blob: 24479432a288aad52df2eb0e795024378ab33ca8 [file] [log] [blame]
// basisu_tool.cpp
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if _MSC_VER
// For sprintf(), strcpy()
#define _CRT_SECURE_NO_WARNINGS (1)
#endif
#include "transcoder/basisu.h"
#include "transcoder/basisu_transcoder_internal.h"
#include "encoder/basisu_enc.h"
#include "encoder/basisu_etc.h"
#include "encoder/basisu_gpu_texture.h"
#include "encoder/basisu_frontend.h"
#include "encoder/basisu_backend.h"
#include "transcoder/basisu_global_selector_palette.h"
#include "encoder/basisu_comp.h"
#include "transcoder/basisu_transcoder.h"
#include "encoder/basisu_ssim.h"
#define MINIZ_HEADER_FILE_ONLY
#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES
#include "encoder/basisu_miniz.h"
// Set BASISU_CATCH_EXCEPTIONS if you want exceptions to crash the app, otherwise main() catches them.
#ifndef BASISU_CATCH_EXCEPTIONS
#define BASISU_CATCH_EXCEPTIONS 0
#endif
using namespace basisu;
using namespace buminiz;
#define BASISU_TOOL_VERSION "1.15"
enum tool_mode
{
cDefault,
cCompress,
cValidate,
cInfo,
cUnpack,
cCompare,
cVersion,
cBench,
cCompSize
};
static void print_usage()
{
printf("\nUsage: basisu filename [filename ...] <options>\n");
puts("\n"
"The default mode is compression of one or more PNG/BMP/TGA/JPG files to a .basis file. Alternate modes:\n"
" -unpack: Use transcoder to unpack .basis file to one or more .ktx/.png files\n"
" -validate: Validate and display information about a .basis file\n"
" -info: Display high-level information about a .basis file\n"
" -compare: Compare two PNG/BMP/TGA/JPG images specified with -file, output PSNR and SSIM statistics and RGB/A delta images\n"
" -version: Print basisu version and exit\n"
"Unless an explicit mode is specified, if one or more files have the .basis extension this tool defaults to unpack mode.\n"
"\n"
"Important: By default, the compressor assumes the input is in the sRGB colorspace (like photos/albedo textures).\n"
"If the input is NOT sRGB (like a normal map), be sure to specify -linear for less artifacts. Depending on the content type, some experimentation may be needed.\n"
"\n"
"Filenames prefixed with a @ symbol are read as filename listing files. Listing text files specify which actual filenames to process (one filename per line).\n"
"\n"
"Options:\n"
" -ktx2: Write .KTX2 ETC1S/UASTC files instead of .basis files. By default, UASTC files will be compressed using Zstandard unless -ktx2_no_zstandard is specified.\n"
" -ktx2_no_zstandard: Don't compress UASTC texture data using Zstandard, store it uncompressed instead.\n"
" -ktx2_zstandard_level X: Set ZStandard compression level to X (see Zstandard documentation, default level is 6)\n"
" -ktx2_animdata_duration X: Set KTX2animData duration field to integer value X (only valid/useful for -tex_type video, default is 1)\n"
" -ktx2_animdata_timescale X: Set KTX2animData timescale field to integer value X (only valid/useful for -tex_type video, default is 15)\n"
" -ktx2_animdata_loopcount X: Set KTX2animData loopcount field to integer value X (only valid/useful for -tex_type video, default is 0)\n"
" -file filename.png/bmp/tga/jpg: Input image filename, multiple images are OK, use -file X for each input filename (prefixing input filenames with -file is optional)\n"
" -alpha_file filename.png/bmp/tga/jpg: Input alpha image filename, multiple images are OK, use -file X for each input filename (must be paired with -file), images converted to REC709 grayscale and used as input alpha\n"
" -multifile_printf: printf() format strint to use to compose multiple filenames\n"
" -multifile_first: The index of the first file to process, default is 0 (must specify -multifile_printf and -multifile_num)\n"
" -multifile_num: The total number of files to process.\n"
" -q X: Set ETC1S quality level, 1-255, default is 128, lower=better compression/lower quality/faster, higher=less compression/higher quality/slower, default is 128. For even higher quality, use -max_endpoints/-max_selectors.\n"
" -linear: Use linear colorspace metrics (instead of the default sRGB), and by default linear (not sRGB) mipmap filtering.\n"
" -output_file filename: Output .basis/.ktx filename\n"
" -output_path: Output .basis/.ktx files to specified directory.\n"
" -debug: Enable codec debug print to stdout (slightly slower).\n"
" -debug_images: Enable codec debug images (much slower).\n"
" -stats: Compute and display image quality metrics (slightly slower).\n"
" -tex_type <2d, 2darray, 3d, video, cubemap>: Set Basis file header's texture type field. Cubemap arrays require multiples of 6 images, in X+, X-, Y+, Y-, Z+, Z- order, each image must be the same resolutions.\n"
" 2d=arbitrary 2D images, 2darray=2D array, 3D=volume texture slices, video=video frames, cubemap=array of faces. For 2darray/3d/cubemaps/video, each source image's dimensions and # of mipmap levels must be the same.\n"
" For video, the .basis file will be written with the first frame being an I-Frame, and subsequent frames being P-Frames (using conditional replenishment). Playback must always occur in order from first to last image.\n"
" -framerate X: Set framerate in .basis header to X/frames sec.\n"
" -individual: Process input images individually and output multiple .basis files (not as a texture array)\n"
" -comp_level X: Set ETC1S encoding speed vs. quality tradeoff. Range is 0-6, default is 1. Higher values=MUCH slower, but slightly higher quality. Higher levels intended for videos. Use -q first!\n"
" -fuzz_testing: Use with -validate: Disables CRC16 validation of file contents before transcoding\n"
"\nUASTC options:\n"
" -uastc: Enable UASTC texture mode, instead of the default ETC1S mode. Significantly higher texture quality, but larger files. (Note that UASTC .basis files must be losslessly compressed by the user.)\n"
" -uastc_level: Set UASTC encoding level. Range is [0,4], default is 2, higher=slower but higher quality. 0=fastest/lowest quality, 3=slowest practical option, 4=impractically slow/highest achievable quality\n"
" -uastc_rdo_l X: Enable UASTC RDO post-processing and set UASTC RDO quality scalar (lambda) to X. Lower values=higher quality/larger LZ\n"
" compressed files, higher values=lower quality/smaller LZ compressed files. Good range to try is [.25-10].\n"
" Note: Previous versons used the -uastc_rdo_q option, which was removed because the RDO algorithm was changed.\n"
" -uastc_rdo_d X: Set UASTC RDO dictionary size in bytes. Default is 4096, max is 65536. Lower values=faster, but less compression.\n"
" -uastc_rdo_b X: Set UASTC RDO max smooth block error scale. Range is [1,300]. Default is 10.0, 1.0=disabled. Larger values suppress more artifacts (and allocate more bits) on smooth blocks.\n"
" -uastc_rdo_s X: Set UASTC RDO max smooth block standard deviation. Range is [.01,65536]. Default is 18.0. Larger values expand the range of blocks considered smooth.\n"
" -uastc_rdo_f: Don't favor simpler UASTC modes in RDO mode.\n"
" -uastc_rdo_m: Disable RDO multithreading (slightly higher compression, deterministic).\n"
"\n"
"More options:\n"
" -max_endpoints X: Manually set the max number of color endpoint clusters from 1-16128, use instead of -q\n"
" -max_selectors X: Manually set the max number of color selector clusters from 1-16128, use instead of -q\n"
" -y_flip: Flip input images vertically before compression\n"
" -normal_map: Tunes codec parameters for better quality on normal maps (linear colorspace metrics, linear mipmap filtering, no selector RDO, no sRGB)\n"
" -no_alpha: Always output non-alpha basis files, even if one or more inputs has alpha\n"
" -force_alpha: Always output alpha basis files, even if no inputs has alpha\n"
" -separate_rg_to_color_alpha: Separate input R and G channels to RGB and A (for tangent space XY normal maps)\n"
" -swizzle rgba: Specify swizzle for the 4 input color channels using r, g, b and a (the -separate_rg_to_color_alpha flag is equivalent to rrrg)\n"
" -renorm: Renormalize each input image before any further processing/compression\n"
" -no_multithreading: Disable multithreading\n"
" -no_ktx: Disable KTX writing when unpacking (faster)\n"
" -etc1_only: Only unpack to ETC1, skipping the other texture formats during -unpack\n"
" -disable_hierarchical_endpoint_codebooks: Disable hierarchical endpoint codebook usage, slower but higher quality on some compression levels\n"
" -compare_ssim: Compute and display SSIM of image comparison (slow)\n"
" -bench: UASTC benchmark mode, for development only\n"
" -resample X Y: Resample all input textures to XxY pixels using a box filter\n"
" -resample_factor X: Resample all input textures by scale factor X using a box filter\n"
" -no_sse: Forbid all SSE instruction set usage\n"
" -validate_etc1s: Validate internal ETC1S compressor's data structures during compression (slower, intended for development).\n"
"\n"
"Mipmap generation options:\n"
" -mipmap: Generate mipmaps for each source image\n"
" -mip_srgb: Convert image to linear before filtering, then back to sRGB\n"
" -mip_linear: Keep image in linear light during mipmap filtering (i.e. do not convert to/from sRGB for filtering purposes)\n"
" -mip_scale X: Set mipmap filter kernel's scale, lower=sharper, higher=more blurry, default is 1.0\n"
" -mip_filter X: Set mipmap filter kernel, default is kaiser, filters: box, tent, bell, blackman, catmullrom, mitchell, etc.\n"
" -mip_renorm: Renormalize normal map to unit length vectors after filtering\n"
" -mip_clamp: Use clamp addressing on borders, instead of wrapping\n"
" -mip_fast: Use faster mipmap generation (resample from previous mip, not always first/largest mip level). The default (as of 1/2021)\n"
" -mip_slow: Always resample each mipmap level starting from the largest mipmap. Higher quality, but slower. Opposite of -mip_fast. Was the prior default before 1/2021.\n"
" -mip_smallest X: Set smallest pixel dimension for generated mipmaps, default is 1 pixel\n"
"By default, textures will be converted from sRGB to linear light before mipmap filtering, then back to sRGB (for the RGB color channels) unless -linear is specified.\n"
"You can override this behavior with -mip_srgb/-mip_linear.\n"
"\n"
"Backend endpoint/selector RDO codec options:\n"
" -no_selector_rdo: Disable backend's selector rate distortion optimizations (slightly faster, less noisy output, but lower quality per output bit)\n"
" -selector_rdo_thresh X: Set selector RDO quality threshold, default is 1.25, lower is higher quality but less quality per output bit (try 1.0-3.0)\n"
" -no_endpoint_rdo: Disable backend's endpoint rate distortion optimizations (slightly faster, less noisy output, but lower quality per output bit)\n"
" -endpoint_rdo_thresh X: Set endpoint RDO quality threshold, default is 1.5, lower is higher quality but less quality per output bit (try 1.0-3.0)\n"
"\n"
"Set various fields in the Basis file header:\n"
" -userdata0 X: Set 32-bit userdata0 field in Basis file header to X (X is a signed 32-bit int)\n"
" -userdata1 X: Set 32-bit userdata1 field in Basis file header to X (X is a signed 32-bit int)\n"
"\n"
"Various command line examples:\n"
" basisu x.png : Compress sRGB image x.png to x.basis using default settings (multiple filenames OK, use -individual if you don't want a tex array)\n"
" basisu x.basis : Unpack x.basis to PNG/KTX files (multiple filenames OK)\n"
" basisu -file x.png -mipmap -y_flip : Compress a mipmapped x.basis file from an sRGB image named x.png, Y flip each source image\n"
" basisu -validate -file x.basis : Validate x.basis (check header, check file CRC's, attempt to transcode all slices)\n"
" basisu -unpack -file x.basis : Validates, transcodes and unpacks x.basis to mipmapped .KTX and RGB/A .PNG files (transcodes to all supported GPU texture formats)\n"
" basisu -q 255 -file x.png -mipmap -debug -stats : Compress sRGB x.png to x.basis at quality level 255 with compressor debug output/statistics\n"
" basisu -linear -max_endpoints 16128 -max_selectors 16128 -file x.png : Compress non-sRGB x.png to x.basis using the largest supported manually specified codebook sizes\n"
" basisu -comp_level 2 -max_selectors 8192 -max_endpoints 8192 -tex_type video -framerate 20 -multifile_printf \"x%02u.png\" -multifile_first 1 -multifile_count 20 : Compress a 20 sRGB source image video sequence (x01.png, x02.png, x03.png, etc.) to x01.basis\n"
"\n"
"Note: For video use, it's recommended you use a very powerful machine with many cores. Use -comp_level 2 or higher for better codebook\n"
"generation, specify very large codebooks using -max_endpoints and -max_selectors, and reduce the default endpoint RDO threshold\n"
"(-endpoint_rdo_thresh) to around 1.25. Videos may have mipmaps and alpha channels. Videos must always be played back by the transcoder\n"
"in first to last image order.\n"
"Video files currently use I-Frames on the first image, and P-Frames using conditional replenishment on subsequent frames.\n"
"\nCompression level (-comp_level X) details:\n"
" Level 0: Fastest, but has marginal quality and can be brittle on complex images. Avg. Y dB: 35.45\n"
" Level 1: Hierarchical codebook searching, faster ETC1S encoding. 36.87 dB, ~1.4x slower vs. level 0. (This is the default setting.)\n"
" Level 2: Use this or higher for video. Hierarchical codebook searching. 36.87 dB, ~1.4x slower vs. level 0. (This is the v1.12's default setting.)\n"
" Level 3: Full codebook searching. 37.13 dB, ~1.8x slower vs. level 0. (Equivalent the the initial release's default settings.)\n"
" Level 4: Hierarchical codebook searching, codebook k-means iterations. 37.15 dB, ~4x slower vs. level 0\n"
" Level 5: Full codebook searching, codebook k-means iterations. 37.41 dB, ~5.5x slower vs. level 0. (Equivalent to the initial release's -slower setting.)\n"
" Level 6: Full codebook searching, twice as many codebook k-means iterations, best ETC1 endpoint opt. 37.43 dB, ~12x slower vs. level 0\n"
);
}
static bool load_listing_file(const std::string &f, basisu::vector<std::string> &filenames)
{
std::string filename(f);
filename.erase(0, 1);
FILE *pFile = nullptr;
#ifdef _WIN32
fopen_s(&pFile, filename.c_str(), "r");
#else
pFile = fopen(filename.c_str(), "r");
#endif
if (!pFile)
{
error_printf("Failed opening listing file: \"%s\"\n", filename.c_str());
return false;
}
uint32_t total_filenames = 0;
for ( ; ; )
{
char buf[3072];
buf[0] = '\0';
char *p = fgets(buf, sizeof(buf), pFile);
if (!p)
{
if (ferror(pFile))
{
error_printf("Failed reading from listing file: \"%s\"\n", filename.c_str());
fclose(pFile);
return false;
}
else
break;
}
std::string read_filename(p);
while (read_filename.size())
{
if (read_filename[0] == ' ')
read_filename.erase(0, 1);
else
break;
}
while (read_filename.size())
{
const char c = read_filename.back();
if ((c == ' ') || (c == '\n') || (c == '\r'))
read_filename.erase(read_filename.size() - 1, 1);
else
break;
}
if (read_filename.size())
{
filenames.push_back(read_filename);
total_filenames++;
}
}
fclose(pFile);
printf("Successfully read %u filenames(s) from listing file \"%s\"\n", total_filenames, filename.c_str());
return true;
}
class command_line_params
{
BASISU_NO_EQUALS_OR_COPY_CONSTRUCT(command_line_params);
public:
command_line_params() :
m_mode(cDefault),
m_ktx2_mode(false),
m_ktx2_zstandard(true),
m_ktx2_zstandard_level(6),
m_ktx2_animdata_duration(1),
m_ktx2_animdata_timescale(15),
m_ktx2_animdata_loopcount(0),
m_multifile_first(0),
m_multifile_num(0),
m_individual(false),
m_no_ktx(false),
m_etc1_only(false),
m_fuzz_testing(false),
m_compare_ssim(false),
m_bench(false)
{
m_comp_params.m_compression_level = basisu::maximum<int>(0, BASISU_DEFAULT_COMPRESSION_LEVEL - 1);
}
bool parse(int arg_c, const char **arg_v)
{
int arg_index = 1;
while (arg_index < arg_c)
{
const char *pArg = arg_v[arg_index];
const int num_remaining_args = arg_c - (arg_index + 1);
int arg_count = 1;
#define REMAINING_ARGS_CHECK(n) if (num_remaining_args < (n)) { error_printf("Error: Expected %u values to follow %s!\n", n, pArg); return false; }
if (strcasecmp(pArg, "-ktx2") == 0)
{
m_ktx2_mode = true;
}
else if (strcasecmp(pArg, "-ktx2_no_zstandard") == 0)
{
m_ktx2_zstandard = false;
}
else if (strcasecmp(pArg, "-ktx2_zstandard_level") == 0)
{
REMAINING_ARGS_CHECK(1);
m_ktx2_zstandard_level = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-ktx2_animdata_duration") == 0)
{
REMAINING_ARGS_CHECK(1);
m_ktx2_animdata_duration = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-ktx2_animdata_timescale") == 0)
{
REMAINING_ARGS_CHECK(1);
m_ktx2_animdata_timescale = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-ktx2_animdata_loopcount") == 0)
{
REMAINING_ARGS_CHECK(1);
m_ktx2_animdata_loopcount = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-compress") == 0)
m_mode = cCompress;
else if (strcasecmp(pArg, "-compare") == 0)
m_mode = cCompare;
else if (strcasecmp(pArg, "-unpack") == 0)
m_mode = cUnpack;
else if (strcasecmp(pArg, "-validate") == 0)
m_mode = cValidate;
else if (strcasecmp(pArg, "-info") == 0)
m_mode = cInfo;
else if (strcasecmp(pArg, "-version") == 0)
m_mode = cVersion;
else if (strcasecmp(pArg, "-compare_ssim") == 0)
m_compare_ssim = true;
else if (strcasecmp(pArg, "-bench") == 0)
m_mode = cBench;
else if (strcasecmp(pArg, "-comp_size") == 0)
m_mode = cCompSize;
else if (strcasecmp(pArg, "-no_sse") == 0)
{
#if BASISU_SUPPORT_SSE
g_cpu_supports_sse41 = false;
#endif
}
else if (strcasecmp(pArg, "-file") == 0)
{
REMAINING_ARGS_CHECK(1);
m_input_filenames.push_back(std::string(arg_v[arg_index + 1]));
arg_count++;
}
else if (strcasecmp(pArg, "-alpha_file") == 0)
{
REMAINING_ARGS_CHECK(1);
m_input_alpha_filenames.push_back(std::string(arg_v[arg_index + 1]));
arg_count++;
}
else if (strcasecmp(pArg, "-multifile_printf") == 0)
{
REMAINING_ARGS_CHECK(1);
m_multifile_printf = std::string(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-multifile_first") == 0)
{
REMAINING_ARGS_CHECK(1);
m_multifile_first = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-multifile_num") == 0)
{
REMAINING_ARGS_CHECK(1);
m_multifile_num = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-uastc") == 0)
m_comp_params.m_uastc = true;
else if (strcasecmp(pArg, "-uastc_level") == 0)
{
REMAINING_ARGS_CHECK(1);
int uastc_level = atoi(arg_v[arg_index + 1]);
uastc_level = clamp<int>(uastc_level, 0, TOTAL_PACK_UASTC_LEVELS - 1);
static_assert(TOTAL_PACK_UASTC_LEVELS == 5, "TOTAL_PACK_UASTC_LEVELS==5");
static const uint32_t s_level_flags[TOTAL_PACK_UASTC_LEVELS] = { cPackUASTCLevelFastest, cPackUASTCLevelFaster, cPackUASTCLevelDefault, cPackUASTCLevelSlower, cPackUASTCLevelVerySlow };
m_comp_params.m_pack_uastc_flags &= ~cPackUASTCLevelMask;
m_comp_params.m_pack_uastc_flags |= s_level_flags[uastc_level];
arg_count++;
}
else if (strcasecmp(pArg, "-resample") == 0)
{
REMAINING_ARGS_CHECK(2);
m_comp_params.m_resample_width = atoi(arg_v[arg_index + 1]);
m_comp_params.m_resample_height = atoi(arg_v[arg_index + 2]);
arg_count += 2;
}
else if (strcasecmp(pArg, "-resample_factor") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_resample_factor = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-uastc_rdo_l") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_rdo_uastc_quality_scalar = (float)atof(arg_v[arg_index + 1]);
m_comp_params.m_rdo_uastc = true;
arg_count++;
}
else if (strcasecmp(pArg, "-uastc_rdo_d") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_rdo_uastc_dict_size = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-uastc_rdo_b") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_rdo_uastc_max_smooth_block_error_scale = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-uastc_rdo_s") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_rdo_uastc_smooth_block_max_std_dev = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-uastc_rdo_f") == 0)
m_comp_params.m_rdo_uastc_favor_simpler_modes_in_rdo_mode = false;
else if (strcasecmp(pArg, "-uastc_rdo_m") == 0)
m_comp_params.m_rdo_uastc_multithreading = false;
else if (strcasecmp(pArg, "-linear") == 0)
m_comp_params.m_perceptual = false;
else if (strcasecmp(pArg, "-srgb") == 0)
m_comp_params.m_perceptual = true;
else if (strcasecmp(pArg, "-q") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_quality_level = clamp<int>(atoi(arg_v[arg_index + 1]), BASISU_QUALITY_MIN, BASISU_QUALITY_MAX);
arg_count++;
}
else if (strcasecmp(pArg, "-output_file") == 0)
{
REMAINING_ARGS_CHECK(1);
m_output_filename = arg_v[arg_index + 1];
arg_count++;
}
else if (strcasecmp(pArg, "-output_path") == 0)
{
REMAINING_ARGS_CHECK(1);
m_output_path = arg_v[arg_index + 1];
arg_count++;
}
else if (strcasecmp(pArg, "-debug") == 0)
{
m_comp_params.m_debug = true;
enable_debug_printf(true);
}
else if (strcasecmp(pArg, "-validate_etc1s") == 0)
{
m_comp_params.m_validate = true;
}
else if (strcasecmp(pArg, "-debug_images") == 0)
m_comp_params.m_debug_images = true;
else if (strcasecmp(pArg, "-stats") == 0)
m_comp_params.m_compute_stats = true;
else if (strcasecmp(pArg, "-gen_global_codebooks") == 0)
{
// TODO
}
else if (strcasecmp(pArg, "-use_global_codebooks") == 0)
{
REMAINING_ARGS_CHECK(1);
m_etc1s_use_global_codebooks_file = arg_v[arg_index + 1];
arg_count++;
}
else if (strcasecmp(pArg, "-comp_level") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_compression_level = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-slower") == 0)
{
// This option is gone, but we'll do something reasonable with it anyway. Level 4 is equivalent to the original release's -slower, but let's just go to level 2.
m_comp_params.m_compression_level = BASISU_DEFAULT_COMPRESSION_LEVEL + 1;
}
else if (strcasecmp(pArg, "-max_endpoints") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_max_endpoint_clusters = clamp<int>(atoi(arg_v[arg_index + 1]), 1, BASISU_MAX_ENDPOINT_CLUSTERS);
arg_count++;
}
else if (strcasecmp(pArg, "-max_selectors") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_max_selector_clusters = clamp<int>(atoi(arg_v[arg_index + 1]), 1, BASISU_MAX_SELECTOR_CLUSTERS);
arg_count++;
}
else if (strcasecmp(pArg, "-y_flip") == 0)
m_comp_params.m_y_flip = true;
else if (strcasecmp(pArg, "-normal_map") == 0)
{
m_comp_params.m_perceptual = false;
m_comp_params.m_mip_srgb = false;
m_comp_params.m_no_selector_rdo = true;
m_comp_params.m_no_endpoint_rdo = true;
}
else if (strcasecmp(pArg, "-no_alpha") == 0)
m_comp_params.m_check_for_alpha = false;
else if (strcasecmp(pArg, "-force_alpha") == 0)
m_comp_params.m_force_alpha = true;
else if ((strcasecmp(pArg, "-separate_rg_to_color_alpha") == 0) ||
(strcasecmp(pArg, "-seperate_rg_to_color_alpha") == 0)) // was mispelled for a while - whoops!
{
m_comp_params.m_swizzle[0] = 0;
m_comp_params.m_swizzle[1] = 0;
m_comp_params.m_swizzle[2] = 0;
m_comp_params.m_swizzle[3] = 1;
}
else if (strcasecmp(pArg, "-swizzle") == 0)
{
REMAINING_ARGS_CHECK(1);
const char *swizzle = arg_v[arg_index + 1];
if (strlen(swizzle) != 4)
{
error_printf("Swizzle requires exactly 4 characters\n");
return false;
}
for (int i=0; i<4; ++i)
{
if (swizzle[i] == 'r')
m_comp_params.m_swizzle[i] = 0;
else if (swizzle[i] == 'g')
m_comp_params.m_swizzle[i] = 1;
else if (swizzle[i] == 'b')
m_comp_params.m_swizzle[i] = 2;
else if (swizzle[i] == 'a')
m_comp_params.m_swizzle[i] = 3;
else
{
error_printf("Swizzle must be one of [rgba]");
return false;
}
}
arg_count++;
}
else if (strcasecmp(pArg, "-renorm") == 0)
m_comp_params.m_renormalize = true;
else if (strcasecmp(pArg, "-no_multithreading") == 0)
{
m_comp_params.m_multithreading = false;
}
else if (strcasecmp(pArg, "-mipmap") == 0)
m_comp_params.m_mip_gen = true;
else if (strcasecmp(pArg, "-no_ktx") == 0)
m_no_ktx = true;
else if (strcasecmp(pArg, "-etc1_only") == 0)
m_etc1_only = true;
else if (strcasecmp(pArg, "-disable_hierarchical_endpoint_codebooks") == 0)
m_comp_params.m_disable_hierarchical_endpoint_codebooks = true;
else if (strcasecmp(pArg, "-mip_scale") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_mip_scale = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-mip_filter") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_mip_filter = arg_v[arg_index + 1];
// TODO: Check filter
arg_count++;
}
else if (strcasecmp(pArg, "-mip_renorm") == 0)
m_comp_params.m_mip_renormalize = true;
else if (strcasecmp(pArg, "-mip_clamp") == 0)
m_comp_params.m_mip_wrapping = false;
else if (strcasecmp(pArg, "-mip_fast") == 0)
m_comp_params.m_mip_fast = true;
else if (strcasecmp(pArg, "-mip_slow") == 0)
m_comp_params.m_mip_fast = false;
else if (strcasecmp(pArg, "-mip_smallest") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_mip_smallest_dimension = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-mip_srgb") == 0)
m_comp_params.m_mip_srgb = true;
else if (strcasecmp(pArg, "-mip_linear") == 0)
m_comp_params.m_mip_srgb = false;
else if (strcasecmp(pArg, "-no_selector_rdo") == 0)
m_comp_params.m_no_selector_rdo = true;
else if (strcasecmp(pArg, "-selector_rdo_thresh") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_selector_rdo_thresh = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-no_endpoint_rdo") == 0)
m_comp_params.m_no_endpoint_rdo = true;
else if (strcasecmp(pArg, "-endpoint_rdo_thresh") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_endpoint_rdo_thresh = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-global_sel_pal") == 0)
m_comp_params.m_global_sel_pal = true;
else if (strcasecmp(pArg, "-no_auto_global_sel_pal") == 0)
m_comp_params.m_auto_global_sel_pal = false;
else if (strcasecmp(pArg, "-auto_global_sel_pal") == 0)
m_comp_params.m_auto_global_sel_pal = true;
else if (strcasecmp(pArg, "-global_pal_bits") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_global_pal_bits = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-global_mod_bits") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_global_mod_bits = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-no_hybrid_sel_cb") == 0)
m_comp_params.m_no_hybrid_sel_cb = true;
else if (strcasecmp(pArg, "-hybrid_sel_cb_quality_thresh") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_hybrid_sel_cb_quality_thresh = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-userdata0") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_userdata0 = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-userdata1") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_userdata1 = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-framerate") == 0)
{
REMAINING_ARGS_CHECK(1);
double fps = atof(arg_v[arg_index + 1]);
double us_per_frame = 0;
if (fps > 0)
us_per_frame = 1000000.0f / fps;
m_comp_params.m_us_per_frame = clamp<int>(static_cast<int>(us_per_frame + .5f), 0, basist::cBASISMaxUSPerFrame);
arg_count++;
}
else if (strcasecmp(pArg, "-tex_type") == 0)
{
REMAINING_ARGS_CHECK(1);
const char *pType = arg_v[arg_index + 1];
if (strcasecmp(pType, "2d") == 0)
m_comp_params.m_tex_type = basist::cBASISTexType2D;
else if (strcasecmp(pType, "2darray") == 0)
m_comp_params.m_tex_type = basist::cBASISTexType2DArray;
else if (strcasecmp(pType, "3d") == 0)
m_comp_params.m_tex_type = basist::cBASISTexTypeVolume;
else if (strcasecmp(pType, "cubemap") == 0)
m_comp_params.m_tex_type = basist::cBASISTexTypeCubemapArray;
else if (strcasecmp(pType, "video") == 0)
m_comp_params.m_tex_type = basist::cBASISTexTypeVideoFrames;
else
{
error_printf("Invalid texture type: %s\n", pType);
return false;
}
arg_count++;
}
else if (strcasecmp(pArg, "-individual") == 0)
m_individual = true;
else if (strcasecmp(pArg, "-fuzz_testing") == 0)
m_fuzz_testing = true;
else if (strcasecmp(pArg, "-csv_file") == 0)
{
REMAINING_ARGS_CHECK(1);
m_csv_file = arg_v[arg_index + 1];
m_comp_params.m_compute_stats = true;
arg_count++;
}
else if (pArg[0] == '-')
{
error_printf("Unrecognized command line option: %s\n", pArg);
return false;
}
else
{
// Let's assume it's a source filename, so globbing works
//error_printf("Unrecognized command line option: %s\n", pArg);
m_input_filenames.push_back(pArg);
}
arg_index += arg_count;
}
if (m_comp_params.m_quality_level != -1)
{
m_comp_params.m_max_endpoint_clusters = 0;
m_comp_params.m_max_selector_clusters = 0;
}
else if ((!m_comp_params.m_max_endpoint_clusters) || (!m_comp_params.m_max_selector_clusters))
{
m_comp_params.m_max_endpoint_clusters = 0;
m_comp_params.m_max_selector_clusters = 0;
m_comp_params.m_quality_level = 128;
}
if (!m_comp_params.m_mip_srgb.was_changed())
{
// They didn't specify what colorspace to do mipmap filtering in, so choose sRGB if they've specified that the texture is sRGB.
if (m_comp_params.m_perceptual)
m_comp_params.m_mip_srgb = true;
else
m_comp_params.m_mip_srgb = false;
}
return true;
}
bool process_listing_files()
{
basisu::vector<std::string> new_input_filenames;
for (uint32_t i = 0; i < m_input_filenames.size(); i++)
{
if (m_input_filenames[i][0] == '@')
{
if (!load_listing_file(m_input_filenames[i], new_input_filenames))
return false;
}
else
new_input_filenames.push_back(m_input_filenames[i]);
}
new_input_filenames.swap(m_input_filenames);
basisu::vector<std::string> new_input_alpha_filenames;
for (uint32_t i = 0; i < m_input_alpha_filenames.size(); i++)
{
if (m_input_alpha_filenames[i][0] == '@')
{
if (!load_listing_file(m_input_alpha_filenames[i], new_input_alpha_filenames))
return false;
}
else
new_input_alpha_filenames.push_back(m_input_alpha_filenames[i]);
}
new_input_alpha_filenames.swap(m_input_alpha_filenames);
return true;
}
basis_compressor_params m_comp_params;
tool_mode m_mode;
bool m_ktx2_mode;
bool m_ktx2_zstandard;
int m_ktx2_zstandard_level;
uint32_t m_ktx2_animdata_duration;
uint32_t m_ktx2_animdata_timescale;
uint32_t m_ktx2_animdata_loopcount;
basisu::vector<std::string> m_input_filenames;
basisu::vector<std::string> m_input_alpha_filenames;
std::string m_output_filename;
std::string m_output_path;
std::string m_multifile_printf;
uint32_t m_multifile_first;
uint32_t m_multifile_num;
std::string m_csv_file;
std::string m_etc1s_use_global_codebooks_file;
bool m_individual;
bool m_no_ktx;
bool m_etc1_only;
bool m_fuzz_testing;
bool m_compare_ssim;
bool m_bench;
};
static bool expand_multifile(command_line_params &opts)
{
if (!opts.m_multifile_printf.size())
return true;
if (!opts.m_multifile_num)
{
error_printf("-multifile_printf specified, but not -multifile_num\n");
return false;
}
std::string fmt(opts.m_multifile_printf);
// Workaround for MSVC debugger issues. Questionable to leave in here.
size_t x = fmt.find_first_of('!');
if (x != std::string::npos)
fmt[x] = '%';
if (string_find_right(fmt, '%') == -1)
{
error_printf("Must include C-style printf() format character '%%' in -multifile_printf string\n");
return false;
}
for (uint32_t i = opts.m_multifile_first; i < opts.m_multifile_first + opts.m_multifile_num; i++)
{
char buf[1024];
#ifdef _WIN32
sprintf_s(buf, sizeof(buf), fmt.c_str(), i);
#else
snprintf(buf, sizeof(buf), fmt.c_str(), i);
#endif
if (buf[0])
opts.m_input_filenames.push_back(buf);
}
return true;
}
struct basis_data
{
basis_data(basist::etc1_global_selector_codebook& sel_codebook) :
m_transcoder(&sel_codebook)
{
}
uint8_vec m_file_data;
basist::basisu_transcoder m_transcoder;
};
static basis_data *load_basis_file(const char *pInput_filename, basist::etc1_global_selector_codebook &sel_codebook, bool force_etc1s)
{
basis_data* p = new basis_data(sel_codebook);
uint8_vec &basis_data = p->m_file_data;
if (!basisu::read_file_to_vec(pInput_filename, basis_data))
{
error_printf("Failed reading file \"%s\"\n", pInput_filename);
delete p;
return nullptr;
}
printf("Input file \"%s\"\n", pInput_filename);
if (!basis_data.size())
{
error_printf("File is empty!\n");
delete p;
return nullptr;
}
if (basis_data.size() > UINT32_MAX)
{
error_printf("File is too large!\n");
delete p;
return nullptr;
}
if (force_etc1s)
{
if (p->m_transcoder.get_tex_format((const void*)&p->m_file_data[0], (uint32_t)p->m_file_data.size()) != basist::basis_tex_format::cETC1S)
{
error_printf("Global codebook file must be in ETC1S format!\n");
delete p;
return nullptr;
}
}
if (!p->m_transcoder.start_transcoding(&basis_data[0], (uint32_t)basis_data.size()))
{
error_printf("start_transcoding() failed!\n");
delete p;
return nullptr;
}
return p;
}
static bool compress_mode(command_line_params &opts)
{
basist::etc1_global_selector_codebook sel_codebook(basist::g_global_selector_cb_size, basist::g_global_selector_cb);
uint32_t num_threads = 1;
if (opts.m_comp_params.m_multithreading)
{
num_threads = std::thread::hardware_concurrency();
if (num_threads < 1)
num_threads = 1;
}
job_pool jpool(num_threads);
opts.m_comp_params.m_pJob_pool = &jpool;
if (!expand_multifile(opts))
{
error_printf("-multifile expansion failed!\n");
return false;
}
if (!opts.m_input_filenames.size())
{
error_printf("No input files to process!\n");
return false;
}
basis_data* pGlobal_codebook_data = nullptr;
if (opts.m_etc1s_use_global_codebooks_file.size())
{
pGlobal_codebook_data = load_basis_file(opts.m_etc1s_use_global_codebooks_file.c_str(), sel_codebook, true);
if (!pGlobal_codebook_data)
return false;
printf("Loaded global codebooks from .basis file \"%s\"\n", opts.m_etc1s_use_global_codebooks_file.c_str());
#if 0
// Development/test code. TODO: Remove.
basis_data* pGlobal_codebook_data2 = load_basis_file("xmen_1024.basis", sel_codebook, true);
const basist::basisu_lowlevel_etc1s_transcoder &ta = pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder();
const basist::basisu_lowlevel_etc1s_transcoder &tb = pGlobal_codebook_data2->m_transcoder.get_lowlevel_etc1s_decoder();
if (ta.get_endpoints().size() != tb.get_endpoints().size())
{
printf("Endpoint CB's don't match\n");
}
else if (ta.get_selectors().size() != tb.get_selectors().size())
{
printf("Selector CB's don't match\n");
}
else
{
for (uint32_t i = 0; i < ta.get_endpoints().size(); i++)
{
if (ta.get_endpoints()[i] != tb.get_endpoints()[i])
{
printf("Endoint CB mismatch entry %u\n", i);
}
}
for (uint32_t i = 0; i < ta.get_selectors().size(); i++)
{
if (ta.get_selectors()[i] != tb.get_selectors()[i])
{
printf("Selector CB mismatch entry %u\n", i);
}
}
}
delete pGlobal_codebook_data2;
pGlobal_codebook_data2 = nullptr;
#endif
}
basis_compressor_params &params = opts.m_comp_params;
if (opts.m_ktx2_mode)
{
params.m_create_ktx2_file = true;
if (opts.m_ktx2_zstandard)
params.m_ktx2_uastc_supercompression = basist::KTX2_SS_ZSTANDARD;
else
params.m_ktx2_uastc_supercompression = basist::KTX2_SS_NONE;
params.m_ktx2_srgb_transfer_func = opts.m_comp_params.m_perceptual;
if (params.m_tex_type == basist::basis_texture_type::cBASISTexTypeVideoFrames)
{
// Create KTXanimData key value entry
// TODO: Move this to basisu_comp.h
basist::ktx2_transcoder::key_value kv;
const char* pAD = "KTXanimData";
kv.m_key.resize(strlen(pAD) + 1);
strcpy((char*)kv.m_key.data(), pAD);
basist::ktx2_animdata ad;
ad.m_duration = opts.m_ktx2_animdata_duration;
ad.m_timescale = opts.m_ktx2_animdata_timescale;
ad.m_loopcount = opts.m_ktx2_animdata_loopcount;
kv.m_value.resize(sizeof(ad));
memcpy(kv.m_value.data(), &ad, sizeof(ad));
params.m_ktx2_key_values.push_back(kv);
}
// TODO- expose this to command line.
params.m_ktx2_zstd_supercompression_level = opts.m_ktx2_zstandard_level;
}
params.m_read_source_images = true;
params.m_write_output_basis_files = true;
params.m_pSel_codebook = &sel_codebook;
params.m_pGlobal_codebooks = pGlobal_codebook_data ? &pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder() : nullptr;
FILE *pCSV_file = nullptr;
if (opts.m_csv_file.size())
{
//pCSV_file = fopen_safe(opts.m_csv_file.c_str(), "a");
pCSV_file = fopen_safe(opts.m_csv_file.c_str(), "w");
if (!pCSV_file)
{
error_printf("Failed opening CVS file \"%s\"\n", opts.m_csv_file.c_str());
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
fprintf(pCSV_file, "Filename, Size, Slices, Width, Height, HasAlpha, BitsPerTexel, Slice0RGBAvgPSNR, Slice0RGBAAvgPSNR, Slice0Luma709PSNR, Slice0BestETC1SLuma709PSNR, Q, CL, Time, RGBAvgPSNRMin, RGBAvgPSNRAvg, AAvgPSNRMin, AAvgPSNRAvg, Luma709PSNRMin, Luma709PSNRAvg\n");
}
printf("Processing %u total file(s)\n", (uint32_t)opts.m_input_filenames.size());
interval_timer all_tm;
all_tm.start();
const size_t total_files = (opts.m_individual ? opts.m_input_filenames.size() : 1U);
for (size_t file_index = 0; file_index < total_files; file_index++)
{
if (opts.m_individual)
{
params.m_source_filenames.resize(1);
params.m_source_filenames[0] = opts.m_input_filenames[file_index];
if (file_index < opts.m_input_alpha_filenames.size())
{
params.m_source_alpha_filenames.resize(1);
params.m_source_alpha_filenames[0] = opts.m_input_alpha_filenames[file_index];
printf("Processing source file \"%s\", alpha file \"%s\"\n", params.m_source_filenames[0].c_str(), params.m_source_alpha_filenames[0].c_str());
}
else
{
params.m_source_alpha_filenames.resize(0);
printf("Processing source file \"%s\"\n", params.m_source_filenames[0].c_str());
}
}
else
{
params.m_source_filenames = opts.m_input_filenames;
params.m_source_alpha_filenames = opts.m_input_alpha_filenames;
}
if ((opts.m_output_filename.size()) && (!opts.m_individual))
params.m_out_filename = opts.m_output_filename;
else
{
std::string filename;
string_get_filename(opts.m_input_filenames[file_index].c_str(), filename);
string_remove_extension(filename);
if (opts.m_ktx2_mode)
filename += ".ktx2";
else
filename += ".basis";
if (opts.m_output_path.size())
string_combine_path(filename, opts.m_output_path.c_str(), filename.c_str());
params.m_out_filename = filename;
}
basis_compressor c;
if (!c.init(opts.m_comp_params))
{
error_printf("basis_compressor::init() failed!\n");
if (pCSV_file)
{
fclose(pCSV_file);
pCSV_file = nullptr;
}
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
interval_timer tm;
tm.start();
basis_compressor::error_code ec = c.process();
tm.stop();
if (ec == basis_compressor::cECSuccess)
{
printf("Compression succeeded to file \"%s\" size %u bytes in %3.3f secs\n", params.m_out_filename.c_str(),
opts.m_ktx2_mode ? c.get_output_ktx2_file().size() : c.get_output_basis_file().size(),
tm.get_elapsed_secs());
}
else
{
bool exit_flag = true;
switch (ec)
{
case basis_compressor::cECFailedReadingSourceImages:
{
error_printf("Compressor failed reading a source image!\n");
if (opts.m_individual)
exit_flag = false;
break;
}
case basis_compressor::cECFailedValidating:
error_printf("Compressor failed 2darray/cubemap/video validation checks!\n");
break;
case basis_compressor::cECFailedEncodeUASTC:
error_printf("Compressor UASTC encode failed!\n");
break;
case basis_compressor::cECFailedFrontEnd:
error_printf("Compressor frontend stage failed!\n");
break;
case basis_compressor::cECFailedFontendExtract:
error_printf("Compressor frontend data extraction failed!\n");
break;
case basis_compressor::cECFailedBackend:
error_printf("Compressor backend stage failed!\n");
break;
case basis_compressor::cECFailedCreateBasisFile:
error_printf("Compressor failed creating Basis file data!\n");
break;
case basis_compressor::cECFailedWritingOutput:
error_printf("Compressor failed writing to output Basis file!\n");
break;
case basis_compressor::cECFailedUASTCRDOPostProcess:
error_printf("Compressor failed during the UASTC post process step!\n");
break;
case basis_compressor::cECFailedCreateKTX2File:
error_printf("Compressor failed creating KTX2 file data!\n");
break;
default:
error_printf("basis_compress::process() failed!\n");
break;
}
if (exit_flag)
{
if (pCSV_file)
{
fclose(pCSV_file);
pCSV_file = nullptr;
}
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
}
if ((pCSV_file) && (c.get_stats().size()))
{
#if 0
for (size_t slice_index = 0; slice_index < c.get_stats().size(); slice_index++)
{
fprintf(pCSV_file, "\"%s\", %u, %u, %u, %u, %u, %f, %f, %f, %f, %f, %u, %u, %f\n",
params.m_out_filename.c_str(),
(uint32_t)slice_index, (uint32_t)c.get_stats().size(),
c.get_stats()[slice_index].m_width, c.get_stats()[slice_index].m_height, (uint32_t)c.get_any_source_image_has_alpha(),
c.get_basis_bits_per_texel(),
c.get_stats()[slice_index].m_basis_rgb_avg_psnr,
c.get_stats()[slice_index].m_basis_rgba_avg_psnr,
c.get_stats()[slice_index].m_basis_luma_709_psnr,
c.get_stats()[slice_index].m_best_etc1s_luma_709_psnr,
params.m_quality_level, (int)params.m_compression_level, tm.get_elapsed_secs());
fflush(pCSV_file);
}
#else
if (c.get_stats().size())
{
float rgb_avg_psnr_min = 1e+9f, rgb_avg_psnr_avg = 0.0f;
float a_avg_psnr_min = 1e+9f, a_avg_psnr_avg = 0.0f;
float luma_709_psnr_min = 1e+9f, luma_709_psnr_avg = 0.0f;
for (size_t slice_index = 0; slice_index < c.get_stats().size(); slice_index++)
{
rgb_avg_psnr_min = basisu::minimum(rgb_avg_psnr_min, c.get_stats()[slice_index].m_basis_rgb_avg_psnr);
rgb_avg_psnr_avg += c.get_stats()[slice_index].m_basis_rgb_avg_psnr;
a_avg_psnr_min = basisu::minimum(a_avg_psnr_min, c.get_stats()[slice_index].m_basis_a_avg_psnr);
a_avg_psnr_avg += c.get_stats()[slice_index].m_basis_a_avg_psnr;
luma_709_psnr_min = basisu::minimum(luma_709_psnr_min, c.get_stats()[slice_index].m_basis_luma_709_psnr);
luma_709_psnr_avg += c.get_stats()[slice_index].m_basis_luma_709_psnr;
}
rgb_avg_psnr_avg /= c.get_stats().size();
a_avg_psnr_avg /= c.get_stats().size();
luma_709_psnr_avg /= c.get_stats().size();
fprintf(pCSV_file, "\"%s\", %u, %u, %u, %u, %u, %f, %f, %f, %f, %f, %u, %u, %f, %f, %f, %f, %f, %f, %f\n",
params.m_out_filename.c_str(),
c.get_basis_file_size(),
(uint32_t)c.get_stats().size(),
c.get_stats()[0].m_width, c.get_stats()[0].m_height, (uint32_t)c.get_any_source_image_has_alpha(),
c.get_basis_bits_per_texel(),
c.get_stats()[0].m_basis_rgb_avg_psnr,
c.get_stats()[0].m_basis_rgba_avg_psnr,
c.get_stats()[0].m_basis_luma_709_psnr,
c.get_stats()[0].m_best_etc1s_luma_709_psnr,
params.m_quality_level, (int)params.m_compression_level, tm.get_elapsed_secs(),
rgb_avg_psnr_min, rgb_avg_psnr_avg,
a_avg_psnr_min, a_avg_psnr_avg,
luma_709_psnr_min, luma_709_psnr_avg);
fflush(pCSV_file);
}
#endif
}
if (opts.m_individual)
printf("\n");
} // file_index
all_tm.stop();
if (total_files > 1)
printf("Total compression time: %3.3f secs\n", all_tm.get_elapsed_secs());
if (pCSV_file)
{
fclose(pCSV_file);
pCSV_file = nullptr;
}
delete pGlobal_codebook_data;
pGlobal_codebook_data = nullptr;
return true;
}
static bool unpack_and_validate_ktx2_file(
uint32_t file_index,
const std::string& base_filename,
uint8_vec& ktx2_file_data,
command_line_params& opts,
FILE* pCSV_file,
basis_data* pGlobal_codebook_data,
basist::etc1_global_selector_codebook& sel_codebook,
uint32_t& total_unpack_warnings,
uint32_t& total_pvrtc_nonpow2_warnings)
{
// TODO
(void)pCSV_file;
(void)file_index;
const bool validate_flag = (opts.m_mode == cValidate);
basist::ktx2_transcoder dec(&sel_codebook);
if (!dec.init(ktx2_file_data.data(), ktx2_file_data.size()))
{
error_printf("ktx2_transcoder::init() failed! File either uses an unsupported feature, is invalid, was corrupted, or this is a bug.\n");
return false;
}
if (!dec.start_transcoding())
{
error_printf("ktx2_transcoder::start_transcoding() failed! File either uses an unsupported feature, is invalid, was corrupted, or this is a bug.\n");
return false;
}
printf("Resolution: %ux%u\n", dec.get_width(), dec.get_height());
printf("Mipmap Levels: %u\n", dec.get_levels());
printf("Texture Array Size (layers): %u\n", dec.get_layers());
printf("Total Faces: %u (%s)\n", dec.get_faces(), (dec.get_faces() == 6) ? "CUBEMAP" : "2D");
printf("Is Texture Video: %u\n", dec.is_video());
const bool is_etc1s = dec.get_format() == basist::basis_tex_format::cETC1S;
printf("Supercompression Format: %s\n", is_etc1s ? "ETC1S" : "UASTC");
printf("Supercompression Scheme: ");
switch (dec.get_header().m_supercompression_scheme)
{
case basist::KTX2_SS_NONE: printf("NONE\n"); break;
case basist::KTX2_SS_BASISLZ: printf("BASISLZ\n"); break;
case basist::KTX2_SS_ZSTANDARD: printf("ZSTANDARD\n"); break;
default:
error_printf("Invalid/unknown/unsupported\n");
return false;
}
printf("Has Alpha: %u\n", (uint32_t)dec.get_has_alpha());
printf("\nData Format Descriptor (DFD):\n");
printf("DFD length in bytes: %u\n", dec.get_dfd().size());
printf("DFD color model: %u\n", dec.get_dfd_color_model());
printf("DFD color primaries: %u (%s)\n", dec.get_dfd_color_primaries(), basist::ktx2_get_df_color_primaries_str(dec.get_dfd_color_primaries()));
printf("DFD transfer func: %u (%s)\n", dec.get_dfd_transfer_func(),
(dec.get_dfd_transfer_func() == basist::KTX2_KHR_DF_TRANSFER_LINEAR) ? "LINEAR" : ((dec.get_dfd_transfer_func() == basist::KTX2_KHR_DF_TRANSFER_SRGB) ? "SRGB" : "?"));
printf("DFD flags: %u\n", dec.get_dfd_flags());
printf("DFD samples: %u\n", dec.get_dfd_total_samples());
if (is_etc1s)
{
printf("DFD chan0: %s\n", basist::ktx2_get_etc1s_df_channel_id_str(dec.get_dfd_channel_id0()));
if (dec.get_dfd_total_samples() == 2)
printf("DFD chan1: %s\n", basist::ktx2_get_etc1s_df_channel_id_str(dec.get_dfd_channel_id1()));
}
else
printf("DFD chan0: %s\n", basist::ktx2_get_uastc_df_channel_id_str(dec.get_dfd_channel_id0()));
printf("DFD hex values:\n");
for (uint32_t i = 0; i < dec.get_dfd().size(); i++)
{
if (i)
printf(",");
printf("0x%X", dec.get_dfd()[i]);
}
printf("\n\n");
printf("Total key values: %u\n", dec.get_key_values().size());
for (uint32_t i = 0; i < dec.get_key_values().size(); i++)
{
printf("%u. Key: \"%s\", Value length in bytes: %u", i, (const char*)dec.get_key_values()[i].m_key.data(), dec.get_key_values()[i].m_value.size());
if (dec.get_key_values()[i].m_value.size() > 256)
continue;
bool is_ascii = true;
for (uint32_t j = 0; j < dec.get_key_values()[i].m_value.size(); j++)
{
uint8_t c = dec.get_key_values()[i].m_value[j];
if (!(
((c >= ' ') && (c < 0x80)) ||
((j == dec.get_key_values()[i].m_value.size() - 1) && (!c))
))
{
is_ascii = false;
break;
}
}
if (is_ascii)
{
uint8_vec s(dec.get_key_values()[i].m_value);
s.push_back(0);
printf(" Value String: \"%s\"", (const char *)s.data());
}
else
{
printf(" Value Bytes: ");
for (uint32_t j = 0; j < dec.get_key_values()[i].m_value.size(); j++)
{
if (j)
printf(",");
printf("0x%X", dec.get_key_values()[i].m_value[j]);
}
}
printf("\n");
}
if (is_etc1s)
{
printf("ETC1S header:\n");
printf("Endpoint Count: %u, Selector Count: %u, Endpoint Length: %u, Selector Length: %u, Tables Length: %u, Extended Length: %u\n",
(uint32_t)dec.get_etc1s_header().m_endpoint_count, (uint32_t)dec.get_etc1s_header().m_selector_count,
(uint32_t)dec.get_etc1s_header().m_endpoints_byte_length, (uint32_t)dec.get_etc1s_header().m_selectors_byte_length,
(uint32_t)dec.get_etc1s_header().m_tables_byte_length, (uint32_t)dec.get_etc1s_header().m_extended_byte_length);
printf("Total ETC1S image descs: %u\n", dec.get_etc1s_image_descs().size());
for (uint32_t i = 0; i < dec.get_etc1s_image_descs().size(); i++)
{
printf("%u. Flags: 0x%X, RGB Ofs: %u Len: %u, Alpha Ofs: %u, Len: %u\n", i,
(uint32_t)dec.get_etc1s_image_descs()[i].m_image_flags,
(uint32_t)dec.get_etc1s_image_descs()[i].m_rgb_slice_byte_offset, (uint32_t)dec.get_etc1s_image_descs()[i].m_rgb_slice_byte_length,
(uint32_t)dec.get_etc1s_image_descs()[i].m_alpha_slice_byte_offset, (uint32_t)dec.get_etc1s_image_descs()[i].m_alpha_slice_byte_length);
}
}
printf("Levels:\n");
for (uint32_t i = 0; i < dec.get_levels(); i++)
{
printf("%u. Offset: %llu, Length: %llu, Uncompressed Length: %llu\n",
i, (long long unsigned int)dec.get_level_index()[i].m_byte_offset,
(long long unsigned int)dec.get_level_index()[i].m_byte_length,
(long long unsigned int)dec.get_level_index()[i].m_uncompressed_byte_length);
}
if (opts.m_mode == cInfo)
{
return true;
}
// gpu_images[format][face][layer][level]
basisu::vector< gpu_image_vec > gpu_images[(int)basist::transcoder_texture_format::cTFTotalTextureFormats][6];
int first_format = 0;
int last_format = (int)basist::transcoder_texture_format::cTFTotalTextureFormats;
if (opts.m_etc1_only)
{
first_format = (int)basist::transcoder_texture_format::cTFETC1_RGB;
last_format = first_format + 1;
}
const uint32_t total_layers = maximum<uint32_t>(1, dec.get_layers());
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
basist::transcoder_texture_format tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(tex_fmt))
continue;
if (!basis_is_format_supported(tex_fmt, dec.get_format()))
continue;
if (tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
for (uint32_t face_index = 0; face_index < dec.get_faces(); face_index++)
{
gpu_images[(int)tex_fmt][face_index].resize(total_layers);
for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++)
gpu_images[(int)tex_fmt][face_index][layer_index].resize(dec.get_levels());
}
}
// Now transcode the file to all supported texture formats and save mipmapped KTX files
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt))
continue;
if (!basis_is_format_supported(transcoder_tex_fmt, dec.get_format()))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
for (uint32_t level_index = 0; level_index < dec.get_levels(); level_index++)
{
for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++)
{
for (uint32_t face_index = 0; face_index < dec.get_faces(); face_index++)
{
basist::ktx2_image_level_info level_info;
if (!dec.get_image_level_info(level_info, level_index, layer_index, face_index))
{
error_printf("Failed retrieving image level information (%u %u %u)!\n", layer_index, level_index, face_index);
return false;
}
if ((transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGB) || (transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGBA))
{
if (!is_pow2(level_info.m_width) || !is_pow2(level_info.m_height))
{
total_pvrtc_nonpow2_warnings++;
printf("Warning: Will not transcode image %u level %u res %ux%u to PVRTC1 (one or more dimension is not a power of 2)\n", layer_index, level_index, level_info.m_width, level_info.m_height);
// Can't transcode this image level to PVRTC because it's not a pow2 (we're going to support transcoding non-pow2 to the next larger pow2 soon)
continue;
}
}
basisu::texture_format tex_fmt = basis_get_basisu_texture_format(transcoder_tex_fmt);
gpu_image& gi = gpu_images[(int)transcoder_tex_fmt][face_index][layer_index][level_index];
gi.init(tex_fmt, level_info.m_orig_width, level_info.m_orig_height);
// Fill the buffer with psuedo-random bytes, to help more visibly detect cases where the transcoder fails to write to part of the output.
fill_buffer_with_random_bytes(gi.get_ptr(), gi.get_size_in_bytes());
uint32_t decode_flags = 0;
if (!dec.transcode_image_level(level_index, layer_index, face_index, gi.get_ptr(), gi.get_total_blocks(), transcoder_tex_fmt, decode_flags))
{
error_printf("Failed transcoding image level (%u %u %u %u)!\n", layer_index, level_index, face_index, format_iter);
return false;
}
printf("Transcode of layer %u level %u face %u res %ux%u format %s succeeded\n", layer_index, level_index, face_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt));
}
} // format_iter
} // level_index
} // image_info
if (!validate_flag)
{
// Now write KTX files and unpack them to individual PNG's
const bool is_cubemap_array = (dec.get_faces() > 1) && (total_layers > 1);
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt))
continue;
if (!basis_is_format_supported(transcoder_tex_fmt, dec.get_format()))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
if ((!opts.m_no_ktx) && (is_cubemap_array))
{
// No KTX tool that we know of supports cubemap arrays, so write individual cubemap files.
for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++)
{
basisu::vector<gpu_image_vec> cubemap;
for (uint32_t face_index = 0; face_index < 6; face_index++)
cubemap.push_back(gpu_images[format_iter][face_index][layer_index]);
std::string ktx_filename(base_filename + string_format("_transcoded_cubemap_%s_%u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), layer_index));
if (!write_compressed_texture_file(ktx_filename.c_str(), cubemap, true))
{
error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str());
return false;
}
printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str());
}
}
for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++)
{
for (uint32_t face_index = 0; face_index < dec.get_faces(); face_index++)
{
gpu_image_vec& gi = gpu_images[format_iter][face_index][layer_index];
if (!gi.size())
continue;
uint32_t level;
for (level = 0; level < gi.size(); level++)
if (!gi[level].get_total_blocks())
break;
if (level < gi.size())
continue;
if ((!opts.m_no_ktx) && (!is_cubemap_array))
{
std::string ktx_filename(base_filename + string_format("_transcoded_%s_%04u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), layer_index));
if (!write_compressed_texture_file(ktx_filename.c_str(), gi))
{
error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str());
return false;
}
printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str());
}
for (uint32_t level_index = 0; level_index < gi.size(); level_index++)
{
basist::ktx2_image_level_info level_info;
if (!dec.get_image_level_info(level_info, level_index, layer_index, face_index))
{
error_printf("Failed retrieving image level information (%u %u %u)!\n", layer_index, level_index, face_index);
return false;
}
image u;
if (!gi[level_index].unpack(u))
{
printf("Warning: Failed unpacking GPU texture data (%u %u %u %u). Unpacking as much as possible.\n", format_iter, layer_index, level_index, face_index);
total_unpack_warnings++;
}
//u.crop(level_info.m_orig_width, level_info.m_orig_height);
std::string rgb_filename;
if (gi.size() > 1)
rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index);
else
rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index);
if (!save_png(rgb_filename, u, cImageSaveIgnoreAlpha))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str());
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFFXT1_RGB)
{
std::string out_filename;
if (gi.size() > 1)
out_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%u_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index);
else
out_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index);
if (!write_3dfx_out_file(out_filename.c_str(), gi[level_index]))
{
error_printf("Failed writing to OUT file \"%s\"\n", out_filename.c_str());
return false;
}
printf("Wrote .OUT file \"%s\"\n", out_filename.c_str());
}
if (basis_transcoder_format_has_alpha(transcoder_tex_fmt))
{
std::string a_filename;
if (gi.size() > 1)
a_filename = base_filename + string_format("_unpacked_a_%s_%u_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index);
else
a_filename = base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index);
if (!save_png(a_filename, u, cImageSaveGrayscale, 3))
{
error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", a_filename.c_str());
std::string rgba_filename;
if (gi.size() > 1)
rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index);
else
rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index);
if (!save_png(rgba_filename, u))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgba_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", rgba_filename.c_str());
}
} // level_index
} // face_index
} // layer_index
} // format_iter
} // if (!validate_flag)
return true;
}
static bool unpack_and_validate_basis_file(
uint32_t file_index,
const std::string &base_filename,
uint8_vec &basis_file_data,
command_line_params& opts,
FILE *pCSV_file,
basis_data* pGlobal_codebook_data,
basist::etc1_global_selector_codebook &sel_codebook,
uint32_t &total_unpack_warnings,
uint32_t &total_pvrtc_nonpow2_warnings)
{
const bool validate_flag = (opts.m_mode == cValidate);
basist::basisu_transcoder dec(&sel_codebook);
if (pGlobal_codebook_data)
{
dec.set_global_codebooks(&pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder());
}
if (!opts.m_fuzz_testing)
{
// Skip the full validation, which CRC16's the entire file.
// Validate the file - note this isn't necessary for transcoding
if (!dec.validate_file_checksums(&basis_file_data[0], (uint32_t)basis_file_data.size(), true))
{
error_printf("File version is unsupported, or file failed one or more CRC checks!\n");
return false;
}
}
printf("File version and CRC checks succeeded\n");
basist::basisu_file_info fileinfo;
if (!dec.get_file_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), fileinfo))
{
error_printf("Failed retrieving Basis file information!\n");
return false;
}
assert(fileinfo.m_total_images == fileinfo.m_image_mipmap_levels.size());
assert(fileinfo.m_total_images == dec.get_total_images(&basis_file_data[0], (uint32_t)basis_file_data.size()));
printf("File info:\n");
printf(" Version: %X\n", fileinfo.m_version);
printf(" Total header size: %u\n", fileinfo.m_total_header_size);
printf(" Total selectors: %u\n", fileinfo.m_total_selectors);
printf(" Selector codebook size: %u\n", fileinfo.m_selector_codebook_size);
printf(" Total endpoints: %u\n", fileinfo.m_total_endpoints);
printf(" Endpoint codebook size: %u\n", fileinfo.m_endpoint_codebook_size);
printf(" Tables size: %u\n", fileinfo.m_tables_size);
printf(" Slices size: %u\n", fileinfo.m_slices_size);
printf(" Texture format: %s\n", (fileinfo.m_tex_format == basist::basis_tex_format::cUASTC4x4) ? "UASTC" : "ETC1S");
printf(" Texture type: %s\n", basist::basis_get_texture_type_name(fileinfo.m_tex_type));
printf(" us per frame: %u (%f fps)\n", fileinfo.m_us_per_frame, fileinfo.m_us_per_frame ? (1.0f / ((float)fileinfo.m_us_per_frame / 1000000.0f)) : 0.0f);
printf(" Total slices: %u\n", (uint32_t)fileinfo.m_slice_info.size());
printf(" Total images: %i\n", fileinfo.m_total_images);
printf(" Y Flipped: %u, Has alpha slices: %u\n", fileinfo.m_y_flipped, fileinfo.m_has_alpha_slices);
printf(" userdata0: 0x%X userdata1: 0x%X\n", fileinfo.m_userdata0, fileinfo.m_userdata1);
printf(" Per-image mipmap levels: ");
for (uint32_t i = 0; i < fileinfo.m_total_images; i++)
printf("%u ", fileinfo.m_image_mipmap_levels[i]);
printf("\n");
uint32_t total_texels = 0;
printf("\nImage info:\n");
for (uint32_t i = 0; i < fileinfo.m_total_images; i++)
{
basist::basisu_image_info ii;
if (!dec.get_image_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), ii, i))
{
error_printf("get_image_info() failed!\n");
return false;
}
printf("Image %u: MipLevels: %u OrigDim: %ux%u, BlockDim: %ux%u, FirstSlice: %u, HasAlpha: %u\n", i, ii.m_total_levels, ii.m_orig_width, ii.m_orig_height,
ii.m_num_blocks_x, ii.m_num_blocks_y, ii.m_first_slice_index, (uint32_t)ii.m_alpha_flag);
total_texels += ii.m_width * ii.m_height;
}
printf("\nSlice info:\n");
for (uint32_t i = 0; i < fileinfo.m_slice_info.size(); i++)
{
const basist::basisu_slice_info& sliceinfo = fileinfo.m_slice_info[i];
printf("%u: OrigWidthHeight: %ux%u, BlockDim: %ux%u, TotalBlocks: %u, Compressed size: %u, Image: %u, Level: %u, UnpackedCRC16: 0x%X, alpha: %u, iframe: %i\n",
i,
sliceinfo.m_orig_width, sliceinfo.m_orig_height,
sliceinfo.m_num_blocks_x, sliceinfo.m_num_blocks_y,
sliceinfo.m_total_blocks,
sliceinfo.m_compressed_size,
sliceinfo.m_image_index, sliceinfo.m_level_index,
sliceinfo.m_unpacked_slice_crc16,
(uint32_t)sliceinfo.m_alpha_flag,
(uint32_t)sliceinfo.m_iframe_flag);
}
printf("\n");
size_t comp_size = 0;
void* pComp_data = tdefl_compress_mem_to_heap(&basis_file_data[0], basis_file_data.size(), &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES);
mz_free(pComp_data);
const float basis_bits_per_texel = basis_file_data.size() * 8.0f / total_texels;
const float comp_bits_per_texel = comp_size * 8.0f / total_texels;
printf("Original size: %u, bits per texel: %3.3f\nCompressed size (Deflate): %u, bits per texel: %3.3f\n", (uint32_t)basis_file_data.size(), basis_bits_per_texel, (uint32_t)comp_size, comp_bits_per_texel);
if (opts.m_mode == cInfo)
{
return true;
}
if ((fileinfo.m_etc1s) && (fileinfo.m_selector_codebook_size == 0) && (fileinfo.m_endpoint_codebook_size == 0))
{
// File is ETC1S and uses global codebooks - make sure we loaded one
if (!pGlobal_codebook_data)
{
error_printf("ETC1S file uses global codebooks, but none were loaded (see the -use_global_codebooks option)\n");
return false;
}
if ((pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder().get_endpoints().size() != fileinfo.m_total_endpoints) ||
(pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder().get_selectors().size() != fileinfo.m_total_selectors))
{
error_printf("Supplied global codebook is not compatible with this file\n");
return false;
}
}
interval_timer tm;
tm.start();
if (!dec.start_transcoding(&basis_file_data[0], (uint32_t)basis_file_data.size()))
{
error_printf("start_transcoding() failed!\n");
return false;
}
const double start_transcoding_time_ms = tm.get_elapsed_ms();
printf("start_transcoding time: %3.3f ms\n", start_transcoding_time_ms);
basisu::vector< gpu_image_vec > gpu_images[(int)basist::transcoder_texture_format::cTFTotalTextureFormats];
double total_format_transcoding_time_ms[(int)basist::transcoder_texture_format::cTFTotalTextureFormats];
clear_obj(total_format_transcoding_time_ms);
int first_format = 0;
int last_format = (int)basist::transcoder_texture_format::cTFTotalTextureFormats;
if (opts.m_etc1_only)
{
first_format = (int)basist::transcoder_texture_format::cTFETC1_RGB;
last_format = first_format + 1;
}
if ((pCSV_file) && (file_index == 0))
{
std::string desc;
desc = "filename,basis_bitrate,comp_bitrate,images,levels,slices,start_transcoding_time,";
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
desc += std::string(basis_get_format_name(transcoder_tex_fmt));
if (format_iter != last_format - 1)
desc += ",";
}
fprintf(pCSV_file, "%s\n", desc.c_str());
}
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
basist::transcoder_texture_format tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(tex_fmt))
continue;
if (!basis_is_format_supported(tex_fmt, fileinfo.m_tex_format))
continue;
if (tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
gpu_images[(int)tex_fmt].resize(fileinfo.m_total_images);
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
gpu_images[(int)tex_fmt][image_index].resize(fileinfo.m_image_mipmap_levels[image_index]);
}
// Now transcode the file to all supported texture formats and save mipmapped KTX files
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt))
continue;
if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
{
for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++)
{
basist::basisu_image_level_info level_info;
if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index))
{
error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index);
return false;
}
if ((transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGB) || (transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGBA))
{
if (!is_pow2(level_info.m_width) || !is_pow2(level_info.m_height))
{
total_pvrtc_nonpow2_warnings++;
printf("Warning: Will not transcode image %u level %u res %ux%u to PVRTC1 (one or more dimension is not a power of 2)\n", image_index, level_index, level_info.m_width, level_info.m_height);
// Can't transcode this image level to PVRTC because it's not a pow2 (we're going to support transcoding non-pow2 to the next larger pow2 soon)
continue;
}
}
basisu::texture_format tex_fmt = basis_get_basisu_texture_format(transcoder_tex_fmt);
gpu_image& gi = gpu_images[(int)transcoder_tex_fmt][image_index][level_index];
gi.init(tex_fmt, level_info.m_orig_width, level_info.m_orig_height);
// Fill the buffer with psuedo-random bytes, to help more visibly detect cases where the transcoder fails to write to part of the output.
fill_buffer_with_random_bytes(gi.get_ptr(), gi.get_size_in_bytes());
uint32_t decode_flags = 0;
tm.start();
if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, gi.get_ptr(), gi.get_total_blocks(), transcoder_tex_fmt, decode_flags))
{
error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, format_iter);
return false;
}
double total_transcode_time = tm.get_elapsed_ms();
total_format_transcoding_time_ms[format_iter] += total_transcode_time;
printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time);
} // format_iter
} // level_index
} // image_info
if (!validate_flag)
{
// Now write KTX files and unpack them to individual PNG's
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt))
continue;
if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
if ((!opts.m_no_ktx) && (fileinfo.m_tex_type == basist::cBASISTexTypeCubemapArray))
{
// No KTX tool that we know of supports cubemap arrays, so write individual cubemap files.
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index += 6)
{
basisu::vector<gpu_image_vec> cubemap;
for (uint32_t i = 0; i < 6; i++)
cubemap.push_back(gpu_images[format_iter][image_index + i]);
std::string ktx_filename(base_filename + string_format("_transcoded_cubemap_%s_%u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), image_index / 6));
if (!write_compressed_texture_file(ktx_filename.c_str(), cubemap, true))
{
error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str());
return false;
}
printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str());
}
}
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
{
gpu_image_vec& gi = gpu_images[format_iter][image_index];
if (!gi.size())
continue;
uint32_t level;
for (level = 0; level < gi.size(); level++)
if (!gi[level].get_total_blocks())
break;
if (level < gi.size())
continue;
if ((!opts.m_no_ktx) && (fileinfo.m_tex_type != basist::cBASISTexTypeCubemapArray))
{
std::string ktx_filename(base_filename + string_format("_transcoded_%s_%04u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), image_index));
if (!write_compressed_texture_file(ktx_filename.c_str(), gi))
{
error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str());
return false;
}
printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str());
}
for (uint32_t level_index = 0; level_index < gi.size(); level_index++)
{
basist::basisu_image_level_info level_info;
if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index))
{
error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index);
return false;
}
image u;
if (!gi[level_index].unpack(u))
{
printf("Warning: Failed unpacking GPU texture data (%u %u %u). Unpacking as much as possible.\n", format_iter, image_index, level_index);
total_unpack_warnings++;
}
//u.crop(level_info.m_orig_width, level_info.m_orig_height);
std::string rgb_filename;
if (gi.size() > 1)
rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index);
else
rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), image_index);
if (!save_png(rgb_filename, u, cImageSaveIgnoreAlpha))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str());
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFFXT1_RGB)
{
std::string out_filename;
if (gi.size() > 1)
out_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index);
else
out_filename = base_filename + string_format("_unpacked_rgb_%s_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), image_index);
if (!write_3dfx_out_file(out_filename.c_str(), gi[level_index]))
{
error_printf("Failed writing to OUT file \"%s\"\n", out_filename.c_str());
return false;
}
printf("Wrote .OUT file \"%s\"\n", out_filename.c_str());
}
if (basis_transcoder_format_has_alpha(transcoder_tex_fmt))
{
std::string a_filename;
if (gi.size() > 1)
a_filename = base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index);
else
a_filename = base_filename + string_format("_unpacked_a_%s_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), image_index);
if (!save_png(a_filename, u, cImageSaveGrayscale, 3))
{
error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", a_filename.c_str());
std::string rgba_filename;
if (gi.size() > 1)
rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index);
else
rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), image_index);
if (!save_png(rgba_filename, u))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgba_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", rgba_filename.c_str());
}
} // level_index
} // image_index
} // format_iter
} // if (!validate_flag)
uint32_t max_mipmap_levels = 0;
if (!opts.m_etc1_only)
{
// Now unpack to RGBA using the transcoder itself to do the unpacking to raster images
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
{
for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = basist::transcoder_texture_format::cTFRGBA32;
basist::basisu_image_level_info level_info;
if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index))
{
error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index);
return false;
}
image img(level_info.m_orig_width, level_info.m_orig_height);
fill_buffer_with_random_bytes(&img(0, 0), img.get_total_pixels() * sizeof(uint32_t));
tm.start();
if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, &img(0, 0).r, img.get_total_pixels(), transcoder_tex_fmt, 0, img.get_pitch(), nullptr, img.get_height()))
{
error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt);
return false;
}
double total_transcode_time = tm.get_elapsed_ms();
total_format_transcoding_time_ms[(int)transcoder_tex_fmt] += total_transcode_time;
printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time);
if (!validate_flag)
{
std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index));
if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str());
std::string a_filename(base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index));
if (!save_png(a_filename, img, cImageSaveGrayscale, 3))
{
error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", a_filename.c_str());
}
} // level_index
} // image_index
// Now unpack to RGB565 using the transcoder itself to do the unpacking to raster images
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
{
for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = basist::transcoder_texture_format::cTFRGB565;
basist::basisu_image_level_info level_info;
if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index))
{
error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index);
return false;
}
basisu::vector<uint16_t> packed_img(level_info.m_orig_width * level_info.m_orig_height);
fill_buffer_with_random_bytes(&packed_img[0], packed_img.size() * sizeof(uint16_t));
tm.start();
if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, &packed_img[0], (uint32_t)packed_img.size(), transcoder_tex_fmt, 0, level_info.m_orig_width, nullptr, level_info.m_orig_height))
{
error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt);
return false;
}
double total_transcode_time = tm.get_elapsed_ms();
total_format_transcoding_time_ms[(int)transcoder_tex_fmt] += total_transcode_time;
image img(level_info.m_orig_width, level_info.m_orig_height);
for (uint32_t y = 0; y < level_info.m_orig_height; y++)
{
for (uint32_t x = 0; x < level_info.m_orig_width; x++)
{
const uint16_t p = packed_img[x + y * level_info.m_orig_width];
uint32_t r = p >> 11, g = (p >> 5) & 63, b = p & 31;
r = (r << 3) | (r >> 2);
g = (g << 2) | (g >> 4);
b = (b << 3) | (b >> 2);
img(x, y).set(r, g, b, 255);
}
}
printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time);
if (!validate_flag)
{
std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index));
if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str());
}
} // level_index
} // image_index
// Now unpack to RGBA4444 using the transcoder itself to do the unpacking to raster images
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
{
for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++)
{
max_mipmap_levels = basisu::maximum(max_mipmap_levels, fileinfo.m_image_mipmap_levels[image_index]);
const basist::transcoder_texture_format transcoder_tex_fmt = basist::transcoder_texture_format::cTFRGBA4444;
basist::basisu_image_level_info level_info;
if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index))
{
error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index);
return false;
}
basisu::vector<uint16_t> packed_img(level_info.m_orig_width * level_info.m_orig_height);
fill_buffer_with_random_bytes(&packed_img[0], packed_img.size() * sizeof(uint16_t));
tm.start();
if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, &packed_img[0], (uint32_t)packed_img.size(), transcoder_tex_fmt, 0, level_info.m_orig_width, nullptr, level_info.m_orig_height))
{
error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt);
return false;
}
double total_transcode_time = tm.get_elapsed_ms();
total_format_transcoding_time_ms[(int)transcoder_tex_fmt] += total_transcode_time;
image img(level_info.m_orig_width, level_info.m_orig_height);
for (uint32_t y = 0; y < level_info.m_orig_height; y++)
{
for (uint32_t x = 0; x < level_info.m_orig_width; x++)
{
const uint16_t p = packed_img[x + y * level_info.m_orig_width];
uint32_t r = p >> 12, g = (p >> 8) & 15, b = (p >> 4) & 15, a = p & 15;
r = (r << 4) | r;
g = (g << 4) | g;
b = (b << 4) | b;
a = (a << 4) | a;
img(x, y).set(r, g, b, a);
}
}
printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time);
if (!validate_flag)
{
std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index));
if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str());
std::string a_filename(base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index));
if (!save_png(a_filename, img, cImageSaveGrayscale, 3))
{
error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", a_filename.c_str());
}
} // level_index
} // image_index
} // if (!m_etc1_only)
if (pCSV_file)
{
fprintf(pCSV_file, "%s, %3.3f, %3.3f, %u, %u, %u, %3.3f, ",
base_filename.c_str(),
basis_bits_per_texel,
comp_bits_per_texel,
fileinfo.m_total_images,
max_mipmap_levels,
(uint32_t)fileinfo.m_slice_info.size(),
start_transcoding_time_ms);
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
fprintf(pCSV_file, "%3.3f", total_format_transcoding_time_ms[format_iter]);
if (format_iter != (last_format - 1))
fprintf(pCSV_file, ",");
}
fprintf(pCSV_file, "\n");
}
return true;
}
static bool unpack_and_validate_mode(command_line_params &opts)
{
const bool validate_flag = (opts.m_mode == cValidate);
basist::etc1_global_selector_codebook sel_codebook(basist::g_global_selector_cb_size, basist::g_global_selector_cb);
basis_data* pGlobal_codebook_data = nullptr;
if (opts.m_etc1s_use_global_codebooks_file.size())
{
pGlobal_codebook_data = load_basis_file(opts.m_etc1s_use_global_codebooks_file.c_str(), sel_codebook, true);
if (!pGlobal_codebook_data)
{
error_printf("Failed loading global codebook data from file \"%s\"\n", opts.m_etc1s_use_global_codebooks_file.c_str());
return false;
}
printf("Loaded global codebooks from file \"%s\"\n", opts.m_etc1s_use_global_codebooks_file.c_str());
}
if (!opts.m_input_filenames.size())
{
error_printf("No input files to process!\n");
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
FILE* pCSV_file = nullptr;
if ((opts.m_csv_file.size()) && (opts.m_mode == cValidate))
{
pCSV_file = fopen_safe(opts.m_csv_file.c_str(), "w");
if (!pCSV_file)
{
error_printf("Failed opening CVS file \"%s\"\n", opts.m_csv_file.c_str());
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
//fprintf(pCSV_file, "Filename, Size, Slices, Width, Height, HasAlpha, BitsPerTexel, Slice0RGBAvgPSNR, Slice0RGBAAvgPSNR, Slice0Luma709PSNR, Slice0BestETC1SLuma709PSNR, Q, CL, Time, RGBAvgPSNRMin, RGBAvgPSNRAvg, AAvgPSNRMin, AAvgPSNRAvg, Luma709PSNRMin, Luma709PSNRAvg\n");
}
uint32_t total_unpack_warnings = 0;
uint32_t total_pvrtc_nonpow2_warnings = 0;
for (uint32_t file_index = 0; file_index < opts.m_input_filenames.size(); file_index++)
{
const char* pInput_filename = opts.m_input_filenames[file_index].c_str();
std::string base_filename;
string_split_path(pInput_filename, nullptr, nullptr, &base_filename, nullptr);
uint8_vec file_data;
if (!basisu::read_file_to_vec(pInput_filename, file_data))
{
error_printf("Failed reading file \"%s\"\n", pInput_filename);
if (pCSV_file) fclose(pCSV_file);
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
if (!file_data.size())
{
error_printf("File is empty!\n");
if (pCSV_file) fclose(pCSV_file);
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
if (file_data.size() > UINT32_MAX)
{
error_printf("File is too large!\n");
if (pCSV_file) fclose(pCSV_file);
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
bool is_ktx2 = false;
if (file_data.size() >= sizeof(basist::g_ktx2_file_identifier))
{
is_ktx2 = (memcmp(file_data.data(), basist::g_ktx2_file_identifier, sizeof(basist::g_ktx2_file_identifier)) == 0);
}
printf("Input file \"%s\", KTX2: %u\n", pInput_filename, is_ktx2);
bool status;
if (is_ktx2)
{
status = unpack_and_validate_ktx2_file(
file_index,
base_filename,
file_data,
opts,
pCSV_file,
pGlobal_codebook_data,
sel_codebook,
total_unpack_warnings,
total_pvrtc_nonpow2_warnings);
}
else
{
status = unpack_and_validate_basis_file(
file_index,
base_filename,
file_data,
opts,
pCSV_file,
pGlobal_codebook_data,
sel_codebook,
total_unpack_warnings,
total_pvrtc_nonpow2_warnings);
}
if (!status)
{
if (pCSV_file)
fclose(pCSV_file);
delete pGlobal_codebook_data;
pGlobal_codebook_data = nullptr;
return false;
}
} // file_index
if (total_pvrtc_nonpow2_warnings)
printf("Warning: %u images could not be transcoded to PVRTC1 because one or both dimensions were not a power of 2\n", total_pvrtc_nonpow2_warnings);
if (total_unpack_warnings)
printf("ATTENTION: %u total images had invalid GPU texture data!\n", total_unpack_warnings);
else
printf("Success\n");
if (pCSV_file)
{
fclose(pCSV_file);
pCSV_file = nullptr;
}
delete pGlobal_codebook_data;
pGlobal_codebook_data = nullptr;
return true;
}
static bool compare_mode(command_line_params &opts)
{
if (opts.m_input_filenames.size() != 2)
{
error_printf("Must specify two PNG filenames using -file\n");
return false;
}
image a, b;
if (!load_image(opts.m_input_filenames[0].c_str(), a))
{
error_printf("Failed loading image from file \"%s\"!\n", opts.m_input_filenames[0].c_str());
return false;
}
printf("Loaded \"%s\", %ux%u, has alpha: %u\n", opts.m_input_filenames[0].c_str(), a.get_width(), a.get_height(), a.has_alpha());
if (!load_image(opts.m_input_filenames[1].c_str(), b))
{
error_printf("Failed loading image from file \"%s\"!\n", opts.m_input_filenames[1].c_str());
return false;
}
printf("Loaded \"%s\", %ux%u, has alpha: %u\n", opts.m_input_filenames[1].c_str(), b.get_width(), b.get_height(), b.has_alpha());
if ((a.get_width() != b.get_width()) || (a.get_height() != b.get_height()))
{
printf("Images don't have the same dimensions - cropping input images to smallest common dimensions\n");
uint32_t w = minimum(a.get_width(), b.get_width());
uint32_t h = minimum(a.get_height(), b.get_height());
a.crop(w, h);
b.crop(w, h);
}
printf("Comparison image res: %ux%u\n", a.get_width(), a.get_height());
image_metrics im;
im.calc(a, b, 0, 3);
im.print("RGB ");
im.calc(a, b, 0, 4);
im.print("RGBA ");
im.calc(a, b, 0, 1);
im.print("R ");
im.calc(a, b, 1, 1);
im.print("G ");
im.calc(a, b, 2, 1);
im.print("B ");
im.calc(a, b, 3, 1);
im.print("A ");
im.calc(a, b, 0, 0);
im.print("Y 709 " );
im.calc(a, b, 0, 0, true, true);
im.print("Y 601 " );
if (opts.m_compare_ssim)
{
vec4F s_rgb(compute_ssim(a, b, false, false));
printf("R SSIM: %f\n", s_rgb[0]);
printf("G SSIM: %f\n", s_rgb[1]);
printf("B SSIM: %f\n", s_rgb[2]);
printf("RGB Avg SSIM: %f\n", (s_rgb[0] + s_rgb[1] + s_rgb[2]) / 3.0f);
printf("A SSIM: %f\n", s_rgb[3]);
vec4F s_y_709(compute_ssim(a, b, true, false));
printf("Y 709 SSIM: %f\n", s_y_709[0]);
vec4F s_y_601(compute_ssim(a, b, true, true));
printf("Y 601 SSIM: %f\n", s_y_601[0]);
}
image delta_img(a.get_width(), a.get_height());
const int X = 2;
for (uint32_t y = 0; y < a.get_height(); y++)
{
for (uint32_t x = 0; x < a.get_width(); x++)
{
color_rgba &d = delta_img(x, y);
for (int c = 0; c < 4; c++)
d[c] = (uint8_t)clamp<int>((a(x, y)[c] - b(x, y)[c]) * X + 128, 0, 255);
} // x
} // y
save_png("a_rgb.png", a, cImageSaveIgnoreAlpha);
save_png("a_alpha.png", a, cImageSaveGrayscale, 3);
printf("Wrote a_rgb.png and a_alpha.png\n");
save_png("b_rgb.png", b, cImageSaveIgnoreAlpha);
save_png("b_alpha.png", b, cImageSaveGrayscale, 3);
printf("Wrote b_rgb.png and b_alpha.png\n");
save_png("delta_img_rgb.png", delta_img, cImageSaveIgnoreAlpha);
printf("Wrote delta_img_rgb.png\n");
save_png("delta_img_a.png", delta_img, cImageSaveGrayscale, 3);
printf("Wrote delta_img_a.png\n");
return true;
}
#include "encoder/basisu_astc_decomp.h"
#include "encoder/basisu_pvrtc1_4.h"
static bool bench_mode(command_line_params& opts)
{
#if 0
ispc::bc7e_compress_block_init();
ispc::bc7e_compress_block_params pack_params;
memset(&pack_params, 0, sizeof(pack_params));
ispc::bc7e_compress_block_params_init_slow(&pack_params, false);
#endif
const uint32_t JOB_POOL_SIZE = 7;
job_pool jpool(JOB_POOL_SIZE);
float total_uastc_psnr = 0, total_uastc_a_psnr = 0, total_uastc_rgba_psnr = 0;
float total_rdo_uastc_psnr = 0, total_rdo_uastc_a_psnr = 0, total_rdo_uastc_rgba_psnr = 0;
float total_uastc2_psnr = 0, total_uastc2_a_psnr = 0, total_uastc2_rgba_psnr = 0;
float total_bc7_psnr = 0, total_bc7_a_psnr = 0, total_bc7_rgba_psnr = 0;
float total_rdo_bc7_psnr = 0, total_rdo_bc7_a_psnr = 0, total_rdo_bc7_rgba_psnr = 0;
float total_obc1_psnr = 0;
float total_obc1_2_psnr = 0;
float total_obc1_psnr_sq = 0;
float total_obc1_2_psnr_sq = 0;
float total_bc1_psnr = 0;
float total_bc1_psnr_sq = 0;
//float total_obc7_psnr = 0, total_obc7_rgba_psnr = 0;
//float total_obc7_a_psnr = 0;
//float total_oastc_psnr = 0, total_oastc_rgba_psnr = 0;
float total_bc7enc_psnr = 0, total_bc7enc_rgba_psnr = 0, total_bc7enc_a_psnr = 0;
//float total_oastc_a_psnr = 0;
float total_etc1_psnr = 0;
float total_etc1_y_psnr = 0;
float total_etc1_g_psnr = 0;
float total_etc2_psnr = 0, total_etc2_rgba_psnr = 0;
float total_etc2_a_psnr = 0;
float total_bc3_psnr = 0, total_bc3_rgba_psnr = 0;
float total_bc3_a_psnr = 0;
float total_eac_r11_psnr = 0;
float total_eac_rg11_psnr = 0;
float total_pvrtc1_rgb_psnr = 0, total_pvrtc1_rgba_psnr = 0;
float total_pvrtc1_a_psnr = 0;
uint32_t total_images = 0;
uint32_t total_a_images = 0;
uint32_t total_pvrtc1_images = 0;
uint64_t overall_mode_hist[basist::TOTAL_UASTC_MODES];
memset(overall_mode_hist, 0, sizeof(overall_mode_hist));
std::mutex mode_hist_mutex;
uint32_t etc1_hint_hist[32];
memset(etc1_hint_hist, 0, sizeof(etc1_hint_hist));
srand(1023);
uint32_t first_image = 96;
uint32_t last_image = 96; //34
if (opts.m_input_filenames.size() >= 1)
{
first_image = 1;
last_image = 1;
}
const bool perceptual = false;
const bool force_la = false;
interval_timer otm;
otm.start();
//const uint32_t flags = cPackUASTCLevelFastest;// | cPackUASTCETC1DisableFlipAndIndividual;// Slower;
//const uint32_t flags = cPackUASTCLevelFaster;
//const uint32_t flags = cPackUASTCLevelVerySlow;
const uint32_t flags = cPackUASTCLevelDefault;
uint32_t etc1_inten_hist[8] = { 0,0,0,0,0,0,0,0 };
uint32_t etc1_flip_hist[2] = { 0, 0 };
uint32_t etc1_diff_hist[2] = { 0, 0 };
double overall_total_enc_time = 0;
double overall_total_bench_time = 0;
double overall_total_bench2_time = 0;
uint64_t overall_blocks = 0;
//bc7enc_compress_block_params bc7enc_p;
//bc7enc_compress_block_params_init(&bc7enc_p);
//bc7enc_compress_block_params_init_linear_weights(&bc7enc_p);
//bc7enc_p.m_uber_level = 3;
uint64_t total_comp_size = 0;
uint64_t total_raw_size = 0;
uint64_t total_rdo_comp_size = 0;
uint64_t total_rdo_raw_size = 0;
uint64_t total_comp_blocks = 0;
for (uint32_t image_index = first_image; image_index <= last_image; image_index++)
{
uint64_t mode_hist[basist::TOTAL_UASTC_MODES];
memset(mode_hist, 0, sizeof(mode_hist));
char buf[1024];
if (opts.m_input_filenames.size() >= 1)
strcpy(buf, opts.m_input_filenames[0].c_str());
else
sprintf(buf, "c:/dev/test_images/photo_png/kodim%02u.png", image_index);
printf("Image: %s\n", buf);
image img;
if (!load_image(buf, img))
return 0;
if (opts.m_input_filenames.size() == 2)
{
image alpha_img;
if (!load_image(opts.m_input_filenames[1].c_str(), alpha_img))
return 0;
printf("Alpha image: %s, %ux%u\n", opts.m_input_filenames[1].c_str(), alpha_img.get_width(), alpha_img.get_height());
for (uint32_t x = 0; x < alpha_img.get_width(); x++)
for (uint32_t y = 0; y < alpha_img.get_height(); y++)
{
if (x < img.get_width() && y < img.get_height())
img(x, y)[3] = (uint8_t)alpha_img(x, y).get_709_luma();
}
}
if (force_la)
{
for (uint32_t x = 0; x < img.get_width(); x++)
{
for (uint32_t y = 0; y < img.get_height(); y++)
{
const color_rgba& c = img(x, y);
img(x, y).set(c.r, c.r, c.r, c.g);
}
}
}
// HACK HACK
//if (!img.has_alpha())
// continue;
// HACK HACK
//img.crop(1024, 1024);
const uint32_t num_blocks_x = img.get_block_width(4);
const uint32_t num_blocks_y = img.get_block_height(4);
const uint32_t total_blocks = num_blocks_x * num_blocks_y;
const bool img_has_alpha = img.has_alpha();
img.crop_dup_borders(num_blocks_x * 4, num_blocks_y * 4);
printf("%ux%u, has alpha: %u\n", img.get_width(), img.get_height(), img_has_alpha);
image uastc_img(num_blocks_x * 4, num_blocks_y * 4);
image rdo_uastc_img(num_blocks_x * 4, num_blocks_y * 4);
image uastc2_img(num_blocks_x * 4, num_blocks_y * 4);
image opt_bc1_img(num_blocks_x * 4, num_blocks_y * 4);
image opt_bc1_2_img(num_blocks_x * 4, num_blocks_y * 4);
image bc1_img(num_blocks_x * 4, num_blocks_y * 4);
image bc3_img(num_blocks_x * 4, num_blocks_y * 4);
image eac_r11_img(num_blocks_x * 4, num_blocks_y * 4);
image eac_rg11_img(num_blocks_x * 4, num_blocks_y * 4);
image bc7_img(num_blocks_x * 4, num_blocks_y * 4);
image rdo_bc7_img(num_blocks_x * 4, num_blocks_y * 4);
image opt_bc7_img(num_blocks_x * 4, num_blocks_y * 4);
image etc1_img(num_blocks_x * 4, num_blocks_y * 4);
image etc1_g_img(num_blocks_x * 4, num_blocks_y * 4);
image etc2_img(num_blocks_x * 4, num_blocks_y * 4);
image part_img(num_blocks_x * 4, num_blocks_y * 4);
image opt_astc_img(num_blocks_x * 4, num_blocks_y * 4);
image bc7enc_img(num_blocks_x * 4, num_blocks_y * 4);
uint32_t total_bc1_hint0s = 0;
uint32_t total_bc1_hint1s = 0;
uint32_t total_bc1_hint01s = 0;
double total_enc_time = 0;
double total_bench_time = 0;
double total_bench2_time = 0;
basisu::vector<basist::uastc_block> ublocks(total_blocks);
#if 0
astc_enc_settings astc_settings;
//if (img_has_alpha)
GetProfile_astc_alpha_slow(&astc_settings, 4, 4);
//else
// GetProfile_astc_fast(&astc_settings, 4, 4);
#endif
#if 0
//#pragma omp parallel for
for (int by = 0; by < (int)num_blocks_y; by++)
{
// Process 64 blocks at a time, for efficient SIMD processing.
// Ideally, N >= 8 (or more) and (N % 8) == 0.
const int N = 64;
for (uint32_t bx = 0; bx < num_blocks_x; bx += N)
{
const uint32_t num_blocks_to_process = basisu::minimum<uint32_t>(num_blocks_x - bx, N);
color_rgba pixels[16 * N];
#if 0
// BC7E
// Extract num_blocks_to_process 4x4 pixel blocks from the source image and put them into the pixels[] array.
for (uint32_t b = 0; b < num_blocks_to_process; b++)
img.extract_block_clamped(pixels + b * 16, (bx + b) * 4, by * 4, 4, 4);
// Compress the blocks to BC7.
// Note: If you've used Intel's ispc_texcomp, the input pixels are different. BC7E requires a pointer to an array of 16 pixels for each block.
basist::bc7_block packed_blocks[N];
ispc::bc7e_compress_blocks(num_blocks_to_process, (uint64_t*)packed_blocks, reinterpret_cast<const uint32_t*>(pixels), &pack_params);
for (uint32_t i = 0; i < num_blocks_to_process; i++)
{
color_rgba decoded_block[4][4];
//detexDecompressBlockBPTC((uint8_t *)&packed_blocks[i], 0xFF, 0, (uint8_t *)&decoded_block[0][0]);
unpack_block(texture_format::cBC7, &packed_blocks[i], &decoded_block[0][0]);
opt_bc7_img.set_block_clipped(&decoded_block[0][0], (bx + i) * 4, by * 4, 4, 4);
}
#endif
#if 0
// ispc_texcomp
color_rgba raster_pixels[(N * 4) * 4];
const uint32_t raster_width = num_blocks_to_process * 4;
const uint32_t raster_height = 4;
rgba_surface surf;
surf.ptr = &raster_pixels[0].r;
surf.width = raster_width;
surf.height = 4;
surf.stride = raster_width * 4;
for (uint32_t b = 0; b < num_blocks_to_process; b++)
for (uint32_t y = 0; y < 4; y++)
for (uint32_t x = 0; x < 4; x++)
raster_pixels[y * raster_width + b * 4 + x] = pixels[b * 16 + y * 4 + x];
uint8_t astc_blocks[16 * N];
CompressBlocksASTC(&surf, astc_blocks, &astc_settings);
for (uint32_t i = 0; i < num_blocks_to_process; i++)
{
color_rgba decoded_astc_block[4][4];
basisu_astc::astc::decompress((uint8_t*)decoded_astc_block, (uint8_t*)&astc_blocks[i * 16], false, 4, 4);
opt_astc_img.set_block_clipped(&decoded_astc_block[0][0], (bx + i) * 4, by * 4, 4, 4);
}
#endif
}
}
#endif
const uint32_t N = 128;
for (uint32_t block_index_iter = 0; block_index_iter < total_blocks; block_index_iter += N)
{
const uint32_t first_index = block_index_iter;
const uint32_t last_index = minimum<uint32_t>(total_blocks, block_index_iter + N);
jpool.add_job([first_index, last_index, &img, num_blocks_x, num_blocks_y,
&opt_bc1_img, &opt_bc1_2_img, &mode_hist, &overall_mode_hist, &uastc_img, &uastc2_img, &bc7_img, &part_img, &mode_hist_mutex, &bc1_img, &etc1_img, &etc1_g_img, &etc2_img, &etc1_hint_hist, &perceptual,
&total_bc1_hint0s, &total_bc1_hint1s, &total_bc1_hint01s, &bc3_img, &total_enc_time, &eac_r11_img, &eac_rg11_img, &ublocks, &flags, &etc1_inten_hist, &etc1_flip_hist, &etc1_diff_hist, &total_bench_time, &total_bench2_time,
//&bc7enc_p, &bc7enc_img] {
&bc7enc_img] {
BASISU_NOTE_UNUSED(num_blocks_y);
BASISU_NOTE_UNUSED(perceptual);
BASISU_NOTE_UNUSED(flags);
for (uint32_t block_index = first_index; block_index < last_index; block_index++)
{
const uint32_t block_x = block_index % num_blocks_x;
const uint32_t block_y = block_index / num_blocks_x;
//uint32_t block_x = 170;
//uint32_t block_y = 167;
// HACK HACK
//if ((block_x == 77) && (block_y == 54))
// printf("!");
color_rgba block[4][4];
img.extract_block_clamped(&block[0][0], block_x * 4, block_y * 4, 4, 4);
uint8_t bc7_block[16];
//bc7enc_compress_block(bc7_block, block, &bc7enc_p);
color_rgba decoded_bc7enc_blk[4][4];
unpack_block(texture_format::cBC7, &bc7_block, &decoded_bc7enc_blk[0][0]);
bc7enc_img.set_block_clipped(&decoded_bc7enc_blk[0][0], block_x * 4, block_y * 4, 4, 4);
// Pack near-optimal BC1
// stb_dxt BC1 encoder
uint8_t bc1_block[8];
interval_timer btm;
btm.start();
//stb_compress_dxt_block(bc1_block, (uint8_t*)&block[0][0], 0, STB_DXT_HIGHQUAL);
basist::encode_bc1(bc1_block, (uint8_t*)&block[0][0], 0);// basist::cEncodeBC1HighQuality);
double total_b_time = btm.get_elapsed_secs();
{
std::lock_guard<std::mutex> lck(mode_hist_mutex);
total_bench_time += total_b_time;
}
color_rgba block_bc1[4][4];
unpack_block(texture_format::cBC1, bc1_block, &block_bc1[0][0]);
opt_bc1_img.set_block_clipped(&block_bc1[0][0], block_x * 4, block_y * 4, 4, 4);
//uint64_t e1 = 0;
//for (uint32_t i = 0; i < 16; i++)
// e1 += color_distance(((color_rgba*)block_bc1)[i], ((color_rgba*)block)[i], false);
// My BC1 encoder
uint8_t bc1_block_2[8];
color_rgba block_bc1_2[4][4];
btm.start();
basist::encode_bc1_alt(bc1_block_2, (uint8_t*)&block[0][0], basist::cEncodeBC1HighQuality);
double total_b2_time = btm.get_elapsed_secs();
{
std::lock_guard<std::mutex> lck(mode_hist_mutex);
total_bench2_time += total_b2_time;
}
unpack_block(texture_format::cBC1, bc1_block_2, &block_bc1_2[0][0]);
//uint64_t e2 = 0;
//for (uint32_t i = 0; i < 16; i++)
// e2 += color_distance(((color_rgba *)block_bc1_2)[i], ((color_rgba*)block)[i], false);
opt_bc1_2_img.set_block_clipped(&block_bc1_2[0][0], block_x * 4, block_y * 4, 4, 4);
// Encode to UASTC
basist::uastc_block encoded_uastc_blk;
interval_timer tm;
tm.start();
encode_uastc(&block[0][0].r, encoded_uastc_blk, flags);
double total_time = tm.get_elapsed_secs();
{
std::lock_guard<std::mutex> lck(mode_hist_mutex);
total_enc_time += total_time;
}
ublocks[block_x + block_y * num_blocks_x] = encoded_uastc_blk;
#if 0
for (uint32_t i = 0; i < 16; i++)
printf("0x%X,", encoded_uastc_blk.m_bytes[i]);
printf("\n");
#endif
// Unpack UASTC
basist::unpacked_uastc_block unpacked_uastc_blk;
unpack_uastc(encoded_uastc_blk, unpacked_uastc_blk, false);
color_rgba unpacked_uastc_block_pixels[4][4];
bool success = basist::unpack_uastc(unpacked_uastc_blk, (basist::color32*) & unpacked_uastc_block_pixels[0][0], false);
(void)success;
assert(success);
uastc_img.set_block_clipped(&unpacked_uastc_block_pixels[0][0], block_x * 4, block_y * 4, 4, 4);
const uint32_t best_mode = unpacked_uastc_blk.m_mode;
{
std::lock_guard<std::mutex> lck(mode_hist_mutex);
assert(best_mode < basist::TOTAL_UASTC_MODES);
if (best_mode < basist::TOTAL_UASTC_MODES)
{
mode_hist[best_mode]++;
overall_mode_hist[best_mode]++;
}
if (basist::g_uastc_mode_has_etc1_bias[best_mode])
etc1_hint_hist[unpacked_uastc_blk.m_etc1_bias]++;
total_bc1_hint0s += unpacked_uastc_blk.m_bc1_hint0;
total_bc1_hint1s += unpacked_uastc_blk.m_bc1_hint1;
total_bc1_hint01s += (unpacked_uastc_blk.m_bc1_hint0 || unpacked_uastc_blk.m_bc1_hint1);
etc1_inten_hist[unpacked_uastc_blk.m_etc1_inten0]++;
etc1_inten_hist[unpacked_uastc_blk.m_etc1_inten1]++;
etc1_flip_hist[unpacked_uastc_blk.m_etc1_flip]++;
etc1_diff_hist[unpacked_uastc_blk.m_etc1_diff]++;
}
// Transcode to BC1
color_rgba tblock_bc1[4][4];
uint8_t tbc1_block[8];
transcode_uastc_to_bc1(encoded_uastc_blk, tbc1_block, false);
unpack_block(texture_format::cBC1, tbc1_block, &tblock_bc1[0][0]);
bc1_img.set_block_clipped(&tblock_bc1[0][0], block_x * 4, block_y * 4, 4, 4);
// Transcode to BC7
basist::bc7_optimization_results best_bc7_results;
transcode_uastc_to_bc7(unpacked_uastc_blk, best_bc7_results);
{
basist::bc7_block bc7_data;
encode_bc7_block(&bc7_data, &best_bc7_results);
color_rgba decoded_bc7_blk[4][4];
unpack_block(texture_format::cBC7, &bc7_data, &decoded_bc7_blk[0][0]);
bc7_img.set_block_clipped(&decoded_bc7_blk[0][0], block_x * 4, block_y * 4, 4, 4);
// Compute partition visualization image
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
uint32_t part = 0;
switch (best_bc7_results.m_mode)
{
case 1:
case 3:
case 7:
part = basist::g_bc7_partition2[best_bc7_results.m_partition * 16 + x + y * 4];
break;
case 0:
case 2:
part = basist::g_bc7_partition3[best_bc7_results.m_partition * 16 + x + y * 4];
break;
}
color_rgba c(0, 255, 0, 255);
if (part == 1)
c.set(255, 0, 0, 255);
else if (part == 2)
c.set(0, 0, 255, 255);
part_img.set_clipped(block_x * 4 + x, block_y * 4 + y, c);
}
}
}
bool high_quality = false;
// Transcode UASTC->BC3
uint8_t ublock_bc3[16];
transcode_uastc_to_bc3(encoded_uastc_blk, ublock_bc3, high_quality);
color_rgba ublock_bc3_unpacked[4][4];
unpack_block(texture_format::cBC3, &ublock_bc3, &ublock_bc3_unpacked[0][0]);
bc3_img.set_block_clipped(&ublock_bc3_unpacked[0][0], block_x * 4, block_y * 4, 4, 4);
// Transcode UASTC->R11
uint8_t ublock_eac_r11[8];
transcode_uastc_to_etc2_eac_r11(encoded_uastc_blk, ublock_eac_r11, high_quality, 0);
color_rgba ublock_eac_r11_unpacked[4][4];
for (uint32_t y = 0; y < 4; y++)
for (uint32_t x = 0; x < 4; x++)
ublock_eac_r11_unpacked[y][x].set(0, 0, 0, 255);
unpack_block(texture_format::cETC2_R11_EAC, &ublock_eac_r11, &ublock_eac_r11_unpacked[0][0]);
eac_r11_img.set_block_clipped(&ublock_eac_r11_unpacked[0][0], block_x * 4, block_y * 4, 4, 4);
// Transcode UASTC->RG11
uint8_t ublock_eac_rg11[16];
transcode_uastc_to_etc2_eac_rg11(encoded_uastc_blk, ublock_eac_rg11, high_quality, 0, 1);
color_rgba ublock_eac_rg11_unpacked[4][4];
for (uint32_t y = 0; y < 4; y++)
for (uint32_t x = 0; x < 4; x++)
ublock_eac_rg11_unpacked[y][x].set(0, 0, 0, 255);
unpack_block(texture_format::cETC2_RG11_EAC, &ublock_eac_rg11, &ublock_eac_rg11_unpacked[0][0]);
eac_rg11_img.set_block_clipped(&ublock_eac_rg11_unpacked[0][0], block_x * 4, block_y * 4, 4, 4);
// ETC1
etc_block unpacked_etc1;
transcode_uastc_to_etc1(encoded_uastc_blk, &unpacked_etc1);
color_rgba unpacked_etc1_block[16];
unpack_etc1(unpacked_etc1, unpacked_etc1_block);
etc1_img.set_block_clipped(unpacked_etc1_block, block_x * 4, block_y * 4, 4, 4);
// ETC1 Y
etc_block unpacked_etc1_g;
transcode_uastc_to_etc1(encoded_uastc_blk, &unpacked_etc1_g, 1);
color_rgba unpacked_etc1_g_block[16];
unpack_etc1(unpacked_etc1_g, unpacked_etc1_g_block);
etc1_g_img.set_block_clipped(unpacked_etc1_g_block, block_x * 4, block_y * 4, 4, 4);
// ETC2
etc2_rgba_block unpacked_etc2;
transcode_uastc_to_etc2_rgba(encoded_uastc_blk, &unpacked_etc2);
color_rgba unpacked_etc2_block[16];
unpack_block(texture_format::cETC2_RGBA, &unpacked_etc2, unpacked_etc2_block);
etc2_img.set_block_clipped(unpacked_etc2_block, block_x * 4, block_y * 4, 4, 4);
// UASTC->ASTC
uint32_t tastc_data[4];
transcode_uastc_to_astc(encoded_uastc_blk, tastc_data);
color_rgba decoded_tastc_block[4][4];
basisu_astc::astc::decompress((uint8_t*)decoded_tastc_block, (uint8_t*)&tastc_data, false, 4, 4);
uastc2_img.set_block_clipped(&decoded_tastc_block[0][0], block_x * 4, block_y * 4, 4, 4);
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
if (decoded_tastc_block[y][x] != unpacked_uastc_block_pixels[y][x])
{
printf("UASTC!=ASTC!\n");
}
}
}
} // block_index
});
} // block_index_iter
jpool.wait_for_all();
{
size_t comp_size = 0;
void* pComp_data = tdefl_compress_mem_to_heap(&ublocks[0], ublocks.size() * 16, &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES);
size_t decomp_size;
void* pDecomp_data = tinfl_decompress_mem_to_heap(pComp_data, comp_size, &decomp_size, 0);
if ((decomp_size != ublocks.size() * 16) || (memcmp(pDecomp_data, &ublocks[0], decomp_size) != 0))
{
printf("Compression or decompression failed!\n");
exit(1);
}
mz_free(pComp_data);
mz_free(pDecomp_data);
printf("Pre-RDO UASTC size: %u, compressed size: %u, %3.2f bits/texel\n",
(uint32_t)ublocks.size() * 16,
(uint32_t)comp_size,
comp_size * 8.0f / img.get_total_pixels());
total_comp_size += comp_size;
total_raw_size += ublocks.size() * 16;
}
basisu::vector<color_rgba> orig_block_pixels(ublocks.size() * 16);
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
img.extract_block_clamped(&orig_block_pixels[(block_x + block_y * num_blocks_x) * 16], block_x * 4, block_y * 4, 4, 4);
// HACK HACK
const uint32_t max_rdo_jobs = 4;
char rdo_fname[256];
FILE* pFile = nullptr;
for (uint32_t try_index = 0; try_index < 100; try_index++)
{
sprintf(rdo_fname, "rdo_%02u_%u.csv", image_index, try_index);
pFile = fopen(rdo_fname, "rb");
if (pFile)
{
fclose(pFile);
continue;
}
pFile = fopen(rdo_fname, "w");
if (!pFile)
printf("Cannot open CSV file %s\n", rdo_fname);
else
{
printf("Opened CSV file %s\n", rdo_fname);
break;
}
}
for (float q = .2f; q <= 10.0f; q += (q >= 1.0f ? .5f : .1f))
{
printf("Q: %f\n", q);
uastc_rdo_params p;
p.m_lambda = q;
p.m_max_allowed_rms_increase_ratio = 10.0f;
p.m_skip_block_rms_thresh = 8.0f;
bool rdo_status = uastc_rdo((uint32_t)ublocks.size(), &ublocks[0], &orig_block_pixels[0], p, flags, &jpool, max_rdo_jobs);
if (!rdo_status)
{
printf("uastc_rdo() failed!\n");
return false;
}
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
const basist::uastc_block& blk = ublocks[block_x + block_y * num_blocks_x];
color_rgba unpacked_block[4][4];
if (!basist::unpack_uastc(blk, (basist::color32*)unpacked_block, false))
{
printf("Block unpack failed!\n");
exit(1);
}
rdo_uastc_img.set_block_clipped(&unpacked_block[0][0], block_x * 4, block_y * 4, 4, 4);
basist::bc7_optimization_results best_bc7_results;
transcode_uastc_to_bc7(blk, best_bc7_results);
basist::bc7_block bc7_data;
encode_bc7_block(&bc7_data, &best_bc7_results);
color_rgba decoded_bc7_blk[4][4];
unpack_block(texture_format::cBC7, &bc7_data, &decoded_bc7_blk[0][0]);
rdo_bc7_img.set_block_clipped(&decoded_bc7_blk[0][0], block_x * 4, block_y * 4, 4, 4);
}
}
image_metrics em;
em.calc(img, rdo_uastc_img, 0, 3);
em.print("RDOUASTC RGB ");
size_t comp_size = 0;
void* pComp_data = tdefl_compress_mem_to_heap(&ublocks[0], ublocks.size() * 16, &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES);
size_t decomp_size;
void* pDecomp_data = tinfl_decompress_mem_to_heap(pComp_data, comp_size, &decomp_size, 0);
if ((decomp_size != ublocks.size() * 16) || (memcmp(pDecomp_data, &ublocks[0], decomp_size) != 0))
{
printf("Compression or decompression failed!\n");
exit(1);
}
mz_free(pComp_data);
mz_free(pDecomp_data);
printf("RDO UASTC size: %u, compressed size: %u, %3.2f bits/texel\n",
(uint32_t)ublocks.size() * 16,
(uint32_t)comp_size,
comp_size * 8.0f / img.get_total_pixels());
if (pFile)
fprintf(pFile, "%f, %f, %f\n", q, comp_size * 8.0f / img.get_total_pixels(), em.m_psnr);
}
if (pFile)
fclose(pFile);
{
size_t comp_size = 0;
void* pComp_data = tdefl_compress_mem_to_heap(&ublocks[0], ublocks.size() * 16, &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES);
size_t decomp_size;
void* pDecomp_data = tinfl_decompress_mem_to_heap(pComp_data, comp_size, &decomp_size, 0);
if ((decomp_size != ublocks.size() * 16) || (memcmp(pDecomp_data, &ublocks[0], decomp_size) != 0))
{
printf("Compression or decompression failed!\n");
exit(1);
}
mz_free(pComp_data);
mz_free(pDecomp_data);
printf("RDO UASTC size: %u, compressed size: %u, %3.2f bits/texel\n",
(uint32_t)ublocks.size() * 16,
(uint32_t)comp_size,
comp_size * 8.0f / img.get_total_pixels());
total_rdo_comp_size += comp_size;
total_rdo_raw_size += ublocks.size() * 16;
total_comp_blocks += ublocks.size();
}
printf("Total blocks: %u\n", total_blocks);
printf("Total BC1 hint 0's: %u %3.1f%%\n", total_bc1_hint0s, total_bc1_hint0s * 100.0f / total_blocks);
printf("Total BC1 hint 1's: %u %3.1f%%\n", total_bc1_hint1s, total_bc1_hint1s * 100.0f / total_blocks);
printf("Total BC1 hint 01's: %u %3.1f%%\n", total_bc1_hint01s, total_bc1_hint01s * 100.0f / total_blocks);
printf("Total enc time per block: %f us\n", total_enc_time / total_blocks * 1000000.0f);
printf("Total bench time per block: %f us\n", total_bench_time / total_blocks * 1000000.0f);
printf("Total bench2 time per block: %f us\n", total_bench2_time / total_blocks * 1000000.0f);
overall_total_enc_time += total_enc_time;
overall_total_bench_time += total_bench_time;
overall_total_bench2_time += total_bench2_time;
overall_blocks += total_blocks;
printf("ETC1 inten hist: %u %u %u %u %u %u %u %u\n", etc1_inten_hist[0], etc1_inten_hist[1], etc1_inten_hist[2], etc1_inten_hist[3],
etc1_inten_hist[4], etc1_inten_hist[5], etc1_inten_hist[6], etc1_inten_hist[7]);
printf("ETC1 flip hist: %u %u\n", etc1_flip_hist[0], etc1_flip_hist[1]);
printf("ETC1 diff hist: %u %u\n", etc1_diff_hist[0], etc1_diff_hist[1]);
printf("UASTC mode histogram:\n");
uint64_t total_hist = 0;
for (uint32_t i = 0; i < basist::TOTAL_UASTC_MODES; i++)
total_hist += mode_hist[i];
for (uint32_t i = 0; i < basist::TOTAL_UASTC_MODES; i++)
printf("%u: %u %3.2f%%\n", i, (uint32_t)mode_hist[i], mode_hist[i] * 100.0f / total_hist);
char fn[256];
#if 0
for (uint32_t y = 0; y < img.get_height(); y++)
for (uint32_t x = 0; x < img.get_width(); x++)
{
//static inline uint8_t to_5(uint32_t v) { ; }
color_rgba &c = img(x, y);
for (uint32_t i = 0; i < 3; i++)
{
const uint32_t limit = (i == 1) ? 63 : 31;
uint32_t v = c[i];
v = v * limit + 128; v = (uint8_t)((v + (v >> 8)) >> 8);
v = (v * 255 + (limit / 2)) / limit;
c[i] = (uint8_t)v;
}
}
#endif
sprintf(fn, "orig_%02u.png", image_index);
save_png(fn, img, cImageSaveIgnoreAlpha);
sprintf(fn, "orig_a_%02u.png", image_index);
save_png(fn, img, cImageSaveGrayscale, 3);
sprintf(fn, "unpacked_uastc_%02u.png", image_index);
save_png(fn, uastc_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_uastc_a_%02u.png", image_index);
save_png(fn, uastc_img, cImageSaveGrayscale, 3);
sprintf(fn, "unpacked_rdo_uastc_%02u.png", image_index);
save_png(fn, rdo_uastc_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_rdo_uastc_a_%02u.png", image_index);
save_png(fn, rdo_uastc_img, cImageSaveGrayscale, 3);
sprintf(fn, "unpacked_uastc2_%02u.png", image_index);
save_png(fn, uastc2_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_bc7_%02u.png", image_index);
save_png(fn, bc7_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_bc7_a_%02u.png", image_index);
save_png(fn, bc7_img, cImageSaveGrayscale, 3);
sprintf(fn, "unpacked_rdo_bc7_%02u.png", image_index);
save_png(fn, rdo_bc7_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_rdo_bc7_a_%02u.png", image_index);
save_png(fn, rdo_bc7_img, cImageSaveGrayscale, 3);
sprintf(fn, "unpacked_opt_bc7_%02u.png", image_index);
save_png(fn, opt_bc7_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_opt_bc7_a_%02u.png", image_index);
save_png(fn, opt_bc7_img, cImageSaveGrayscale, 3);
sprintf(fn, "unpacked_opt_astc_%02u.png", image_index);
save_png(fn, opt_astc_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_opt_astc_a_%02u.png", image_index);
save_png(fn, opt_astc_img, cImageSaveGrayscale, 3);
sprintf(fn, "unpacked_bc7enc_%02u.png", image_index);
save_png(fn, bc7enc_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_bc7enc_a_%02u.png", image_index);
save_png(fn, bc7enc_img, cImageSaveGrayscale, 3);
sprintf(fn, "unpacked_opt_bc1_%02u.png", image_index);
save_png(fn, opt_bc1_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_opt_bc1_2_%02u.png", image_index);
save_png(fn, opt_bc1_2_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_tbc1_%02u.png", image_index);
save_png(fn, bc1_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_bc3_%02u.png", image_index);
save_png(fn, bc3_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_eac_r11_%02u.png", image_index);
save_png(fn, eac_r11_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_eac_rg11_%02u.png", image_index);
save_png(fn, eac_rg11_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_bc3_a_%02u.png", image_index);
save_png(fn, bc3_img, cImageSaveGrayscale, 3);
sprintf(fn, "part_vis_%02u.png", image_index);
save_png(fn, part_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_etc1_%02u.png", image_index);
save_png(fn, etc1_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_etc1_g_%02u.png", image_index);
save_png(fn, etc1_g_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_etc2_%02u.png", image_index);
save_png(fn, etc2_img, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_etc2_a_%02u.png", image_index);
save_png(fn, etc2_img, cImageSaveGrayscale, 3);
image_metrics em;
// UASTC
em.calc(img, uastc_img, 0, 3);
em.print("UASTC RGB ");
total_uastc_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, uastc_img, 3, 1);
em.print("UASTC A ");
if (img_has_alpha)
total_uastc_a_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, uastc_img, 0, 4);
em.print("UASTC RGBA ");
total_uastc_rgba_psnr += basisu::minimum(99.0f, em.m_psnr);
// RDO UASTC
em.calc(img, rdo_uastc_img, 0, 3);
em.print("RDOUASTC RGB ");
total_rdo_uastc_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, rdo_uastc_img, 3, 1);
em.print("RDOUASTC A ");
if (img_has_alpha)
total_rdo_uastc_a_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, rdo_uastc_img, 0, 4);
em.print("RDOUASTC RGBA ");
total_rdo_uastc_rgba_psnr += basisu::minimum(99.0f, em.m_psnr);
// UASTC2
em.calc(img, uastc2_img, 0, 3);
em.print("UASTC2 RGB ");
total_uastc2_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, uastc2_img, 3, 1);
em.print("UASTC2 A ");
if (img_has_alpha)
total_uastc2_a_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, uastc2_img, 0, 4);
em.print("UASTC2 RGBA ");
total_uastc2_rgba_psnr += basisu::minimum(99.0f, em.m_psnr);
// BC7
em.calc(img, bc7_img, 0, 3);
em.print("BC7 RGB ");
total_bc7_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, bc7_img, 3, 1);
em.print("BC7 A ");
if (img_has_alpha)
total_bc7_a_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, bc7_img, 0, 4);
em.print("BC7 RGBA ");
total_bc7_rgba_psnr += basisu::minimum(99.0f, em.m_psnr);
// RDO BC7
em.calc(img, rdo_bc7_img, 0, 3);
em.print("RDOBC7 RGB ");
total_rdo_bc7_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, rdo_bc7_img, 3, 1);
em.print("RDOBC7 A ");
if (img_has_alpha)
total_rdo_bc7_a_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, rdo_bc7_img, 0, 4);
em.print("RDOBC7 RGBA ");
total_rdo_bc7_rgba_psnr += basisu::minimum(99.0f, em.m_psnr);
#if 0
// OBC7
em.calc(img, opt_bc7_img, 0, 3);
em.print("OBC7 RGB ");
total_obc7_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, opt_bc7_img, 3, 1);
em.print("OBC7 A ");
if (img_has_alpha)
total_obc7_a_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, opt_bc7_img, 0, 4);
em.print("OBC7 RGBA ");
total_obc7_rgba_psnr += basisu::minimum(99.0f, em.m_psnr);
// OASTC
em.calc(img, opt_astc_img, 0, 3);
em.print("OASTC RGB ");
total_oastc_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, opt_astc_img, 3, 1);
em.print("OASTC A ");
if (img_has_alpha)
total_oastc_a_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, opt_astc_img, 0, 4);
em.print("OASTC RGBA ");
total_oastc_rgba_psnr += basisu::minimum(99.0f, em.m_psnr);
#endif
// bc7enc
em.calc(img, bc7enc_img, 0, 3);
em.print("BC7ENC RGB ");
total_bc7enc_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, bc7enc_img, 3, 1);
em.print("BC7ENC A ");
if (img_has_alpha)
total_bc7enc_a_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, bc7enc_img, 0, 4);
em.print("BC7ENC RGBA ");
total_bc7enc_rgba_psnr += basisu::minimum(99.0f, em.m_psnr);
#if 1
// OBC1
em.calc(img, opt_bc1_img, 0, 3);
em.print("OBC1 RGB ");
total_obc1_psnr += basisu::minimum(99.0f, em.m_psnr);
total_obc1_psnr_sq += basisu::minimum(99.0f, em.m_psnr) * basisu::minimum(99.0f, em.m_psnr);
#endif
em.calc(img, opt_bc1_2_img, 0, 3);
em.print("OBC1 2 RGB ");
total_obc1_2_psnr += basisu::minimum(99.0f, em.m_psnr);
total_obc1_2_psnr_sq += basisu::minimum(99.0f, em.m_psnr) * basisu::minimum(99.0f, em.m_psnr);
em.calc(img, bc1_img, 0, 3);
em.print("BC1 RGB ");
total_bc1_psnr += basisu::minimum(99.0f, em.m_psnr);
total_bc1_psnr_sq += basisu::minimum(99.0f, em.m_psnr) * basisu::minimum(99.0f, em.m_psnr);
// ETC1
em.calc(img, etc1_img, 0, 3);
em.print("ETC1 RGB ");
total_etc1_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, etc1_img, 0, 0);
em.print("ETC1 Y ");
total_etc1_y_psnr += basisu::minimum(99.0f, em.m_psnr);
// ETC1
em.calc(img, etc1_g_img, 1, 1);
em.print("ETC1 G ");
total_etc1_g_psnr += basisu::minimum(99.0f, em.m_psnr);
// ETC2
em.calc(img, etc2_img, 0, 3);
em.print("ETC2 RGB ");
total_etc2_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, etc2_img, 3, 1);
em.print("ETC2 A ");
if (img_has_alpha)
total_etc2_a_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, etc2_img, 0, 4);
em.print("ETC2 RGBA ");
total_etc2_rgba_psnr += basisu::minimum(99.0f, em.m_psnr);
// BC3
em.calc(img, bc3_img, 0, 3);
em.print("BC3 RGB ");
total_bc3_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, bc3_img, 3, 1);
em.print("BC3 A ");
if (img_has_alpha)
total_bc3_a_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, bc3_img, 0, 4);
em.print("BC3 RGBA ");
total_bc3_rgba_psnr += basisu::minimum(99.0f, em.m_psnr);
// EAC R11
em.calc(img, eac_r11_img, 0, 1);
em.print("EAC R11 ");
total_eac_r11_psnr += basisu::minimum(99.0f, em.m_psnr);
// EAC RG11
em.calc(img, eac_rg11_img, 0, 2);
em.print("EAC RG11 ");
total_eac_rg11_psnr += basisu::minimum(99.0f, em.m_psnr);
const uint32_t width = num_blocks_x * 4;
const uint32_t height = num_blocks_y * 4;
if (is_pow2(width) && is_pow2(height))
{
pvrtc4_image pi(width, height);
transcode_uastc_to_pvrtc1_4_rgba(&ublocks[0], pi.get_blocks().get_ptr(), num_blocks_x, num_blocks_y, false);
pi.deswizzle();
//pi.map_all_pixels(img, perceptual, false);
image pi_unpacked;
pi.unpack_all_pixels(pi_unpacked);
#if 0
sprintf(fn, "unpacked_pvrtc1_rgb_before_%02u.png", image_index);
save_png(fn, pi_unpacked, cImageSaveIgnoreAlpha);
em.calc(img, pi_unpacked, 0, 3);
em.print("PVRTC1 RGB Before ");
for (uint32_t pass = 0; pass < 1; pass++)
{
for (uint32_t by = 0; by < num_blocks_y; by++)
{
for (uint32_t bx = 0; bx < num_blocks_x; bx++)
{
pi.local_endpoint_optimization_opaque(bx, by, img, perceptual, false);
}
}
}
//pi.map_all_pixels(img, perceptual, false);
pi.unpack_all_pixels(pi_unpacked);
#endif
sprintf(fn, "unpacked_pvrtc1_%02u.png", image_index);
save_png(fn, pi_unpacked, cImageSaveIgnoreAlpha);
sprintf(fn, "unpacked_pvrtc1_a_%02u.png", image_index);
save_png(fn, pi_unpacked, cImageSaveGrayscale, 3);
em.calc(img, pi_unpacked, 0, 3);
em.print("PVRTC1 After RGB ");
total_pvrtc1_rgb_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, pi_unpacked, 3, 1);
em.print("PVRTC1 After A ");
total_pvrtc1_a_psnr += basisu::minimum(99.0f, em.m_psnr);
em.calc(img, pi_unpacked, 0, 4);
em.print("PVRTC1 After RGBA ");
total_pvrtc1_rgba_psnr += basisu::minimum(99.0f, em.m_psnr);
total_pvrtc1_images++;
}
printf("ETC1 hint histogram:\n");
for (uint32_t i = 0; i < 32; i++)
printf("%u ", etc1_hint_hist[i]);
printf("\n");
total_images++;
if (img_has_alpha)
total_a_images++;
} // image_index
printf("Total time: %f secs\n", otm.get_elapsed_secs());
printf("Total Non-RDO UASTC size: %llu, compressed size: %llu, %3.2f bits/texel\n",
(unsigned long long)total_raw_size,
(unsigned long long)total_comp_size,
total_comp_size * 8.0f / (total_comp_blocks * 16));
printf("Total RDO UASTC size: %llu, compressed size: %llu, %3.2f bits/texel\n",
(unsigned long long)total_rdo_raw_size,
(unsigned long long)total_rdo_comp_size,
total_rdo_comp_size * 8.0f / (total_comp_blocks * 16));
printf("Overall enc time per block: %f us\n", overall_total_enc_time / overall_blocks * 1000000.0f);
printf("Overall bench time per block: %f us\n", overall_total_bench_time / overall_blocks * 1000000.0f);
printf("Overall bench2 time per block: %f us\n", overall_total_bench2_time / overall_blocks * 1000000.0f);
printf("Overall ASTC mode histogram:\n");
uint64_t total_hist = 0;
for (uint32_t i = 0; i < basist::TOTAL_UASTC_MODES; i++)
total_hist += overall_mode_hist[i];
for (uint32_t i = 0; i < basist::TOTAL_UASTC_MODES; i++)
printf("%u: %u %3.2f%%\n", i, (uint32_t)overall_mode_hist[i], overall_mode_hist[i] * 100.0f / total_hist);
printf("Total images: %u, total images with alpha: %u, total PVRTC1 images: %u\n", total_images, total_a_images, total_pvrtc1_images);
if (!total_a_images)
total_a_images = 1;
printf("Avg UASTC RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_uastc_psnr / total_images, total_uastc_a_psnr / total_a_images, total_uastc_rgba_psnr / total_images);
printf("Avg UASTC2 RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_uastc2_psnr / total_images, total_uastc2_a_psnr / total_a_images, total_uastc2_rgba_psnr / total_images);
printf("Avg RDO UASTC RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_rdo_uastc_psnr / total_images, total_rdo_uastc_a_psnr / total_a_images, total_rdo_uastc_rgba_psnr / total_images);
printf("Avg BC7 RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_bc7_psnr / total_images, total_bc7_a_psnr / total_a_images, total_bc7_rgba_psnr / total_images);
printf("Avg RDO BC7 RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_rdo_bc7_psnr / total_images, total_rdo_bc7_a_psnr / total_a_images, total_rdo_bc7_rgba_psnr / total_images);
//printf("Avg Opt BC7 RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_obc7_psnr / total_images, total_obc7_a_psnr / total_a_images, total_obc7_rgba_psnr / total_images);
//printf("Avg Opt ASTC RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_oastc_psnr / total_images, total_oastc_a_psnr / total_a_images, total_oastc_rgba_psnr / total_images);
printf("Avg BC7ENC RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_bc7enc_psnr / total_images, total_bc7enc_a_psnr / total_a_images, total_bc7enc_rgba_psnr / total_images);
printf("Avg Opt BC1 PSNR: %f, std dev: %f\n", total_obc1_psnr / total_images, sqrtf(basisu::maximum(0.0f, (total_obc1_psnr_sq / total_images) - (total_obc1_psnr / total_images) * (total_obc1_psnr / total_images))));
printf("Avg Opt BC1 2 PSNR: %f, std dev: %f\n", total_obc1_2_psnr / total_images, sqrtf(basisu::maximum(0.0f, (total_obc1_2_psnr_sq / total_images) - (total_obc1_2_psnr / total_images) * (total_obc1_2_psnr / total_images))));
printf("Avg BC1 PSNR: %f, std dev: %f\n", total_bc1_psnr / total_images, sqrtf(basisu::maximum(0.0f, (total_bc1_psnr_sq / total_images) - (total_bc1_psnr / total_images) * (total_bc1_psnr / total_images))));
printf("Avg ETC1 RGB PSNR: %f\n", total_etc1_psnr / total_images);
printf("Avg ETC1 Y PSNR: %f\n", total_etc1_y_psnr / total_images);
printf("Avg ETC1 G PSNR: %f\n", total_etc1_g_psnr / total_images);
printf("Avg ETC2 RGB PSNR: %f\n", total_etc2_psnr / total_images);
printf("Avg ETC2 A PSNR: %f\n", total_etc2_a_psnr / total_a_images);
printf("Avg ETC2 RGBA PSNR: %f\n", total_etc2_rgba_psnr / total_images);
printf("Avg BC3 RGB PSNR: %f\n", total_bc3_psnr / total_images);
printf("Avg BC3 A PSNR: %f\n", total_bc3_a_psnr / total_a_images);
printf("Avg BC3 RGBA PSNR: %f\n", total_bc3_rgba_psnr / total_images);
printf("Avg EAC R11 PSNR: %f\n", total_eac_r11_psnr / total_images);
printf("Avg EAC RG11 PSNR: %f\n", total_eac_rg11_psnr / total_images);
if (total_pvrtc1_images)
{
printf("Avg PVRTC1 RGB PSNR: %f\n", total_pvrtc1_rgb_psnr / total_pvrtc1_images);
printf("Avg PVRTC1 A PSNR: %f\n", total_pvrtc1_a_psnr / total_pvrtc1_images);
printf("Avg PVRTC1 RGBA PSNR: %f\n", total_pvrtc1_rgba_psnr / total_pvrtc1_images);
}
return true;
}
static uint32_t compute_miniz_compressed_size(const char* pFilename, uint32_t &orig_size)
{
orig_size = 0;
uint8_vec buf;
if (!read_file_to_vec(pFilename, buf))
return 0;
if (!buf.size())
return 0;
orig_size = buf.size();
size_t comp_size = 0;
void* pComp_data = tdefl_compress_mem_to_heap(&buf[0], buf.size(), &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES);
mz_free(pComp_data);
return (uint32_t)comp_size;
}
static bool compsize_mode(command_line_params& opts)
{
if (opts.m_input_filenames.size() != 1)
{
error_printf("Must specify a filename using -file\n");
return false;
}
uint32_t orig_size;
uint32_t comp_size = compute_miniz_compressed_size(opts.m_input_filenames[0].c_str(), orig_size);
printf("Original file size: %u bytes\n", orig_size);
printf("miniz compressed size: %u bytes\n", comp_size);
return true;
}
static int main_internal(int argc, const char **argv)
{
printf("Basis Universal GPU Texture Compressor v" BASISU_TOOL_VERSION "\nCopyright (C) 2019-2021 Binomial LLC, All rights reserved\n");
//interval_timer tm;
//tm.start();
basisu_encoder_init();
//printf("Encoder and transcoder libraries initialized in %3.3f ms\n", tm.get_elapsed_ms());
#if defined(DEBUG) || defined(_DEBUG)
printf("DEBUG build\n");
#endif
if (argc == 1)
{
print_usage();
return EXIT_FAILURE;
}
command_line_params opts;
if (!opts.parse(argc, argv))
{
//print_usage();
return EXIT_FAILURE;
}
#if BASISU_SUPPORT_SSE
printf("Using SSE 4.1: %u, Multithreading: %u, Zstandard support: %u\n", g_cpu_supports_sse41, (uint32_t)opts.m_comp_params.m_multithreading, basist::basisu_transcoder_supports_ktx2_zstd());
#else
printf("Multithreading: %u, Zstandard support: %u\n", (uint32_t)opts.m_comp_params.m_multithreading, basist::basisu_transcoder_supports_ktx2_zstd());
#endif
if (!opts.process_listing_files())
return EXIT_FAILURE;
if (opts.m_mode == cDefault)
{
for (size_t i = 0; i < opts.m_input_filenames.size(); i++)
{
std::string ext(string_get_extension(opts.m_input_filenames[i]));
if ((strcasecmp(ext.c_str(), "basis") == 0) || (strcasecmp(ext.c_str(), "ktx") == 0) || (strcasecmp(ext.c_str(), "ktx2") == 0))
{
// If they haven't specified any modes, and they give us a .basis file, then assume they want to unpack it.
opts.m_mode = cUnpack;
break;
}
}
}
bool status = false;
switch (opts.m_mode)
{
case cDefault:
case cCompress:
status = compress_mode(opts);
break;
case cValidate:
case cInfo:
case cUnpack:
status = unpack_and_validate_mode(opts);
break;
case cCompare:
status = compare_mode(opts);
break;
case cVersion:
status = true; // We printed the version at the beginning of main_internal
break;
case cBench:
status = bench_mode(opts);
break;
case cCompSize:
status = compsize_mode(opts);
break;
default:
assert(0);
break;
}
return status ? EXIT_SUCCESS : EXIT_FAILURE;
}
int main(int argc, const char** argv)
{
#ifdef _DEBUG
printf("DEBUG\n");
#endif
int status = EXIT_FAILURE;
#if BASISU_CATCH_EXCEPTIONS
try
{
status = main_internal(argc, argv);
}
catch (const std::exception &exc)
{
fprintf(stderr, "Fatal error: Caught exception \"%s\"\n", exc.what());
}
catch (...)
{
fprintf(stderr, "Fatal error: Uncaught exception!\n");
}
#else
status = main_internal(argc, argv);
#endif
return status;
}