel_codebook;
huffman_decoding_table m_endpoint_pred_model, m_delta_endpoint_model, m_selector_model, m_selector_history_buf_rle_model;
uint32_t m_selector_history_buf_size;
basisu_transcoder_state m_def_state;
};
enum
{
// PVRTC1: decode non-pow2 ETC1S texture level to the next larger power of 2 (not implemented yet, but we're going to support it). Ignored if the slice's dimensions are already a power of 2.
cDecodeFlagsPVRTCDecodeToNextPow2 = 2,
// When decoding to an opaque texture format, if the basis file has alpha, decode the alpha slice instead of the color slice to the output texture format.
// This is primarily to allow decoding of textures with alpha to multiple ETC1 textures (one for color, another for alpha).
cDecodeFlagsTranscodeAlphaDataToOpaqueFormats = 4,
// Forbid usage of BC1 3 color blocks (we don't support BC1 punchthrough alpha yet).
// This flag is used internally when decoding to BC3.
cDecodeFlagsBC1ForbidThreeColorBlocks = 8,
// The output buffer contains alpha endpoint/selector indices.
// Used internally when decoding formats like ASTC that require both color and alpha data to be available when transcoding to the output format.
cDecodeFlagsOutputHasAlphaIndices = 16,
cDecodeFlagsHighQuality = 32
};
class basisu_lowlevel_uastc_transcoder
{
friend class basisu_transcoder;
public:
basisu_lowlevel_uastc_transcoder();
bool transcode_slice(void* pDst_blocks, uint32_t num_blocks_x, uint32_t num_blocks_y, const uint8_t* pImage_data, uint32_t image_data_size, block_format fmt,
uint32_t output_block_or_pixel_stride_in_bytes, bool bc1_allow_threecolor_blocks, const basis_file_header& header, const basis_slice_desc& slice_desc, uint32_t output_row_pitch_in_blocks_or_pixels = 0,
basisu_transcoder_state* pState = nullptr, uint32_t output_rows_in_pixels = 0, int channel0 = -1, int channel1 = -1, uint32_t decode_flags = 0);
};
struct basisu_slice_info
{
uint32_t m_orig_width;
uint32_t m_orig_height;
uint32_t m_width;
uint32_t m_height;
uint32_t m_num_blocks_x;
uint32_t m_num_blocks_y;
uint32_t m_total_blocks;
uint32_t m_compressed_size;
uint32_t m_slice_index; // the slice index in the .basis file
uint32_t m_image_index; // the source image index originally provided to the encoder
uint32_t m_level_index; // the mipmap level within this image
uint32_t m_unpacked_slice_crc16;
bool m_alpha_flag; // true if the slice has alpha data
bool m_iframe_flag; // true if the slice is an I-Frame
};
typedef std::vector<basisu_slice_info> basisu_slice_info_vec;
struct basisu_image_info
{
uint32_t m_image_index;
uint32_t m_total_levels;
uint32_t m_orig_width;
uint32_t m_orig_height;
uint32_t m_width;
uint32_t m_height;
uint32_t m_num_blocks_x;
uint32_t m_num_blocks_y;
uint32_t m_total_blocks;
uint32_t m_first_slice_index;
bool m_alpha_flag; // true if the image has alpha data
bool m_iframe_flag; // true if the image is an I-Frame
};
struct basisu_image_level_info
{
uint32_t m_image_index;
uint32_t m_level_index;
uint32_t m_orig_width;
uint32_t m_orig_height;
uint32_t m_width;
uint32_t m_height;
uint32_t m_num_blocks_x;
uint32_t m_num_blocks_y;
uint32_t m_total_blocks;
uint32_t m_first_slice_index;
bool m_alpha_flag; // true if the image has alpha data
bool m_iframe_flag; // true if the image is an I-Frame
};
struct basisu_file_info
{
uint32_t m_version;
uint32_t m_total_header_size;
uint32_t m_total_selectors;
uint32_t m_selector_codebook_size;
uint32_t m_total_endpoints;
uint32_t m_endpoint_codebook_size;
uint32_t m_tables_size;
uint32_t m_slices_size;
basis_texture_type m_tex_type;
uint32_t m_us_per_frame;
// Low-level slice information (1 slice per image for color-only basis files, 2 for alpha basis files)
basisu_slice_info_vec m_slice_info;
uint32_t m_total_images; // total # of images
std::vector<uint32_t> m_image_mipmap_levels; // the # of mipmap levels for each image
uint32_t m_userdata0;
uint32_t m_userdata1;
basis_tex_format m_tex_format; // ETC1S, UASTC, etc.
bool m_y_flipped; // true if the image was Y flipped
bool m_etc1s; // true if the file is ETC1S
bool m_has_alpha_slices; // true if the texture has alpha slices (for ETC1S: even slices RGB, odd slices alpha)
};
// High-level transcoder class which accepts .basis file data and allows the caller to query information about the file and transcode image levels to various texture formats.
// If you're just starting out this is the class you care about.
class basisu_transcoder
{
basisu_transcoder(basisu_transcoder&);
basisu_transcoder& operator= (const basisu_transcoder&);
public:
basisu_transcoder(const etc1_global_selector_codebook *pGlobal_sel_codebook);
// Validates the .basis file. This computes a crc16 over the entire file, so it's slow.
bool validate_file_checksums(const void *pData, uint32_t data_size, bool full_validation) const;
// Quick header validation - no crc16 checks.
bool validate_header(const void *pData, uint32_t data_size) const;
basis_texture_type get_texture_type(const void *pData, uint32_t data_size) const;
bool get_userdata(const void *pData, uint32_t data_size, uint32_t &userdata0, uint32_t &userdata1) const;
// Returns the total number of images in the basis file (always 1 or more).
// Note that the number of mipmap levels for each image may differ, and that images may have different resolutions.
uint32_t get_total_images(const void *pData, uint32_t data_size) const;
basis_tex_format get_tex_format(const void* pData, uint32_t data_size) const;
// Returns the number of mipmap levels in an image.
uint32_t get_total_image_levels(const void *pData, uint32_t data_size, uint32_t image_index) const;
// Returns basic information about an image. Note that orig_width/orig_height may not be a multiple of 4.
bool get_image_level_desc(const void *pData, uint32_t data_size, uint32_t image_index, uint32_t level_index, uint32_t &orig_width, uint32_t &orig_height, uint32_t &total_blocks) const;
// Returns information about the specified image.
bool get_image_info(const void *pData, uint32_t data_size, basisu_image_info &image_info, uint32_t image_index) const;
// Returns information about the specified image's mipmap level.
bool get_image_level_info(const void *pData, uint32_t data_size, basisu_image_level_info &level_info, uint32_t image_index, uint32_t level_index) const;
// Get a description of the basis file and low-level information about each slice.
bool get_file_info(const void *pData, uint32_t data_size, basisu_file_info &file_info) const;
// start_transcoding() must be called before calling transcode_slice() or transcode_image_level().
// For ETC1S files, this call decompresses the selector/endpoint codebooks, so ideally you would only call this once per .basis file (not each image/mipmap level).
bool start_transcoding(const void *pData, uint32_t data_size);
bool stop_transcoding();
// Returns true if start_transcoding() has been called.
bool get_ready_to_transcode() const { return m_ready_to_transcode; }
// transcode_image_level() decodes a single mipmap level from the .basis file to any of the supported output texture formats.
// It'll first find the slice(s) to transcode, then call transcode_slice() one or two times to decode both the color and alpha texture data (or RG texture data from two slices for BC5).
// If the .basis file doesn't have alpha slices, the output alpha blocks will be set to fully opaque (all 255's).
// Currently, to decode to PVRTC1 the basis texture's dimensions in pixels must be a power of 2, due to PVRTC1 format requirements.
// output_blocks_buf_size_in_blocks_or_pixels should be at least the image level's total_blocks (num_blocks_x * num_blocks_y), or the total number of output pixels if fmt==cTFRGBA32.
// output_row_pitch_in_blocks_or_pixels: Number of blocks or pixels per row. If 0, the transcoder uses the slice's num_blocks_x or orig_width (NOT num_blocks_x * 4). Ignored for PVRTC1 (due to texture swizzling).
// output_rows_in_pixels: Ignored unless fmt is cRGBA32. The total number of output rows in the output buffer. If 0, the transcoder assumes the slice's orig_height (NOT num_blocks_y * 4).
// Notes:
// - basisu_transcoder_init() must have been called first to initialize the transcoder lookup tables before calling this function.
// - This method assumes the output texture buffer is readable. In some cases to handle alpha, the transcoder will write temporary data to the output texture in
// a first pass, which will be read in a second pass.
bool transcode_image_level(
const void *pData, uint32_t data_size,
uint32_t image_index, uint32_t level_index,
void *pOutput_blocks, uint32_t output_blocks_buf_size_in_blocks_or_pixels,
transcoder_texture_format fmt,
uint32_t decode_flags = 0, uint32_t output_row_pitch_in_blocks_or_pixels = 0, basisu_transcoder_state *pState = nullptr, uint32_t output_rows_in_pixels = 0) const;
// Finds the basis slice corresponding to the specified image/level/alpha params, or -1 if the slice can't be found.
int find_slice(const void *pData, uint32_t data_size, uint32_t image_index, uint32_t level_index, bool alpha_data) const;
// transcode_slice() decodes a single slice from the .basis file. It's a low-level API - most likely you want to use transcode_image_level().
// This is a low-level API, and will be needed to be called multiple times to decode some texture formats (like BC3, BC5, or ETC2).
// output_blocks_buf_size_in_blocks_or_pixels is just used for verification to make sure the output buffer is large enough.
// output_blocks_buf_size_in_blocks_or_pixels should be at least the image level's total_blocks (num_blocks_x * num_blocks_y), or the total number of output pixels if fmt==cTFRGBA32.
// output_block_stride_in_bytes: Number of bytes between each output block.
// output_row_pitch_in_blocks_or_pixels: Number of blocks or pixels per row. If 0, the transcoder uses the slice's num_blocks_x or orig_width (NOT num_blocks_x * 4). Ignored for PVRTC1 (due to texture swizzling).
// output_rows_in_pixels: Ignored unless fmt is cRGBA32. The total number of output rows in the output buffer. If 0, the transcoder assumes the slice's orig_height (NOT num_blocks_y * 4).
// Notes:
// - basisu_transcoder_init() must have been called first to initialize the transcoder lookup tables before calling this function.
bool transcode_slice(const void *pData, uint32_t data_size, uint32_t slice_index,
void *pOutput_blocks, uint32_t output_blocks_buf_size_in_blocks_or_pixels,
block_format fmt, uint32_t output_block_stride_in_bytes, uint32_t decode_flags = 0, uint32_t output_row_pitch_in_blocks_or_pixels = 0, basisu_transcoder_state * pState = nullptr, void* pAlpha_blocks = nullptr,
uint32_t output_rows_in_pixels = 0, int channel0 = -1, int channel1 = -1) const;
private:
mutable basisu_lowlevel_etc1s_transcoder m_lowlevel_etc1s_decoder;
mutable basisu_lowlevel_uastc_transcoder m_lowlevel_uastc_decoder;
bool m_ready_to_transcode;
int find_first_slice_index(const void* pData, uint32_t data_size, uint32_t image_index, uint32_t level_index) const;
bool validate_header_quick(const void* pData, uint32_t data_size) const;
};
// basisu_transcoder_init() must be called before a .basis file can be transcoded.
void basisu_transcoder_init();
enum debug_flags_t
{
cDebugFlagVisCRs = 1,
cDebugFlagVisBC1Sels = 2,
cDebugFlagVisBC1Endpoints = 4
};
uint32_t get_debug_flags();
void set_debug_flags(uint32_t f);
} // namespace basisu