blob: cfd5c2ba532d7c710c201b8fef204cec3f773eed [file] [log] [blame]
// basisu_comp.cpp
// Copyright (C) 2019-2024 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "basisu_comp.h"
#include "basisu_enc.h"
#include <unordered_set>
#include <atomic>
#include <map>
//#define UASTC_HDR_DEBUG_SAVE_CATEGORIZED_BLOCKS
// basisu_transcoder.cpp is where basisu_miniz lives now, we just need the declarations here.
#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES
#include "basisu_miniz.h"
#include "basisu_opencl.h"
#include "../transcoder/basisu_astc_hdr_core.h"
#if !BASISD_SUPPORT_KTX2
#error BASISD_SUPPORT_KTX2 must be enabled (set to 1).
#endif
#if BASISD_SUPPORT_KTX2_ZSTD
#include "../zstd/zstd.h"
#endif
// Set to 1 to disable the mipPadding alignment workaround (which only seems to be needed when no key-values are written at all)
#define BASISU_DISABLE_KTX2_ALIGNMENT_WORKAROUND (0)
// Set to 1 to disable writing all KTX2 key values, triggering an early validator bug.
#define BASISU_DISABLE_KTX2_KEY_VALUES (0)
using namespace buminiz;
#define BASISU_USE_STB_IMAGE_RESIZE_FOR_MIPMAP_GEN 0
#define DEBUG_CROP_TEXTURE_TO_64x64 (0)
#define DEBUG_RESIZE_TEXTURE (0)
#define DEBUG_EXTRACT_SINGLE_BLOCK (0)
namespace basisu
{
basis_compressor::basis_compressor() :
m_pOpenCL_context(nullptr),
m_basis_file_size(0),
m_basis_bits_per_texel(0.0f),
m_total_blocks(0),
m_any_source_image_has_alpha(false),
m_opencl_failed(false)
{
debug_printf("basis_compressor::basis_compressor\n");
assert(g_library_initialized);
}
basis_compressor::~basis_compressor()
{
if (m_pOpenCL_context)
{
opencl_destroy_context(m_pOpenCL_context);
m_pOpenCL_context = nullptr;
}
}
void basis_compressor::check_for_hdr_inputs()
{
if ((!m_params.m_source_filenames.size()) && (!m_params.m_source_images.size()))
{
if (m_params.m_source_images_hdr.size())
{
// Assume they want UASTC HDR if they've specified any HDR source images.
m_params.m_hdr = true;
}
}
if (!m_params.m_hdr)
{
// See if any files are .EXR or .HDR, if so switch the compressor to UASTC HDR mode.
for (uint32_t i = 0; i < m_params.m_source_filenames.size(); i++)
{
std::string filename;
string_get_filename(m_params.m_source_filenames[i].c_str(), filename);
std::string ext(string_get_extension(filename));
string_tolower(ext);
if ((ext == "exr") || (ext == "hdr"))
{
m_params.m_hdr = true;
break;
}
}
}
if (m_params.m_hdr)
{
if (m_params.m_source_alpha_filenames.size())
{
debug_printf("Warning: Alpha channel image filenames are not supported in UASTC HDR mode.\n");
m_params.m_source_alpha_filenames.clear();
}
}
if (m_params.m_hdr)
m_params.m_uastc = true;
}
bool basis_compressor::sanity_check_input_params()
{
// Check for no source filenames specified.
if ((m_params.m_read_source_images) && (!m_params.m_source_filenames.size()))
{
assert(0);
return false;
}
// See if they've specified any source filenames, but didn't tell us to read them.
if ((!m_params.m_read_source_images) && (m_params.m_source_filenames.size()))
{
assert(0);
return false;
}
// Sanity check the input image parameters.
if (m_params.m_read_source_images)
{
// Caller can't specify their own images if they want us to read source images from files.
if (m_params.m_source_images.size() || m_params.m_source_images_hdr.size())
{
assert(0);
return false;
}
if (m_params.m_source_mipmap_images.size() || m_params.m_source_mipmap_images_hdr.size())
{
assert(0);
return false;
}
}
else
{
// They didn't tell us to read any source files, so check for no LDR/HDR source images.
if (!m_params.m_source_images.size() && !m_params.m_source_images_hdr.size())
{
assert(0);
return false;
}
// Now we know we've been supplied LDR and/or HDR source images, check for LDR vs. HDR conflicts.
if (m_params.m_source_images.size())
{
// They've supplied LDR images, so make sure they also haven't specified HDR input images.
if (m_params.m_source_images_hdr.size() || m_params.m_source_mipmap_images_hdr.size())
{
assert(0);
return false;
}
}
else
{
// No LDR images, so make sure they haven't specified any LDR mipmaps.
if (m_params.m_source_mipmap_images.size())
{
assert(0);
return false;
}
// No LDR images, so ensure they've supplied some HDR images to process.
if (!m_params.m_source_images_hdr.size())
{
assert(0);
return false;
}
}
}
return true;
}
bool basis_compressor::init(const basis_compressor_params &params)
{
debug_printf("basis_compressor::init\n");
if (!g_library_initialized)
{
error_printf("basis_compressor::init: basisu_encoder_init() MUST be called before using any encoder functionality!\n");
return false;
}
if (!params.m_pJob_pool)
{
error_printf("basis_compressor::init: A non-null job_pool pointer must be specified\n");
return false;
}
m_params = params;
if ((m_params.m_compute_stats) && (!m_params.m_validate_output_data))
m_params.m_validate_output_data = true;
check_for_hdr_inputs();
if (m_params.m_debug)
{
debug_printf("basis_compressor::init:\n");
#define PRINT_BOOL_VALUE(v) debug_printf("%s: %u %u\n", BASISU_STRINGIZE2(v), static_cast<int>(m_params.v), m_params.v.was_changed());
#define PRINT_INT_VALUE(v) debug_printf("%s: %i %u\n", BASISU_STRINGIZE2(v), static_cast<int>(m_params.v), m_params.v.was_changed());
#define PRINT_UINT_VALUE(v) debug_printf("%s: %u %u\n", BASISU_STRINGIZE2(v), static_cast<uint32_t>(m_params.v), m_params.v.was_changed());
#define PRINT_FLOAT_VALUE(v) debug_printf("%s: %f %u\n", BASISU_STRINGIZE2(v), static_cast<float>(m_params.v), m_params.v.was_changed());
debug_printf("Source LDR images: %u, HDR images: %u, filenames: %u, alpha filenames: %i, LDR mipmap images: %u, HDR mipmap images: %u\n",
m_params.m_source_images.size(), m_params.m_source_images_hdr.size(),
m_params.m_source_filenames.size(), m_params.m_source_alpha_filenames.size(),
m_params.m_source_mipmap_images.size(), m_params.m_source_mipmap_images_hdr.size());
if (m_params.m_source_mipmap_images.size())
{
debug_printf("m_source_mipmap_images array sizes:\n");
for (uint32_t i = 0; i < m_params.m_source_mipmap_images.size(); i++)
debug_printf("%u ", m_params.m_source_mipmap_images[i].size());
debug_printf("\n");
}
if (m_params.m_source_mipmap_images_hdr.size())
{
debug_printf("m_source_mipmap_images_hdr array sizes:\n");
for (uint32_t i = 0; i < m_params.m_source_mipmap_images_hdr.size(); i++)
debug_printf("%u ", m_params.m_source_mipmap_images_hdr[i].size());
debug_printf("\n");
}
PRINT_BOOL_VALUE(m_hdr);
PRINT_BOOL_VALUE(m_uastc);
PRINT_BOOL_VALUE(m_use_opencl);
PRINT_BOOL_VALUE(m_y_flip);
PRINT_BOOL_VALUE(m_debug);
PRINT_BOOL_VALUE(m_validate_etc1s);
PRINT_BOOL_VALUE(m_debug_images);
PRINT_INT_VALUE(m_compression_level);
PRINT_BOOL_VALUE(m_perceptual);
PRINT_BOOL_VALUE(m_no_endpoint_rdo);
PRINT_BOOL_VALUE(m_no_selector_rdo);
PRINT_BOOL_VALUE(m_read_source_images);
PRINT_BOOL_VALUE(m_write_output_basis_or_ktx2_files);
PRINT_BOOL_VALUE(m_compute_stats);
PRINT_BOOL_VALUE(m_check_for_alpha);
PRINT_BOOL_VALUE(m_force_alpha);
debug_printf("swizzle: %d,%d,%d,%d\n",
m_params.m_swizzle[0],
m_params.m_swizzle[1],
m_params.m_swizzle[2],
m_params.m_swizzle[3]);
PRINT_BOOL_VALUE(m_renormalize);
PRINT_BOOL_VALUE(m_multithreading);
PRINT_BOOL_VALUE(m_disable_hierarchical_endpoint_codebooks);
PRINT_FLOAT_VALUE(m_endpoint_rdo_thresh);
PRINT_FLOAT_VALUE(m_selector_rdo_thresh);
PRINT_BOOL_VALUE(m_mip_gen);
PRINT_BOOL_VALUE(m_mip_renormalize);
PRINT_BOOL_VALUE(m_mip_wrapping);
PRINT_BOOL_VALUE(m_mip_fast);
PRINT_BOOL_VALUE(m_mip_srgb);
PRINT_FLOAT_VALUE(m_mip_premultiplied);
PRINT_FLOAT_VALUE(m_mip_scale);
PRINT_INT_VALUE(m_mip_smallest_dimension);
debug_printf("m_mip_filter: %s\n", m_params.m_mip_filter.c_str());
debug_printf("m_max_endpoint_clusters: %u\n", m_params.m_max_endpoint_clusters);
debug_printf("m_max_selector_clusters: %u\n", m_params.m_max_selector_clusters);
debug_printf("m_quality_level: %i\n", m_params.m_quality_level);
debug_printf("UASTC HDR quality level: %u\n", m_params.m_uastc_hdr_options.m_level);
debug_printf("m_tex_type: %u\n", m_params.m_tex_type);
debug_printf("m_userdata0: 0x%X, m_userdata1: 0x%X\n", m_params.m_userdata0, m_params.m_userdata1);
debug_printf("m_us_per_frame: %i (%f fps)\n", m_params.m_us_per_frame, m_params.m_us_per_frame ? 1.0f / (m_params.m_us_per_frame / 1000000.0f) : 0);
debug_printf("m_pack_uastc_flags: 0x%X\n", m_params.m_pack_uastc_flags);
PRINT_BOOL_VALUE(m_rdo_uastc);
PRINT_FLOAT_VALUE(m_rdo_uastc_quality_scalar);
PRINT_INT_VALUE(m_rdo_uastc_dict_size);
PRINT_FLOAT_VALUE(m_rdo_uastc_max_allowed_rms_increase_ratio);
PRINT_FLOAT_VALUE(m_rdo_uastc_skip_block_rms_thresh);
PRINT_FLOAT_VALUE(m_rdo_uastc_max_smooth_block_error_scale);
PRINT_FLOAT_VALUE(m_rdo_uastc_smooth_block_max_std_dev);
PRINT_BOOL_VALUE(m_rdo_uastc_favor_simpler_modes_in_rdo_mode)
PRINT_BOOL_VALUE(m_rdo_uastc_multithreading);
PRINT_INT_VALUE(m_resample_width);
PRINT_INT_VALUE(m_resample_height);
PRINT_FLOAT_VALUE(m_resample_factor);
debug_printf("Has global codebooks: %u\n", m_params.m_pGlobal_codebooks ? 1 : 0);
if (m_params.m_pGlobal_codebooks)
{
debug_printf("Global codebook endpoints: %u selectors: %u\n", m_params.m_pGlobal_codebooks->get_endpoints().size(), m_params.m_pGlobal_codebooks->get_selectors().size());
}
PRINT_BOOL_VALUE(m_create_ktx2_file);
debug_printf("KTX2 UASTC supercompression: %u\n", m_params.m_ktx2_uastc_supercompression);
debug_printf("KTX2 Zstd supercompression level: %i\n", (int)m_params.m_ktx2_zstd_supercompression_level);
debug_printf("KTX2 sRGB transfer func: %u\n", (int)m_params.m_ktx2_srgb_transfer_func);
debug_printf("Total KTX2 key values: %u\n", m_params.m_ktx2_key_values.size());
for (uint32_t i = 0; i < m_params.m_ktx2_key_values.size(); i++)
{
debug_printf("Key: \"%s\"\n", m_params.m_ktx2_key_values[i].m_key.data());
debug_printf("Value size: %u\n", m_params.m_ktx2_key_values[i].m_value.size());
}
PRINT_BOOL_VALUE(m_validate_output_data);
PRINT_BOOL_VALUE(m_hdr_ldr_srgb_to_linear_conversion);
debug_printf("Allow UASTC HDR uber mode: %u\n", m_params.m_uastc_hdr_options.m_allow_uber_mode);
PRINT_BOOL_VALUE(m_hdr_favor_astc);
#undef PRINT_BOOL_VALUE
#undef PRINT_INT_VALUE
#undef PRINT_UINT_VALUE
#undef PRINT_FLOAT_VALUE
}
if (!sanity_check_input_params())
return false;
if ((m_params.m_use_opencl) && opencl_is_available() && !m_pOpenCL_context && !m_opencl_failed)
{
m_pOpenCL_context = opencl_create_context();
if (!m_pOpenCL_context)
m_opencl_failed = true;
}
return true;
}
basis_compressor::error_code basis_compressor::process()
{
debug_printf("basis_compressor::process\n");
if (!read_dds_source_images())
return cECFailedReadingSourceImages;
if (!read_source_images())
return cECFailedReadingSourceImages;
if (!validate_texture_type_constraints())
return cECFailedValidating;
if (m_params.m_create_ktx2_file)
{
if (!validate_ktx2_constraints())
{
error_printf("Inputs do not satisfy .KTX2 texture constraints: all source images must be the same resolution and have the same number of mipmap levels.\n");
return cECFailedValidating;
}
}
if (!extract_source_blocks())
return cECFailedFrontEnd;
if (m_params.m_hdr)
{
// UASTC HDR
if (m_params.m_status_output)
printf("Mode: UASTC HDR Level %u\n", m_params.m_uastc_hdr_options.m_level);
error_code ec = encode_slices_to_uastc_hdr();
if (ec != cECSuccess)
return ec;
}
else if (m_params.m_uastc)
{
// UASTC
if (m_params.m_status_output)
printf("Mode: UASTC LDR Level %u\n", m_params.m_pack_uastc_flags & cPackUASTCLevelMask);
error_code ec = encode_slices_to_uastc();
if (ec != cECSuccess)
return ec;
}
else
{
// ETC1S
if (m_params.m_status_output)
printf("Mode: ETC1S Quality %i, Level %i\n", m_params.m_quality_level, (int)m_params.m_compression_level);
if (!process_frontend())
return cECFailedFrontEnd;
if (!extract_frontend_texture_data())
return cECFailedFontendExtract;
if (!process_backend())
return cECFailedBackend;
}
if (!create_basis_file_and_transcode())
return cECFailedCreateBasisFile;
if (m_params.m_create_ktx2_file)
{
if (!create_ktx2_file())
return cECFailedCreateKTX2File;
}
if (!write_output_files_and_compute_stats())
return cECFailedWritingOutput;
return cECSuccess;
}
basis_compressor::error_code basis_compressor::encode_slices_to_uastc_hdr()
{
debug_printf("basis_compressor::encode_slices_to_uastc_hdr\n");
interval_timer tm;
tm.start();
m_uastc_slice_textures.resize(m_slice_descs.size());
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
m_uastc_slice_textures[slice_index].init(texture_format::cUASTC_HDR_4x4, m_slice_descs[slice_index].m_orig_width, m_slice_descs[slice_index].m_orig_height);
m_uastc_backend_output.m_tex_format = basist::basis_tex_format::cUASTC_HDR_4x4;
m_uastc_backend_output.m_etc1s = false;
m_uastc_backend_output.m_slice_desc = m_slice_descs;
m_uastc_backend_output.m_slice_image_data.resize(m_slice_descs.size());
m_uastc_backend_output.m_slice_image_crcs.resize(m_slice_descs.size());
if (!m_params.m_perceptual)
{
m_params.m_uastc_hdr_options.m_r_err_scale = 1.0f;
m_params.m_uastc_hdr_options.m_g_err_scale = 1.0f;
}
const float DEFAULT_BC6H_ERROR_WEIGHT = .85f;
const float LOWEST_BC6H_ERROR_WEIGHT = .1f;
m_params.m_uastc_hdr_options.m_bc6h_err_weight = m_params.m_hdr_favor_astc ? LOWEST_BC6H_ERROR_WEIGHT : DEFAULT_BC6H_ERROR_WEIGHT;
std::atomic<bool> any_failures;
any_failures = false;
astc_hdr_block_stats enc_stats;
struct uastc_blk_desc
{
uint32_t m_solid_flag;
uint32_t m_num_partitions;
uint32_t m_cem_index;
uint32_t m_weight_ise_range;
uint32_t m_endpoint_ise_range;
bool operator< (const uastc_blk_desc& desc) const
{
if (this == &desc)
return false;
#define COMP(XX) if (XX < desc.XX) return true; else if (XX != desc.XX) return false;
COMP(m_solid_flag)
COMP(m_num_partitions)
COMP(m_cem_index)
COMP(m_weight_ise_range)
COMP(m_endpoint_ise_range)
#undef COMP
return false;
}
bool operator== (const uastc_blk_desc& desc) const
{
if (this == &desc)
return true;
if ((*this < desc) || (desc < *this))
return false;
return true;
}
bool operator!= (const uastc_blk_desc& desc) const
{
return !(*this == desc);
}
};
struct uastc_blk_desc_stats
{
uastc_blk_desc_stats() : m_count(0) { }
uint32_t m_count;
#ifdef UASTC_HDR_DEBUG_SAVE_CATEGORIZED_BLOCKS
basisu::vector<basist::astc_blk> m_blks;
#endif
};
std::map<uastc_blk_desc, uastc_blk_desc_stats> unique_block_descs;
std::mutex unique_block_desc_mutex;
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
{
gpu_image& tex = m_uastc_slice_textures[slice_index];
basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
(void)slice_desc;
const uint32_t num_blocks_x = tex.get_blocks_x();
const uint32_t num_blocks_y = tex.get_blocks_y();
const uint32_t total_blocks = tex.get_total_blocks();
const imagef& source_image = m_slice_images_hdr[slice_index];
std::atomic<uint32_t> total_blocks_processed;
total_blocks_processed = 0;
const uint32_t N = 256;
for (uint32_t block_index_iter = 0; block_index_iter < total_blocks; block_index_iter += N)
{
const uint32_t first_index = block_index_iter;
const uint32_t last_index = minimum<uint32_t>(total_blocks, block_index_iter + N);
// FIXME: This sucks, but we're having a stack size related problem with std::function with emscripten.
#ifndef __EMSCRIPTEN__
m_params.m_pJob_pool->add_job([this, first_index, last_index, num_blocks_x, num_blocks_y, total_blocks, &source_image,
&tex, &total_blocks_processed, &any_failures, &enc_stats, &unique_block_descs, &unique_block_desc_mutex]
{
#endif
BASISU_NOTE_UNUSED(num_blocks_y);
basisu::vector<astc_hdr_pack_results> all_results;
all_results.reserve(256);
for (uint32_t block_index = first_index; block_index < last_index; block_index++)
{
const uint32_t block_x = block_index % num_blocks_x;
const uint32_t block_y = block_index / num_blocks_x;
vec4F block_pixels[16];
source_image.extract_block_clamped(&block_pixels[0], block_x * 4, block_y * 4, 4, 4);
basist::astc_blk& dest_block = *(basist::astc_blk*)tex.get_block_ptr(block_x, block_y);
float rgb_pixels[16 * 3];
basist::half_float rgb_pixels_half[16 * 3];
for (uint32_t i = 0; i < 16; i++)
{
rgb_pixels[i * 3 + 0] = block_pixels[i][0];
rgb_pixels_half[i * 3 + 0] = float_to_half_non_neg_no_nan_inf(block_pixels[i][0]);
rgb_pixels[i * 3 + 1] = block_pixels[i][1];
rgb_pixels_half[i * 3 + 1] = float_to_half_non_neg_no_nan_inf(block_pixels[i][1]);
rgb_pixels[i * 3 + 2] = block_pixels[i][2];
rgb_pixels_half[i * 3 + 2] = float_to_half_non_neg_no_nan_inf(block_pixels[i][2]);
}
bool status = astc_hdr_enc_block(&rgb_pixels[0], m_params.m_uastc_hdr_options, all_results);
if (!status)
{
any_failures = true;
continue;
}
double best_err = 1e+30f;
int best_result_index = -1;
const double bc6h_err_weight = m_params.m_uastc_hdr_options.m_bc6h_err_weight;
const double astc_err_weight = (1.0f - bc6h_err_weight);
for (uint32_t i = 0; i < all_results.size(); i++)
{
basist::half_float unpacked_bc6h_block[4 * 4 * 3];
unpack_bc6h(&all_results[i].m_bc6h_block, unpacked_bc6h_block, false);
all_results[i].m_bc6h_block_error = compute_block_error(rgb_pixels_half, unpacked_bc6h_block, m_params.m_uastc_hdr_options);
double overall_err = (all_results[i].m_bc6h_block_error * bc6h_err_weight) + (all_results[i].m_best_block_error * astc_err_weight);
if ((!i) || (overall_err < best_err))
{
best_err = overall_err;
best_result_index = i;
}
}
const astc_hdr_pack_results& best_results = all_results[best_result_index];
astc_hdr_pack_results_to_block(dest_block, best_results);
// Verify that this block is valid UASTC HDR and we can successfully transcode it to BC6H.
// (Well, except in fastest mode.)
if (m_params.m_uastc_hdr_options.m_level > 0)
{
basist::bc6h_block transcoded_bc6h_blk;
bool transcode_results = astc_hdr_transcode_to_bc6h(dest_block, transcoded_bc6h_blk);
assert(transcode_results);
if ((!transcode_results) && (!any_failures))
{
error_printf("basis_compressor::encode_slices_to_uastc_hdr: UASTC HDR block transcode check failed!\n");
any_failures = true;
continue;
}
}
if (m_params.m_debug)
{
// enc_stats has its own mutex
enc_stats.update(best_results);
uastc_blk_desc blk_desc;
clear_obj(blk_desc);
blk_desc.m_solid_flag = best_results.m_is_solid;
if (!blk_desc.m_solid_flag)
{
blk_desc.m_num_partitions = best_results.m_best_blk.m_num_partitions;
blk_desc.m_cem_index = best_results.m_best_blk.m_color_endpoint_modes[0];
blk_desc.m_weight_ise_range = best_results.m_best_blk.m_weight_ise_range;
blk_desc.m_endpoint_ise_range = best_results.m_best_blk.m_endpoint_ise_range;
}
{
std::lock_guard<std::mutex> lck(unique_block_desc_mutex);
auto res = unique_block_descs.insert(std::make_pair(blk_desc, uastc_blk_desc_stats()));
(res.first)->second.m_count++;
#ifdef UASTC_HDR_DEBUG_SAVE_CATEGORIZED_BLOCKS
(res.first)->second.m_blks.push_back(dest_block);
#endif
}
}
total_blocks_processed++;
uint32_t val = total_blocks_processed;
if (((val & 1023) == 1023) && m_params.m_status_output)
{
debug_printf("basis_compressor::encode_slices_to_uastc_hdr: %3.1f%% done\n", static_cast<float>(val) * 100.0f / total_blocks);
}
}
#ifndef __EMSCRIPTEN__
});
#endif
} // block_index_iter
#ifndef __EMSCRIPTEN__
m_params.m_pJob_pool->wait_for_all();
#endif
if (any_failures)
return cECFailedEncodeUASTC;
m_uastc_backend_output.m_slice_image_data[slice_index].resize(tex.get_size_in_bytes());
memcpy(&m_uastc_backend_output.m_slice_image_data[slice_index][0], tex.get_ptr(), tex.get_size_in_bytes());
m_uastc_backend_output.m_slice_image_crcs[slice_index] = basist::crc16(tex.get_ptr(), tex.get_size_in_bytes(), 0);
} // slice_index
debug_printf("basis_compressor::encode_slices_to_uastc_hdr: Total time: %3.3f secs\n", tm.get_elapsed_secs());
if (m_params.m_debug)
{
debug_printf("\n----- Total unique UASTC block descs: %u\n", (uint32_t)unique_block_descs.size());
uint32_t c = 0;
for (auto it = unique_block_descs.begin(); it != unique_block_descs.end(); ++it)
{
debug_printf("%u. Total uses: %u %3.2f%%, solid color: %u\n", c, it->second.m_count,
((float)it->second.m_count * 100.0f) / enc_stats.m_total_blocks, it->first.m_solid_flag);
if (!it->first.m_solid_flag)
{
debug_printf(" Num partitions: %u\n", it->first.m_num_partitions);
debug_printf(" CEM index: %u\n", it->first.m_cem_index);
debug_printf(" Weight ISE range: %u (%u levels)\n", it->first.m_weight_ise_range, astc_helpers::get_ise_levels(it->first.m_weight_ise_range));
debug_printf(" Endpoint ISE range: %u (%u levels)\n", it->first.m_endpoint_ise_range, astc_helpers::get_ise_levels(it->first.m_endpoint_ise_range));
}
#ifdef UASTC_HDR_DEBUG_SAVE_CATEGORIZED_BLOCKS
debug_printf(" -- UASTC HDR block bytes:\n");
for (uint32_t j = 0; j < minimum<uint32_t>(4, it->second.m_blks.size()); j++)
{
basist::astc_blk& blk = it->second.m_blks[j];
debug_printf(" - UASTC HDR: { ");
for (uint32_t k = 0; k < 16; k++)
debug_printf("%u%s", ((const uint8_t*)&blk)[k], (k != 15) ? ", " : "");
debug_printf(" }\n");
basist::bc6h_block bc6h_blk;
bool res = astc_hdr_transcode_to_bc6h(blk, bc6h_blk);
assert(res);
if (!res)
{
error_printf("astc_hdr_transcode_to_bc6h() failed!\n");
return cECFailedEncodeUASTC;
}
debug_printf(" - BC6H: { ");
for (uint32_t k = 0; k < 16; k++)
debug_printf("%u%s", ((const uint8_t*)&bc6h_blk)[k], (k != 15) ? ", " : "");
debug_printf(" }\n");
}
#endif
c++;
}
printf("\n");
enc_stats.print();
}
return cECSuccess;
}
basis_compressor::error_code basis_compressor::encode_slices_to_uastc()
{
debug_printf("basis_compressor::encode_slices_to_uastc\n");
m_uastc_slice_textures.resize(m_slice_descs.size());
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
m_uastc_slice_textures[slice_index].init(texture_format::cUASTC4x4, m_slice_descs[slice_index].m_orig_width, m_slice_descs[slice_index].m_orig_height);
m_uastc_backend_output.m_tex_format = basist::basis_tex_format::cUASTC4x4;
m_uastc_backend_output.m_etc1s = false;
m_uastc_backend_output.m_slice_desc = m_slice_descs;
m_uastc_backend_output.m_slice_image_data.resize(m_slice_descs.size());
m_uastc_backend_output.m_slice_image_crcs.resize(m_slice_descs.size());
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
{
gpu_image& tex = m_uastc_slice_textures[slice_index];
basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
(void)slice_desc;
const uint32_t num_blocks_x = tex.get_blocks_x();
const uint32_t num_blocks_y = tex.get_blocks_y();
const uint32_t total_blocks = tex.get_total_blocks();
const image& source_image = m_slice_images[slice_index];
std::atomic<uint32_t> total_blocks_processed;
total_blocks_processed = 0;
const uint32_t N = 256;
for (uint32_t block_index_iter = 0; block_index_iter < total_blocks; block_index_iter += N)
{
const uint32_t first_index = block_index_iter;
const uint32_t last_index = minimum<uint32_t>(total_blocks, block_index_iter + N);
// FIXME: This sucks, but we're having a stack size related problem with std::function with emscripten.
#ifndef __EMSCRIPTEN__
m_params.m_pJob_pool->add_job([this, first_index, last_index, num_blocks_x, num_blocks_y, total_blocks, &source_image, &tex, &total_blocks_processed]
{
#endif
BASISU_NOTE_UNUSED(num_blocks_y);
uint32_t uastc_flags = m_params.m_pack_uastc_flags;
if ((m_params.m_rdo_uastc) && (m_params.m_rdo_uastc_favor_simpler_modes_in_rdo_mode))
uastc_flags |= cPackUASTCFavorSimplerModes;
for (uint32_t block_index = first_index; block_index < last_index; block_index++)
{
const uint32_t block_x = block_index % num_blocks_x;
const uint32_t block_y = block_index / num_blocks_x;
color_rgba block_pixels[4][4];
source_image.extract_block_clamped((color_rgba*)block_pixels, block_x * 4, block_y * 4, 4, 4);
basist::uastc_block& dest_block = *(basist::uastc_block*)tex.get_block_ptr(block_x, block_y);
encode_uastc(&block_pixels[0][0].r, dest_block, uastc_flags);
total_blocks_processed++;
uint32_t val = total_blocks_processed;
if (((val & 16383) == 16383) && m_params.m_status_output)
{
debug_printf("basis_compressor::encode_slices_to_uastc: %3.1f%% done\n", static_cast<float>(val) * 100.0f / total_blocks);
}
}
#ifndef __EMSCRIPTEN__
});
#endif
} // block_index_iter
#ifndef __EMSCRIPTEN__
m_params.m_pJob_pool->wait_for_all();
#endif
if (m_params.m_rdo_uastc)
{
uastc_rdo_params rdo_params;
rdo_params.m_lambda = m_params.m_rdo_uastc_quality_scalar;
rdo_params.m_max_allowed_rms_increase_ratio = m_params.m_rdo_uastc_max_allowed_rms_increase_ratio;
rdo_params.m_skip_block_rms_thresh = m_params.m_rdo_uastc_skip_block_rms_thresh;
rdo_params.m_lz_dict_size = m_params.m_rdo_uastc_dict_size;
rdo_params.m_smooth_block_max_error_scale = m_params.m_rdo_uastc_max_smooth_block_error_scale;
rdo_params.m_max_smooth_block_std_dev = m_params.m_rdo_uastc_smooth_block_max_std_dev;
bool status = uastc_rdo(tex.get_total_blocks(), (basist::uastc_block*)tex.get_ptr(),
(const color_rgba *)m_source_blocks[slice_desc.m_first_block_index].m_pixels, rdo_params, m_params.m_pack_uastc_flags, m_params.m_rdo_uastc_multithreading ? m_params.m_pJob_pool : nullptr,
(m_params.m_rdo_uastc_multithreading && m_params.m_pJob_pool) ? basisu::minimum<uint32_t>(4, (uint32_t)m_params.m_pJob_pool->get_total_threads()) : 0);
if (!status)
{
return cECFailedUASTCRDOPostProcess;
}
}
m_uastc_backend_output.m_slice_image_data[slice_index].resize(tex.get_size_in_bytes());
memcpy(&m_uastc_backend_output.m_slice_image_data[slice_index][0], tex.get_ptr(), tex.get_size_in_bytes());
m_uastc_backend_output.m_slice_image_crcs[slice_index] = basist::crc16(tex.get_ptr(), tex.get_size_in_bytes(), 0);
} // slice_index
return cECSuccess;
}
bool basis_compressor::generate_mipmaps(const imagef& img, basisu::vector<imagef>& mips, bool has_alpha)
{
debug_printf("basis_compressor::generate_mipmaps\n");
interval_timer tm;
tm.start();
uint32_t total_levels = 1;
uint32_t w = img.get_width(), h = img.get_height();
while (maximum<uint32_t>(w, h) > (uint32_t)m_params.m_mip_smallest_dimension)
{
w = maximum(w >> 1U, 1U);
h = maximum(h >> 1U, 1U);
total_levels++;
}
for (uint32_t level = 1; level < total_levels; level++)
{
const uint32_t level_width = maximum<uint32_t>(1, img.get_width() >> level);
const uint32_t level_height = maximum<uint32_t>(1, img.get_height() >> level);
imagef& level_img = *enlarge_vector(mips, 1);
level_img.resize(level_width, level_height);
const imagef* pSource_image = &img;
if (m_params.m_mip_fast)
{
if (level > 1)
pSource_image = &mips[level - 1];
}
bool status = image_resample(*pSource_image, level_img,
//m_params.m_mip_filter.c_str(),
"box", // TODO: negative lobes in the filter are causing negative colors, try Mitchell
m_params.m_mip_scale, m_params.m_mip_wrapping, 0, has_alpha ? 4 : 3);
if (!status)
{
error_printf("basis_compressor::generate_mipmaps: image_resample() failed!\n");
return false;
}
clean_hdr_image(level_img);
}
if (m_params.m_debug)
debug_printf("Total mipmap generation time: %3.3f secs\n", tm.get_elapsed_secs());
return true;
}
bool basis_compressor::generate_mipmaps(const image &img, basisu::vector<image> &mips, bool has_alpha)
{
debug_printf("basis_compressor::generate_mipmaps\n");
interval_timer tm;
tm.start();
uint32_t total_levels = 1;
uint32_t w = img.get_width(), h = img.get_height();
while (maximum<uint32_t>(w, h) > (uint32_t)m_params.m_mip_smallest_dimension)
{
w = maximum(w >> 1U, 1U);
h = maximum(h >> 1U, 1U);
total_levels++;
}
#if BASISU_USE_STB_IMAGE_RESIZE_FOR_MIPMAP_GEN
// Requires stb_image_resize
stbir_filter filter = STBIR_FILTER_DEFAULT;
if (m_params.m_mip_filter == "box")
filter = STBIR_FILTER_BOX;
else if (m_params.m_mip_filter == "triangle")
filter = STBIR_FILTER_TRIANGLE;
else if (m_params.m_mip_filter == "cubic")
filter = STBIR_FILTER_CUBICBSPLINE;
else if (m_params.m_mip_filter == "catmull")
filter = STBIR_FILTER_CATMULLROM;
else if (m_params.m_mip_filter == "mitchell")
filter = STBIR_FILTER_MITCHELL;
for (uint32_t level = 1; level < total_levels; level++)
{
const uint32_t level_width = maximum<uint32_t>(1, img.get_width() >> level);
const uint32_t level_height = maximum<uint32_t>(1, img.get_height() >> level);
image &level_img = *enlarge_vector(mips, 1);
level_img.resize(level_width, level_height);
int result = stbir_resize_uint8_generic(
(const uint8_t *)img.get_ptr(), img.get_width(), img.get_height(), img.get_pitch() * sizeof(color_rgba),
(uint8_t *)level_img.get_ptr(), level_img.get_width(), level_img.get_height(), level_img.get_pitch() * sizeof(color_rgba),
has_alpha ? 4 : 3, has_alpha ? 3 : STBIR_ALPHA_CHANNEL_NONE, m_params.m_mip_premultiplied ? STBIR_FLAG_ALPHA_PREMULTIPLIED : 0,
m_params.m_mip_wrapping ? STBIR_EDGE_WRAP : STBIR_EDGE_CLAMP, filter, m_params.m_mip_srgb ? STBIR_COLORSPACE_SRGB : STBIR_COLORSPACE_LINEAR,
nullptr);
if (result == 0)
{
error_printf("basis_compressor::generate_mipmaps: stbir_resize_uint8_generic() failed!\n");
return false;
}
if (m_params.m_mip_renormalize)
level_img.renormalize_normal_map();
}
#else
for (uint32_t level = 1; level < total_levels; level++)
{
const uint32_t level_width = maximum<uint32_t>(1, img.get_width() >> level);
const uint32_t level_height = maximum<uint32_t>(1, img.get_height() >> level);
image& level_img = *enlarge_vector(mips, 1);
level_img.resize(level_width, level_height);
const image* pSource_image = &img;
if (m_params.m_mip_fast)
{
if (level > 1)
pSource_image = &mips[level - 1];
}
bool status = image_resample(*pSource_image, level_img, m_params.m_mip_srgb, m_params.m_mip_filter.c_str(), m_params.m_mip_scale, m_params.m_mip_wrapping, 0, has_alpha ? 4 : 3);
if (!status)
{
error_printf("basis_compressor::generate_mipmaps: image_resample() failed!\n");
return false;
}
if (m_params.m_mip_renormalize)
level_img.renormalize_normal_map();
}
#endif
if (m_params.m_debug)
debug_printf("Total mipmap generation time: %3.3f secs\n", tm.get_elapsed_secs());
return true;
}
void basis_compressor::clean_hdr_image(imagef& src_img)
{
const uint32_t width = src_img.get_width();
const uint32_t height = src_img.get_height();
float max_used_val = 0.0f;
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
vec4F& c = src_img(x, y);
for (uint32_t i = 0; i < 3; i++)
max_used_val = maximum(max_used_val, c[i]);
}
}
double hdr_image_scale = 1.0f;
if (max_used_val > basist::ASTC_HDR_MAX_VAL)
{
hdr_image_scale = max_used_val / basist::ASTC_HDR_MAX_VAL;
const double inv_hdr_image_scale = basist::ASTC_HDR_MAX_VAL / max_used_val;
for (uint32_t y = 0; y < src_img.get_height(); y++)
{
for (uint32_t x = 0; x < src_img.get_width(); x++)
{
vec4F& c = src_img(x, y);
for (uint32_t i = 0; i < 3; i++)
c[i] = (float)minimum<double>(c[i] * inv_hdr_image_scale, basist::ASTC_HDR_MAX_VAL);
}
}
printf("Warning: The input HDR image's maximum used float value was %f, which is too high to encode as ASTC HDR. The image's components have been linearly scaled so the maximum used value is %f, by multiplying by %f.\n",
max_used_val, basist::ASTC_HDR_MAX_VAL, inv_hdr_image_scale);
printf("The decoded ASTC HDR texture will have to be scaled up by %f.\n", hdr_image_scale);
}
// TODO: Determine a constant scale factor, apply if > MAX_HALF_FLOAT
if (!src_img.clean_astc_hdr_pixels(basist::ASTC_HDR_MAX_VAL))
printf("Warning: clean_astc_hdr_pixels() had to modify the input image to encode to ASTC HDR - see previous warning(s).\n");
float lowest_nonzero_val = 1e+30f;
float lowest_val = 1e+30f;
float highest_val = -1e+30f;
for (uint32_t y = 0; y < src_img.get_height(); y++)
{
for (uint32_t x = 0; x < src_img.get_width(); x++)
{
const vec4F& c = src_img(x, y);
for (uint32_t i = 0; i < 3; i++)
{
lowest_val = basisu::minimum(lowest_val, c[i]);
if (c[i] != 0.0f)
lowest_nonzero_val = basisu::minimum(lowest_nonzero_val, c[i]);
highest_val = basisu::maximum(highest_val, c[i]);
}
}
}
debug_printf("Lowest image value: %e, lowest non-zero value: %e, highest value: %e, dynamic range: %e\n", lowest_val, lowest_nonzero_val, highest_val, highest_val / lowest_nonzero_val);
}
bool basis_compressor::read_dds_source_images()
{
debug_printf("basis_compressor::read_dds_source_images\n");
// Nothing to do if the caller doesn't want us reading source images.
if ((!m_params.m_read_source_images) || (!m_params.m_source_filenames.size()))
return true;
// Just bail of the caller has specified their own source images.
if (m_params.m_source_images.size() || m_params.m_source_images_hdr.size())
return true;
if (m_params.m_source_mipmap_images.size() || m_params.m_source_mipmap_images_hdr.size())
return true;
// See if any input filenames are .DDS
bool any_dds = false, all_dds = true;
for (uint32_t i = 0; i < m_params.m_source_filenames.size(); i++)
{
std::string ext(string_get_extension(m_params.m_source_filenames[i]));
if (strcasecmp(ext.c_str(), "dds") == 0)
any_dds = true;
else
all_dds = false;
}
// Bail if no .DDS files specified.
if (!any_dds)
return true;
// If any input is .DDS they all must be .DDS, for simplicity.
if (!all_dds)
{
error_printf("If any filename is DDS, all filenames must be DDS.\n");
return false;
}
// Can't jam in alpha channel images if any .DDS files specified.
if (m_params.m_source_alpha_filenames.size())
{
error_printf("Source alpha filenames are not supported in DDS mode.\n");
return false;
}
bool any_mipmaps = false;
// Read each .DDS texture file
for (uint32_t i = 0; i < m_params.m_source_filenames.size(); i++)
{
basisu::vector<image> ldr_mips;
basisu::vector<imagef> hdr_mips;
bool status = read_uncompressed_dds_file(m_params.m_source_filenames[i].c_str(), ldr_mips, hdr_mips);
if (!status)
return false;
assert(ldr_mips.size() || hdr_mips.size());
if (m_params.m_status_output)
{
printf("Read DDS file \"%s\", %s, %ux%u, %u mipmap levels\n",
m_params.m_source_filenames[i].c_str(),
ldr_mips.size() ? "LDR" : "HDR",
ldr_mips.size() ? ldr_mips[0].get_width() : hdr_mips[0].get_width(),
ldr_mips.size() ? ldr_mips[0].get_height() : hdr_mips[0].get_height(),
ldr_mips.size() ? ldr_mips.size() : hdr_mips.size());
}
if (ldr_mips.size())
{
if (m_params.m_source_images_hdr.size())
{
error_printf("All DDS files must be of the same type (all LDR, or all HDR)\n");
return false;
}
m_params.m_source_images.push_back(ldr_mips[0]);
m_params.m_source_mipmap_images.resize(m_params.m_source_mipmap_images.size() + 1);
if (ldr_mips.size() > 1)
{
ldr_mips.erase(0U);
m_params.m_source_mipmap_images.back().swap(ldr_mips);
any_mipmaps = true;
}
}
else
{
if (m_params.m_source_images.size())
{
error_printf("All DDS files must be of the same type (all LDR, or all HDR)\n");
return false;
}
m_params.m_source_images_hdr.push_back(hdr_mips[0]);
m_params.m_source_mipmap_images_hdr.resize(m_params.m_source_mipmap_images_hdr.size() + 1);
if (hdr_mips.size() > 1)
{
hdr_mips.erase(0U);
m_params.m_source_mipmap_images_hdr.back().swap(hdr_mips);
any_mipmaps = true;
}
m_params.m_hdr = true;
m_params.m_uastc = true;
}
}
m_params.m_read_source_images = false;
m_params.m_source_filenames.clear();
m_params.m_source_alpha_filenames.clear();
if (!any_mipmaps)
{
m_params.m_source_mipmap_images.clear();
m_params.m_source_mipmap_images_hdr.clear();
}
if ((m_params.m_hdr) && (!m_params.m_source_images_hdr.size()))
{
error_printf("HDR mode enabled, but only LDR .DDS files were loaded. HDR mode requires half or float (HDR) .DDS inputs.\n");
return false;
}
return true;
}
bool basis_compressor::read_source_images()
{
debug_printf("basis_compressor::read_source_images\n");
const uint32_t total_source_files = m_params.m_read_source_images ? (uint32_t)m_params.m_source_filenames.size() :
(m_params.m_hdr ? (uint32_t)m_params.m_source_images_hdr.size() : (uint32_t)m_params.m_source_images.size());
if (!total_source_files)
{
debug_printf("basis_compressor::read_source_images: No source images to process\n");
return false;
}
m_stats.resize(0);
m_slice_descs.resize(0);
m_slice_images.resize(0);
m_slice_images_hdr.resize(0);
m_total_blocks = 0;
uint32_t total_macroblocks = 0;
m_any_source_image_has_alpha = false;
basisu::vector<image> source_images;
basisu::vector<imagef> source_images_hdr;
basisu::vector<std::string> source_filenames;
// TODO: Note HDR images don't support alpha here, currently.
// First load all source images, and determine if any have an alpha channel.
for (uint32_t source_file_index = 0; source_file_index < total_source_files; source_file_index++)
{
const char* pSource_filename = "";
image file_image;
imagef file_image_hdr;
if (m_params.m_read_source_images)
{
pSource_filename = m_params.m_source_filenames[source_file_index].c_str();
// Load the source image
if (m_params.m_hdr)
{
if (!load_image_hdr(pSource_filename, file_image_hdr, m_params.m_hdr_ldr_srgb_to_linear_conversion))
{
error_printf("Failed reading source image: %s\n", pSource_filename);
return false;
}
// For now, just slam alpha to 1.0f. UASTC HDR doesn't support alpha yet.
for (uint32_t y = 0; y < file_image_hdr.get_height(); y++)
for (uint32_t x = 0; x < file_image_hdr.get_width(); x++)
file_image_hdr(x, y)[3] = 1.0f;
}
else
{
if (!load_image(pSource_filename, file_image))
{
error_printf("Failed reading source image: %s\n", pSource_filename);
return false;
}
}
const uint32_t width = m_params.m_hdr ? file_image_hdr.get_width() : file_image.get_width();
const uint32_t height = m_params.m_hdr ? file_image_hdr.get_height() : file_image.get_height();
if (m_params.m_status_output)
{
printf("Read source image \"%s\", %ux%u\n", pSource_filename, width, height);
}
if (m_params.m_hdr)
{
clean_hdr_image(file_image_hdr);
}
else
{
// Optionally load another image and put a grayscale version of it into the alpha channel.
if ((source_file_index < m_params.m_source_alpha_filenames.size()) && (m_params.m_source_alpha_filenames[source_file_index].size()))
{
const char* pSource_alpha_image = m_params.m_source_alpha_filenames[source_file_index].c_str();
image alpha_data;
if (!load_image(pSource_alpha_image, alpha_data))
{
error_printf("Failed reading source image: %s\n", pSource_alpha_image);
return false;
}
printf("Read source alpha image \"%s\", %ux%u\n", pSource_alpha_image, alpha_data.get_width(), alpha_data.get_height());
alpha_data.crop(width, height);
for (uint32_t y = 0; y < height; y++)
for (uint32_t x = 0; x < width; x++)
file_image(x, y).a = (uint8_t)alpha_data(x, y).get_709_luma();
}
}
}
else
{
if (m_params.m_hdr)
{
file_image_hdr = m_params.m_source_images_hdr[source_file_index];
clean_hdr_image(file_image_hdr);
}
else
{
file_image = m_params.m_source_images[source_file_index];
}
}
if (!m_params.m_hdr)
{
if (m_params.m_renormalize)
file_image.renormalize_normal_map();
}
bool alpha_swizzled = false;
if (m_params.m_swizzle[0] != 0 ||
m_params.m_swizzle[1] != 1 ||
m_params.m_swizzle[2] != 2 ||
m_params.m_swizzle[3] != 3)
{
if (!m_params.m_hdr)
{
// Used for XY normal maps in RG - puts X in color, Y in alpha
for (uint32_t y = 0; y < file_image.get_height(); y++)
{
for (uint32_t x = 0; x < file_image.get_width(); x++)
{
const color_rgba& c = file_image(x, y);
file_image(x, y).set_noclamp_rgba(c[m_params.m_swizzle[0]], c[m_params.m_swizzle[1]], c[m_params.m_swizzle[2]], c[m_params.m_swizzle[3]]);
}
}
alpha_swizzled = (m_params.m_swizzle[3] != 3);
}
else
{
// Used for XY normal maps in RG - puts X in color, Y in alpha
for (uint32_t y = 0; y < file_image_hdr.get_height(); y++)
{
for (uint32_t x = 0; x < file_image_hdr.get_width(); x++)
{
const vec4F& c = file_image_hdr(x, y);
// For now, alpha is always 1.0f in UASTC HDR.
file_image_hdr(x, y).set(c[m_params.m_swizzle[0]], c[m_params.m_swizzle[1]], c[m_params.m_swizzle[2]], 1.0f); // c[m_params.m_swizzle[3]]);
}
}
}
}
bool has_alpha = false;
if (!m_params.m_hdr)
{
if (m_params.m_force_alpha || alpha_swizzled)
has_alpha = true;
else if (!m_params.m_check_for_alpha)
file_image.set_alpha(255);
else if (file_image.has_alpha())
has_alpha = true;
if (has_alpha)
m_any_source_image_has_alpha = true;
}
{
const uint32_t width = m_params.m_hdr ? file_image_hdr.get_width() : file_image.get_width();
const uint32_t height = m_params.m_hdr ? file_image_hdr.get_height() : file_image.get_height();
debug_printf("Source image index %u filename %s %ux%u has alpha: %u\n", source_file_index, pSource_filename, width, height, has_alpha);
}
if (m_params.m_y_flip)
{
if (m_params.m_hdr)
file_image_hdr.flip_y();
else
file_image.flip_y();
}
#if DEBUG_EXTRACT_SINGLE_BLOCK
const uint32_t block_x = 0;
const uint32_t block_y = 0;
if (m_params.m_hdr)
{
imagef block_image(4, 4);
block_image_hdr.blit(block_x * 4, block_y * 4, 4, 4, 0, 0, file_image_hdr, 0);
file_image_hdr = block_image;
}
else
{
image block_image(4, 4);
block_image.blit(block_x * 4, block_y * 4, 4, 4, 0, 0, file_image, 0);
file_image = block_image;
}
#endif
#if DEBUG_CROP_TEXTURE_TO_64x64
if (m_params.m_hdr)
file_image_hdr.resize(64, 64);
else
file_image.resize(64, 64);
#endif
if ((m_params.m_resample_width > 0) && (m_params.m_resample_height > 0))
{
int new_width = basisu::minimum<int>(m_params.m_resample_width, BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION);
int new_height = basisu::minimum<int>(m_params.m_resample_height, BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION);
debug_printf("Resampling to %ix%i\n", new_width, new_height);
// TODO: A box filter - kaiser looks too sharp on video. Let the caller control this.
if (m_params.m_hdr)
{
imagef temp_img(new_width, new_height);
image_resample(file_image_hdr, temp_img, "box"); // "kaiser");
clean_hdr_image(temp_img);
temp_img.swap(file_image_hdr);
}
else
{
image temp_img(new_width, new_height);
image_resample(file_image, temp_img, m_params.m_perceptual, "box"); // "kaiser");
temp_img.swap(file_image);
}
}
else if (m_params.m_resample_factor > 0.0f)
{
// TODO: A box filter - kaiser looks too sharp on video. Let the caller control this.
if (m_params.m_hdr)
{
int new_width = basisu::minimum<int>(basisu::maximum(1, (int)ceilf(file_image_hdr.get_width() * m_params.m_resample_factor)), BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION);
int new_height = basisu::minimum<int>(basisu::maximum(1, (int)ceilf(file_image_hdr.get_height() * m_params.m_resample_factor)), BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION);
debug_printf("Resampling to %ix%i\n", new_width, new_height);
imagef temp_img(new_width, new_height);
image_resample(file_image_hdr, temp_img, "box"); // "kaiser");
clean_hdr_image(temp_img);
temp_img.swap(file_image_hdr);
}
else
{
int new_width = basisu::minimum<int>(basisu::maximum(1, (int)ceilf(file_image.get_width() * m_params.m_resample_factor)), BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION);
int new_height = basisu::minimum<int>(basisu::maximum(1, (int)ceilf(file_image.get_height() * m_params.m_resample_factor)), BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION);
debug_printf("Resampling to %ix%i\n", new_width, new_height);
image temp_img(new_width, new_height);
image_resample(file_image, temp_img, m_params.m_perceptual, "box"); // "kaiser");
temp_img.swap(file_image);
}
}
const uint32_t width = m_params.m_hdr ? file_image_hdr.get_width() : file_image.get_width();
const uint32_t height = m_params.m_hdr ? file_image_hdr.get_height() : file_image.get_height();
if ((!width) || (!height))
{
error_printf("basis_compressor::read_source_images: Source image has a zero width and/or height!\n");
return false;
}
if ((width > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION) || (height > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION))
{
error_printf("basis_compressor::read_source_images: Source image \"%s\" is too large!\n", pSource_filename);
return false;
}
if (!m_params.m_hdr)
source_images.enlarge(1)->swap(file_image);
else
source_images_hdr.enlarge(1)->swap(file_image_hdr);
source_filenames.push_back(pSource_filename);
}
// Check if the caller has generated their own mipmaps.
if (m_params.m_hdr)
{
if (m_params.m_source_mipmap_images_hdr.size())
{
// Make sure they've passed us enough mipmap chains.
if ((m_params.m_source_images_hdr.size() != m_params.m_source_mipmap_images_hdr.size()) || (total_source_files != m_params.m_source_images_hdr.size()))
{
error_printf("basis_compressor::read_source_images(): m_params.m_source_mipmap_images_hdr.size() must equal m_params.m_source_images_hdr.size()!\n");
return false;
}
}
}
else
{
if (m_params.m_source_mipmap_images.size())
{
// Make sure they've passed us enough mipmap chains.
if ((m_params.m_source_images.size() != m_params.m_source_mipmap_images.size()) || (total_source_files != m_params.m_source_images.size()))
{
error_printf("basis_compressor::read_source_images(): m_params.m_source_mipmap_images.size() must equal m_params.m_source_images.size()!\n");
return false;
}
// Check if any of the user-supplied mipmap levels has alpha.
if (!m_any_source_image_has_alpha)
{
for (uint32_t source_file_index = 0; source_file_index < total_source_files; source_file_index++)
{
for (uint32_t mip_index = 0; mip_index < m_params.m_source_mipmap_images[source_file_index].size(); mip_index++)
{
const image& mip_img = m_params.m_source_mipmap_images[source_file_index][mip_index];
// Be sure to take into account any swizzling which will be applied.
if (mip_img.has_alpha(m_params.m_swizzle[3]))
{
m_any_source_image_has_alpha = true;
break;
}
}
if (m_any_source_image_has_alpha)
break;
}
}
}
}
debug_printf("Any source image has alpha: %u\n", m_any_source_image_has_alpha);
// Now, for each source image, create the slices corresponding to that image.
for (uint32_t source_file_index = 0; source_file_index < total_source_files; source_file_index++)
{
const std::string &source_filename = source_filenames[source_file_index];
basisu::vector<image> slices;
basisu::vector<imagef> slices_hdr;
slices.reserve(32);
slices_hdr.reserve(32);
// The first (largest) mipmap level.
image *pFile_image = source_images.size() ? &source_images[source_file_index] : nullptr;
imagef *pFile_image_hdr = source_images_hdr.size() ? &source_images_hdr[source_file_index] : nullptr;
// Reserve a slot for mip0.
if (m_params.m_hdr)
slices_hdr.resize(1);
else
slices.resize(1);
if ((!m_params.m_hdr) && (m_params.m_source_mipmap_images.size()))
{
// User-provided mipmaps for each layer or image in the texture array.
for (uint32_t mip_index = 0; mip_index < m_params.m_source_mipmap_images[source_file_index].size(); mip_index++)
{
image& mip_img = m_params.m_source_mipmap_images[source_file_index][mip_index];
if ((m_params.m_swizzle[0] != 0) ||
(m_params.m_swizzle[1] != 1) ||
(m_params.m_swizzle[2] != 2) ||
(m_params.m_swizzle[3] != 3))
{
// Used for XY normal maps in RG - puts X in color, Y in alpha
for (uint32_t y = 0; y < mip_img.get_height(); y++)
{
for (uint32_t x = 0; x < mip_img.get_width(); x++)
{
const color_rgba& c = mip_img(x, y);
mip_img(x, y).set_noclamp_rgba(c[m_params.m_swizzle[0]], c[m_params.m_swizzle[1]], c[m_params.m_swizzle[2]], c[m_params.m_swizzle[3]]);
}
}
}
slices.push_back(mip_img);
}
}
else if ((m_params.m_hdr) && (m_params.m_source_mipmap_images_hdr.size()))
{
// User-provided mipmaps for each layer or image in the texture array.
for (uint32_t mip_index = 0; mip_index < m_params.m_source_mipmap_images_hdr[source_file_index].size(); mip_index++)
{
imagef& mip_img = m_params.m_source_mipmap_images_hdr[source_file_index][mip_index];
if ((m_params.m_swizzle[0] != 0) ||
(m_params.m_swizzle[1] != 1) ||
(m_params.m_swizzle[2] != 2) ||
(m_params.m_swizzle[3] != 3))
{
// Used for XY normal maps in RG - puts X in color, Y in alpha
for (uint32_t y = 0; y < mip_img.get_height(); y++)
{
for (uint32_t x = 0; x < mip_img.get_width(); x++)
{
const vec4F& c = mip_img(x, y);
// For now, HDR alpha is always 1.0f.
mip_img(x, y).set(c[m_params.m_swizzle[0]], c[m_params.m_swizzle[1]], c[m_params.m_swizzle[2]], 1.0f); // c[m_params.m_swizzle[3]]);
}
}
}
clean_hdr_image(mip_img);
slices_hdr.push_back(mip_img);
}
}
else if (m_params.m_mip_gen)
{
// Automatically generate mipmaps.
if (m_params.m_hdr)
{
if (!generate_mipmaps(*pFile_image_hdr, slices_hdr, m_any_source_image_has_alpha))
return false;
}
else
{
if (!generate_mipmaps(*pFile_image, slices, m_any_source_image_has_alpha))
return false;
}
}
// Swap in the largest mipmap level here to avoid copying it, because generate_mips() will change the array.
// NOTE: file_image is now blank.
if (m_params.m_hdr)
slices_hdr[0].swap(*pFile_image_hdr);
else
slices[0].swap(*pFile_image);
uint_vec mip_indices(m_params.m_hdr ? slices_hdr.size() : slices.size());
for (uint32_t i = 0; i < (m_params.m_hdr ? slices_hdr.size() : slices.size()); i++)
mip_indices[i] = i;
if ((!m_params.m_hdr) && (m_any_source_image_has_alpha) && (!m_params.m_uastc))
{
// For ETC1S, if source has alpha, then even mips will have RGB, and odd mips will have alpha in RGB.
basisu::vector<image> alpha_slices;
uint_vec new_mip_indices;
alpha_slices.reserve(slices.size() * 2);
for (uint32_t i = 0; i < slices.size(); i++)
{
image lvl_rgb(slices[i]);
image lvl_a(lvl_rgb);
for (uint32_t y = 0; y < lvl_a.get_height(); y++)
{
for (uint32_t x = 0; x < lvl_a.get_width(); x++)
{
uint8_t a = lvl_a(x, y).a;
lvl_a(x, y).set_noclamp_rgba(a, a, a, 255);
}
}
lvl_rgb.set_alpha(255);
alpha_slices.push_back(lvl_rgb);
new_mip_indices.push_back(i);
alpha_slices.push_back(lvl_a);
new_mip_indices.push_back(i);
}
slices.swap(alpha_slices);
mip_indices.swap(new_mip_indices);
}
if (m_params.m_hdr)
{
assert(slices_hdr.size() == mip_indices.size());
}
else
{
assert(slices.size() == mip_indices.size());
}
for (uint32_t slice_index = 0; slice_index < (m_params.m_hdr ? slices_hdr.size() : slices.size()); slice_index++)
{
image *pSlice_image = m_params.m_hdr ? nullptr : &slices[slice_index];
imagef *pSlice_image_hdr = m_params.m_hdr ? &slices_hdr[slice_index] : nullptr;
const uint32_t orig_width = m_params.m_hdr ? pSlice_image_hdr->get_width() : pSlice_image->get_width();
const uint32_t orig_height = m_params.m_hdr ? pSlice_image_hdr->get_height() : pSlice_image->get_height();
bool is_alpha_slice = false;
if ((!m_params.m_hdr) && (m_any_source_image_has_alpha))
{
if (m_params.m_uastc)
{
is_alpha_slice = pSlice_image->has_alpha();
}
else
{
is_alpha_slice = (slice_index & 1) != 0;
}
}
// Enlarge the source image to 4x4 block boundaries, duplicating edge pixels if necessary to avoid introducing extra colors into blocks.
if (m_params.m_hdr)
pSlice_image_hdr->crop_dup_borders(pSlice_image_hdr->get_block_width(4) * 4, pSlice_image_hdr->get_block_height(4) * 4);
else
pSlice_image->crop_dup_borders(pSlice_image->get_block_width(4) * 4, pSlice_image->get_block_height(4) * 4);
if (m_params.m_debug_images)
{
if (m_params.m_hdr)
write_exr(string_format("basis_debug_source_image_%u_slice_%u.exr", source_file_index, slice_index).c_str(), *pSlice_image_hdr, 3, 0);
else
save_png(string_format("basis_debug_source_image_%u_slice_%u.png", source_file_index, slice_index).c_str(), *pSlice_image);
}
const uint32_t dest_image_index = (m_params.m_hdr ? m_slice_images_hdr.size() : m_slice_images.size());
enlarge_vector(m_stats, 1);
if (m_params.m_hdr)
enlarge_vector(m_slice_images_hdr, 1);
else
enlarge_vector(m_slice_images, 1);
enlarge_vector(m_slice_descs, 1);
m_stats[dest_image_index].m_filename = source_filename.c_str();
m_stats[dest_image_index].m_width = orig_width;
m_stats[dest_image_index].m_height = orig_height;
debug_printf("****** Slice %u: mip %u, alpha_slice: %u, filename: \"%s\", original: %ux%u actual: %ux%u\n",
m_slice_descs.size() - 1, mip_indices[slice_index], is_alpha_slice, source_filename.c_str(),
orig_width, orig_height,
m_params.m_hdr ? pSlice_image_hdr->get_width() : pSlice_image->get_width(),
m_params.m_hdr ? pSlice_image_hdr->get_height() : pSlice_image->get_height());
basisu_backend_slice_desc& slice_desc = m_slice_descs[dest_image_index];
slice_desc.m_first_block_index = m_total_blocks;
slice_desc.m_orig_width = orig_width;
slice_desc.m_orig_height = orig_height;
if (m_params.m_hdr)
{
slice_desc.m_width = pSlice_image_hdr->get_width();
slice_desc.m_height = pSlice_image_hdr->get_height();
slice_desc.m_num_blocks_x = pSlice_image_hdr->get_block_width(4);
slice_desc.m_num_blocks_y = pSlice_image_hdr->get_block_height(4);
}
else
{
slice_desc.m_width = pSlice_image->get_width();
slice_desc.m_height = pSlice_image->get_height();
slice_desc.m_num_blocks_x = pSlice_image->get_block_width(4);
slice_desc.m_num_blocks_y = pSlice_image->get_block_height(4);
}
slice_desc.m_num_macroblocks_x = (slice_desc.m_num_blocks_x + 1) >> 1;
slice_desc.m_num_macroblocks_y = (slice_desc.m_num_blocks_y + 1) >> 1;
slice_desc.m_source_file_index = source_file_index;
slice_desc.m_mip_index = mip_indices[slice_index];
slice_desc.m_alpha = is_alpha_slice;
slice_desc.m_iframe = false;
if (m_params.m_tex_type == basist::cBASISTexTypeVideoFrames)
{
slice_desc.m_iframe = (source_file_index == 0);
}
m_total_blocks += slice_desc.m_num_blocks_x * slice_desc.m_num_blocks_y;
total_macroblocks += slice_desc.m_num_macroblocks_x * slice_desc.m_num_macroblocks_y;
// Finally, swap in the slice's image to avoid copying it.
// NOTE: slice_image is now blank.
if (m_params.m_hdr)
m_slice_images_hdr[dest_image_index].swap(*pSlice_image_hdr);
else
m_slice_images[dest_image_index].swap(*pSlice_image);
} // slice_index
} // source_file_index
debug_printf("Total blocks: %u, Total macroblocks: %u\n", m_total_blocks, total_macroblocks);
// Make sure we don't have too many slices
if (m_slice_descs.size() > BASISU_MAX_SLICES)
{
error_printf("Too many slices!\n");
return false;
}
// Basic sanity check on the slices
for (uint32_t i = 1; i < m_slice_descs.size(); i++)
{
const basisu_backend_slice_desc &prev_slice_desc = m_slice_descs[i - 1];
const basisu_backend_slice_desc &slice_desc = m_slice_descs[i];
// Make sure images are in order
int image_delta = (int)slice_desc.m_source_file_index - (int)prev_slice_desc.m_source_file_index;
if (image_delta > 1)
return false;
// Make sure mipmap levels are in order
if (!image_delta)
{
int level_delta = (int)slice_desc.m_mip_index - (int)prev_slice_desc.m_mip_index;
if (level_delta > 1)
return false;
}
}
if (m_params.m_status_output)
{
printf("Total slices: %u\n", (uint32_t)m_slice_descs.size());
}
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
const basisu_backend_slice_desc &slice_desc = m_slice_descs[i];
if (m_params.m_status_output)
{
printf("Slice: %u, alpha: %u, orig width/height: %ux%u, width/height: %ux%u, first_block: %u, image_index: %u, mip_level: %u, iframe: %u\n",
i, slice_desc.m_alpha, slice_desc.m_orig_width, slice_desc.m_orig_height,
slice_desc.m_width, slice_desc.m_height,
slice_desc.m_first_block_index, slice_desc.m_source_file_index, slice_desc.m_mip_index, slice_desc.m_iframe);
}
if (m_any_source_image_has_alpha)
{
// HDR doesn't support alpha yet
if (m_params.m_hdr)
return false;
if (!m_params.m_uastc)
{
// For ETC1S, alpha slices must be at odd slice indices.
if (slice_desc.m_alpha)
{
if ((i & 1) == 0)
return false;
const basisu_backend_slice_desc& prev_slice_desc = m_slice_descs[i - 1];
// Make sure previous slice has this image's color data
if (prev_slice_desc.m_source_file_index != slice_desc.m_source_file_index)
return false;
if (prev_slice_desc.m_alpha)
return false;
if (prev_slice_desc.m_mip_index != slice_desc.m_mip_index)
return false;
if (prev_slice_desc.m_num_blocks_x != slice_desc.m_num_blocks_x)
return false;
if (prev_slice_desc.m_num_blocks_y != slice_desc.m_num_blocks_y)
return false;
}
else if (i & 1)
return false;
}
}
else if (slice_desc.m_alpha)
{
return false;
}
if ((slice_desc.m_orig_width > slice_desc.m_width) || (slice_desc.m_orig_height > slice_desc.m_height))
return false;
if ((slice_desc.m_source_file_index == 0) && (m_params.m_tex_type == basist::cBASISTexTypeVideoFrames))
{
if (!slice_desc.m_iframe)
return false;
}
}
return true;
}
// Do some basic validation for 2D arrays, cubemaps, video, and volumes.
bool basis_compressor::validate_texture_type_constraints()
{
debug_printf("basis_compressor::validate_texture_type_constraints\n");
// In 2D mode anything goes (each image may have a different resolution and # of mipmap levels).
if (m_params.m_tex_type == basist::cBASISTexType2D)
return true;
uint32_t total_basis_images = 0;
for (uint32_t slice_index = 0; slice_index < (m_params.m_hdr ? m_slice_images_hdr.size() : m_slice_images.size()); slice_index++)
{
const basisu_backend_slice_desc &slice_desc = m_slice_descs[slice_index];
total_basis_images = maximum<uint32_t>(total_basis_images, slice_desc.m_source_file_index + 1);
}
if (m_params.m_tex_type == basist::cBASISTexTypeCubemapArray)
{
// For cubemaps, validate that the total # of Basis images is a multiple of 6.
if ((total_basis_images % 6) != 0)
{
error_printf("basis_compressor::validate_texture_type_constraints: For cubemaps the total number of input images is not a multiple of 6!\n");
return false;
}
}
// Now validate that all the mip0's have the same dimensions, and that each image has the same # of mipmap levels.
uint_vec image_mipmap_levels(total_basis_images);
int width = -1, height = -1;
for (uint32_t slice_index = 0; slice_index < (m_params.m_hdr ? m_slice_images_hdr.size() : m_slice_images.size()); slice_index++)
{
const basisu_backend_slice_desc &slice_desc = m_slice_descs[slice_index];
image_mipmap_levels[slice_desc.m_source_file_index] = maximum(image_mipmap_levels[slice_desc.m_source_file_index], slice_desc.m_mip_index + 1);
if (slice_desc.m_mip_index != 0)
continue;
if (width < 0)
{
width = slice_desc.m_orig_width;
height = slice_desc.m_orig_height;
}
else if ((width != (int)slice_desc.m_orig_width) || (height != (int)slice_desc.m_orig_height))
{
error_printf("basis_compressor::validate_texture_type_constraints: The source image resolutions are not all equal!\n");
return false;
}
}
for (size_t i = 1; i < image_mipmap_levels.size(); i++)
{
if (image_mipmap_levels[0] != image_mipmap_levels[i])
{
error_printf("basis_compressor::validate_texture_type_constraints: Each image must have the same number of mipmap levels!\n");
return false;
}
}
return true;
}
bool basis_compressor::extract_source_blocks()
{
debug_printf("basis_compressor::extract_source_blocks\n");
if (m_params.m_hdr)
m_source_blocks_hdr.resize(m_total_blocks);
else
m_source_blocks.resize(m_total_blocks);
for (uint32_t slice_index = 0; slice_index < (m_params.m_hdr ? m_slice_images_hdr.size() : m_slice_images.size()); slice_index++)
{
const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
const uint32_t num_blocks_x = slice_desc.m_num_blocks_x;
const uint32_t num_blocks_y = slice_desc.m_num_blocks_y;
const image *pSource_image = m_params.m_hdr ? nullptr : &m_slice_images[slice_index];
const imagef *pSource_image_hdr = m_params.m_hdr ? &m_slice_images_hdr[slice_index] : nullptr;
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
if (m_params.m_hdr)
{
vec4F* pBlock = m_source_blocks_hdr[slice_desc.m_first_block_index + block_x + block_y * num_blocks_x].get_ptr();
pSource_image_hdr->extract_block_clamped(pBlock, block_x * 4, block_y * 4, 4, 4);
// Additional (technically optional) early sanity checking of the block texels.
for (uint32_t i = 0; i < 16; i++)
{
for (uint32_t c = 0; c < 3; c++)
{
float v = pBlock[i][c];
if (std::isnan(v) || std::isinf(v) || (v < 0.0f) || (v > basist::MAX_HALF_FLOAT))
{
error_printf("basis_compressor::extract_source_blocks: invalid float component\n");
return false;
}
}
}
}
else
{
pSource_image->extract_block_clamped(m_source_blocks[slice_desc.m_first_block_index + block_x + block_y * num_blocks_x].get_ptr(), block_x * 4, block_y * 4, 4, 4);
}
}
}
}
return true;
}
bool basis_compressor::process_frontend()
{
debug_printf("basis_compressor::process_frontend\n");
#if 0
// TODO
basis_etc1_pack_params pack_params;
pack_params.m_quality = cETCQualityMedium;
pack_params.m_perceptual = m_params.m_perceptual;
pack_params.m_use_color4 = false;
pack_etc1_block_context pack_context;
std::unordered_set<uint64_t> endpoint_hash;
std::unordered_set<uint32_t> selector_hash;
for (uint32_t i = 0; i < m_source_blocks.size(); i++)
{
etc_block blk;
pack_etc1_block(blk, m_source_blocks[i].get_ptr(), pack_params, pack_context);
const color_rgba c0(blk.get_block_color(0, false));
endpoint_hash.insert((c0.r | (c0.g << 5) | (c0.b << 10)) | (blk.get_inten_table(0) << 16));
const color_rgba c1(blk.get_block_color(1, false));
endpoint_hash.insert((c1.r | (c1.g << 5) | (c1.b << 10)) | (blk.get_inten_table(1) << 16));
selector_hash.insert(blk.get_raw_selector_bits());
}
const uint32_t total_unique_endpoints = (uint32_t)endpoint_hash.size();
const uint32_t total_unique_selectors = (uint32_t)selector_hash.size();
if (m_params.m_debug)
{
debug_printf("Unique endpoints: %u, unique selectors: %u\n", total_unique_endpoints, total_unique_selectors);
}
#endif
const double total_texels = m_total_blocks * 16.0f;
int endpoint_clusters = m_params.m_max_endpoint_clusters;
int selector_clusters = m_params.m_max_selector_clusters;
if (endpoint_clusters > basisu_frontend::cMaxEndpointClusters)
{
error_printf("Too many endpoint clusters! (%u but max is %u)\n", endpoint_clusters, basisu_frontend::cMaxEndpointClusters);
return false;
}
if (selector_clusters > basisu_frontend::cMaxSelectorClusters)
{
error_printf("Too many selector clusters! (%u but max is %u)\n", selector_clusters, basisu_frontend::cMaxSelectorClusters);
return false;
}
if (m_params.m_quality_level != -1)
{
const float quality = saturate(m_params.m_quality_level / 255.0f);
const float bits_per_endpoint_cluster = 14.0f;
const float max_desired_endpoint_cluster_bits_per_texel = 1.0f; // .15f
int max_endpoints = static_cast<int>((max_desired_endpoint_cluster_bits_per_texel * total_texels) / bits_per_endpoint_cluster);
const float mid = 128.0f / 255.0f;
float color_endpoint_quality = quality;
const float endpoint_split_point = 0.5f;
// In v1.2 and in previous versions, the endpoint codebook size at quality 128 was 3072. This wasn't quite large enough.
const int ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE = 4800;
const int MAX_ENDPOINT_CODEBOOK_SIZE = 8192;
if (color_endpoint_quality <= mid)
{
color_endpoint_quality = lerp(0.0f, endpoint_split_point, powf(color_endpoint_quality / mid, .65f));
max_endpoints = clamp<int>(max_endpoints, 256, ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE);
max_endpoints = minimum<uint32_t>(max_endpoints, m_total_blocks);
if (max_endpoints < 64)
max_endpoints = 64;
endpoint_clusters = clamp<uint32_t>((uint32_t)(.5f + lerp<float>(32, static_cast<float>(max_endpoints), color_endpoint_quality)), 32, basisu_frontend::cMaxEndpointClusters);
}
else
{
color_endpoint_quality = powf((color_endpoint_quality - mid) / (1.0f - mid), 1.6f);
max_endpoints = clamp<int>(max_endpoints, 256, MAX_ENDPOINT_CODEBOOK_SIZE);
max_endpoints = minimum<uint32_t>(max_endpoints, m_total_blocks);
if (max_endpoints < ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE)
max_endpoints = ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE;
endpoint_clusters = clamp<uint32_t>((uint32_t)(.5f + lerp<float>(ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE, static_cast<float>(max_endpoints), color_endpoint_quality)), 32, basisu_frontend::cMaxEndpointClusters);
}
float bits_per_selector_cluster = 14.0f;
const float max_desired_selector_cluster_bits_per_texel = 1.0f; // .15f
int max_selectors = static_cast<int>((max_desired_selector_cluster_bits_per_texel * total_texels) / bits_per_selector_cluster);
max_selectors = clamp<int>(max_selectors, 256, basisu_frontend::cMaxSelectorClusters);
max_selectors = minimum<uint32_t>(max_selectors, m_total_blocks);
float color_selector_quality = quality;
//color_selector_quality = powf(color_selector_quality, 1.65f);
color_selector_quality = powf(color_selector_quality, 2.62f);
if (max_selectors < 96)
max_selectors = 96;
selector_clusters = clamp<uint32_t>((uint32_t)(.5f + lerp<float>(96, static_cast<float>(max_selectors), color_selector_quality)), 8, basisu_frontend::cMaxSelectorClusters);
debug_printf("Max endpoints: %u, max selectors: %u\n", endpoint_clusters, selector_clusters);
if (m_params.m_quality_level >= 223)
{
if (!m_params.m_selector_rdo_thresh.was_changed())
{
if (!m_params.m_endpoint_rdo_thresh.was_changed())
m_params.m_endpoint_rdo_thresh *= .25f;
if (!m_params.m_selector_rdo_thresh.was_changed())
m_params.m_selector_rdo_thresh *= .25f;
}
}
else if (m_params.m_quality_level >= 192)
{
if (!m_params.m_endpoint_rdo_thresh.was_changed())
m_params.m_endpoint_rdo_thresh *= .5f;
if (!m_params.m_selector_rdo_thresh.was_changed())
m_params.m_selector_rdo_thresh *= .5f;
}
else if (m_params.m_quality_level >= 160)
{
if (!m_params.m_endpoint_rdo_thresh.was_changed())
m_params.m_endpoint_rdo_thresh *= .75f;
if (!m_params.m_selector_rdo_thresh.was_changed())
m_params.m_selector_rdo_thresh *= .75f;
}
else if (m_params.m_quality_level >= 129)
{
float l = (quality - 129 / 255.0f) / ((160 - 129) / 255.0f);
if (!m_params.m_endpoint_rdo_thresh.was_changed())
m_params.m_endpoint_rdo_thresh *= lerp<float>(1.0f, .75f, l);
if (!m_params.m_selector_rdo_thresh.was_changed())
m_params.m_selector_rdo_thresh *= lerp<float>(1.0f, .75f, l);
}
}
basisu_frontend::params p;
p.m_num_source_blocks = m_total_blocks;
p.m_pSource_blocks = &m_source_blocks[0];
p.m_max_endpoint_clusters = endpoint_clusters;
p.m_max_selector_clusters = selector_clusters;
p.m_perceptual = m_params.m_perceptual;
p.m_debug_stats = m_params.m_debug;
p.m_debug_images = m_params.m_debug_images;
p.m_compression_level = m_params.m_compression_level;
p.m_tex_type = m_params.m_tex_type;
p.m_multithreaded = m_params.m_multithreading;
p.m_disable_hierarchical_endpoint_codebooks = m_params.m_disable_hierarchical_endpoint_codebooks;
p.m_validate = m_params.m_validate_etc1s;
p.m_pJob_pool = m_params.m_pJob_pool;
p.m_pGlobal_codebooks = m_params.m_pGlobal_codebooks;
// Don't keep trying to use OpenCL if it ever fails.
p.m_pOpenCL_context = !m_opencl_failed ? m_pOpenCL_context : nullptr;
if (!m_frontend.init(p))
{
error_printf("basisu_frontend::init() failed!\n");
return false;
}
m_frontend.compress();
if (m_frontend.get_opencl_failed())
m_opencl_failed = true;
if (m_params.m_debug_images)
{
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
char filename[1024];
#ifdef _WIN32
sprintf_s(filename, sizeof(filename), "rdo_frontend_output_output_blocks_%u.png", i);
#else
snprintf(filename, sizeof(filename), "rdo_frontend_output_output_blocks_%u.png", i);
#endif
m_frontend.dump_debug_image(filename, m_slice_descs[i].m_first_block_index, m_slice_descs[i].m_num_blocks_x, m_slice_descs[i].m_num_blocks_y, true);
#ifdef _WIN32
sprintf_s(filename, sizeof(filename), "rdo_frontend_output_api_%u.png", i);
#else
snprintf(filename, sizeof(filename), "rdo_frontend_output_api_%u.png", i);
#endif
m_frontend.dump_debug_image(filename, m_slice_descs[i].m_first_block_index, m_slice_descs[i].m_num_blocks_x, m_slice_descs[i].m_num_blocks_y, false);
}
}
return true;
}
bool basis_compressor::extract_frontend_texture_data()
{
if (!m_params.m_compute_stats)
return true;
debug_printf("basis_compressor::extract_frontend_texture_data\n");
m_frontend_output_textures.resize(m_slice_descs.size());
m_best_etc1s_images.resize(m_slice_descs.size());
m_best_etc1s_images_unpacked.resize(m_slice_descs.size());
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
const basisu_backend_slice_desc &slice_desc = m_slice_descs[i];
const uint32_t num_blocks_x = slice_desc.m_num_blocks_x;
const uint32_t num_blocks_y = slice_desc.m_num_blocks_y;
const uint32_t width = num_blocks_x * 4;
const uint32_t height = num_blocks_y * 4;
m_frontend_output_textures[i].init(texture_format::cETC1, width, height);
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
memcpy(m_frontend_output_textures[i].get_block_ptr(block_x, block_y, 0), &m_frontend.get_output_block(slice_desc.m_first_block_index + block_x + block_y * num_blocks_x), sizeof(etc_block));
#if 0
if (m_params.m_debug_images)
{
char filename[1024];
sprintf_s(filename, sizeof(filename), "rdo_etc_frontend_%u_", i);
write_etc1_vis_images(m_frontend_output_textures[i], filename);
}
#endif
m_best_etc1s_images[i].init(texture_format::cETC1, width, height);
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
memcpy(m_best_etc1s_images[i].get_block_ptr(block_x, block_y, 0), &m_frontend.get_etc1s_block(slice_desc.m_first_block_index + block_x + block_y * num_blocks_x), sizeof(etc_block));
m_best_etc1s_images[i].unpack(m_best_etc1s_images_unpacked[i]);
}
return true;
}
bool basis_compressor::process_backend()
{
debug_printf("basis_compressor::process_backend\n");
basisu_backend_params backend_params;
backend_params.m_debug = m_params.m_debug;
backend_params.m_debug_images = m_params.m_debug_images;
backend_params.m_etc1s = true;
backend_params.m_compression_level = m_params.m_compression_level;
if (!m_params.m_no_endpoint_rdo)
backend_params.m_endpoint_rdo_quality_thresh = m_params.m_endpoint_rdo_thresh;
if (!m_params.m_no_selector_rdo)
backend_params.m_selector_rdo_quality_thresh = m_params.m_selector_rdo_thresh;
backend_params.m_used_global_codebooks = m_frontend.get_params().m_pGlobal_codebooks != nullptr;
backend_params.m_validate = m_params.m_validate_output_data;
m_backend.init(&m_frontend, backend_params, m_slice_descs);
uint32_t total_packed_bytes = m_backend.encode();
if (!total_packed_bytes)
{
error_printf("basis_compressor::encode() failed!\n");
return false;
}
debug_printf("Total packed bytes (estimated): %u\n", total_packed_bytes);
return true;
}
bool basis_compressor::create_basis_file_and_transcode()
{
debug_printf("basis_compressor::create_basis_file_and_transcode\n");
const basisu_backend_output& encoded_output = m_params.m_uastc ? m_uastc_backend_output : m_backend.get_output();
if (!m_basis_file.init(encoded_output, m_params.m_tex_type, m_params.m_userdata0, m_params.m_userdata1, m_params.m_y_flip, m_params.m_us_per_frame))
{
error_printf("basis_compressor::create_basis_file_and_transcode: basisu_backend:init() failed!\n");
return false;
}
const uint8_vec &comp_data = m_basis_file.get_compressed_data();
m_output_basis_file = comp_data;
uint32_t total_orig_pixels = 0, total_texels = 0, total_orig_texels = 0;
(void)total_texels;
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
const basisu_backend_slice_desc& slice_desc = m_slice_descs[i];
total_orig_pixels += slice_desc.m_orig_width * slice_desc.m_orig_height;
total_texels += slice_desc.m_width * slice_desc.m_height;
}
m_basis_file_size = (uint32_t)comp_data.size();
m_basis_bits_per_texel = total_orig_texels ? (comp_data.size() * 8.0f) / total_orig_texels : 0;
debug_printf("Total .basis output file size: %u, %3.3f bits/texel\n", comp_data.size(), comp_data.size() * 8.0f / total_orig_pixels);
if (m_params.m_validate_output_data)
{
interval_timer tm;
tm.start();
basist::basisu_transcoder_init();
debug_printf("basist::basisu_transcoder_init: Took %f ms\n", tm.get_elapsed_ms());
// Verify the compressed data by transcoding it to ASTC (or ETC1)/BC7 and validating the CRC's.
basist::basisu_transcoder decoder;
if (!decoder.validate_file_checksums(&comp_data[0], (uint32_t)comp_data.size(), true))
{
error_printf("decoder.validate_file_checksums() failed!\n");
return false;
}
m_decoded_output_textures.resize(m_slice_descs.size());
if (m_params.m_hdr)
{
m_decoded_output_textures_bc6h_hdr_unpacked.resize(m_slice_descs.size());
m_decoded_output_textures_astc_hdr.resize(m_slice_descs.size());
m_decoded_output_textures_astc_hdr_unpacked.resize(m_slice_descs.size());
}
else
{
m_decoded_output_textures_unpacked.resize(m_slice_descs.size());
m_decoded_output_textures_bc7.resize(m_slice_descs.size());
m_decoded_output_textures_unpacked_bc7.resize(m_slice_descs.size());
}
tm.start();
if (m_params.m_pGlobal_codebooks)
{
decoder.set_global_codebooks(m_params.m_pGlobal_codebooks);
}
if (!decoder.start_transcoding(&comp_data[0], (uint32_t)comp_data.size()))
{
error_printf("decoder.start_transcoding() failed!\n");
return false;
}
double start_transcoding_time = tm.get_elapsed_secs();
debug_printf("basisu_compressor::start_transcoding() took %3.3fms\n", start_transcoding_time * 1000.0f);
double total_time_etc1s_or_astc = 0;
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
basisu::texture_format tex_format = m_params.m_hdr ? texture_format::cBC6HUnsigned : (m_params.m_uastc ? texture_format::cUASTC4x4 : texture_format::cETC1);
basist::block_format format = m_params.m_hdr ? basist::block_format::cBC6H : (m_params.m_uastc ? basist::block_format::cUASTC_4x4 : basist::block_format::cETC1);
gpu_image decoded_texture;
decoded_texture.init(
tex_format,
m_slice_descs[i].m_width, m_slice_descs[i].m_height);
tm.start();
uint32_t bytes_per_block = m_params.m_uastc ? 16 : 8;
if (!decoder.transcode_slice(&comp_data[0], (uint32_t)comp_data.size(), i,
reinterpret_cast<etc_block*>(decoded_texture.get_ptr()), m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y, format, bytes_per_block))
{
error_printf("Transcoding failed on slice %u!\n", i);
return false;
}
total_time_etc1s_or_astc += tm.get_elapsed_secs();
if (encoded_output.m_tex_format == basist::basis_tex_format::cETC1S)
{
uint32_t image_crc16 = basist::crc16(decoded_texture.get_ptr(), decoded_texture.get_size_in_bytes(), 0);
if (image_crc16 != encoded_output.m_slice_image_crcs[i])
{
error_printf("Decoded image data CRC check failed on slice %u!\n", i);
return false;
}
debug_printf("Decoded image data CRC check succeeded on slice %i\n", i);
}
m_decoded_output_textures[i] = decoded_texture;
}
double total_alt_transcode_time = 0;
tm.start();
if (m_params.m_hdr)
{
assert(basist::basis_is_format_supported(basist::transcoder_texture_format::cTFASTC_HDR_4x4_RGBA, basist::basis_tex_format::cUASTC_HDR_4x4));
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
gpu_image decoded_texture;
decoded_texture.init(texture_format::cASTC_HDR_4x4, m_slice_descs[i].m_width, m_slice_descs[i].m_height);
tm.start();
if (!decoder.transcode_slice(&comp_data[0], (uint32_t)comp_data.size(), i,
reinterpret_cast<basist::astc_blk*>(decoded_texture.get_ptr()), m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y, basist::block_format::cASTC_HDR_4x4, 16))
{
error_printf("Transcoding failed to ASTC HDR on slice %u!\n", i);
return false;
}
m_decoded_output_textures_astc_hdr[i] = decoded_texture;
}
}
else
{
if (basist::basis_is_format_supported(basist::transcoder_texture_format::cTFBC7_RGBA, basist::basis_tex_format::cUASTC4x4) &&
basist::basis_is_format_supported(basist::transcoder_texture_format::cTFBC7_RGBA, basist::basis_tex_format::cETC1S))
{
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
gpu_image decoded_texture;
decoded_texture.init(texture_format::cBC7, m_slice_descs[i].m_width, m_slice_descs[i].m_height);
if (!decoder.transcode_slice(&comp_data[0], (uint32_t)comp_data.size(), i,
reinterpret_cast<etc_block*>(decoded_texture.get_ptr()), m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y, basist::block_format::cBC7, 16))
{
error_printf("Transcoding failed to BC7 on slice %u!\n", i);
return false;
}
m_decoded_output_textures_bc7[i] = decoded_texture;
}
}
}
total_alt_transcode_time = tm.get_elapsed_secs();
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
if (m_params.m_hdr)
{
// BC6H
bool status = m_decoded_output_textures[i].unpack_hdr(m_decoded_output_textures_bc6h_hdr_unpacked[i]);
assert(status);
BASISU_NOTE_UNUSED(status);
// ASTC HDR
status = m_decoded_output_textures_astc_hdr[i].unpack_hdr(m_decoded_output_textures_astc_hdr_unpacked[i]);
assert(status);
}
else
{
bool status = m_decoded_output_textures[i].unpack(m_decoded_output_textures_unpacked[i]);
assert(status);
BASISU_NOTE_UNUSED(status);
if (m_decoded_output_textures_bc7[i].get_pixel_width())
{
status = m_decoded_output_textures_bc7[i].unpack(m_decoded_output_textures_unpacked_bc7[i]);
assert(status);
}
}
}
debug_printf("Transcoded to %s in %3.3fms, %f texels/sec\n",
m_params.m_hdr ? "BC6H" : (m_params.m_uastc ? "ASTC" : "ETC1"),
total_time_etc1s_or_astc * 1000.0f, total_orig_pixels / total_time_etc1s_or_astc);
if (total_alt_transcode_time != 0)
debug_printf("Alternate transcode in %3.3fms, %f texels/sec\n", total_alt_transcode_time * 1000.0f, total_orig_pixels / total_alt_transcode_time);
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
{
const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
const uint32_t total_blocks = slice_desc.m_num_blocks_x * slice_desc.m_num_blocks_y;
BASISU_NOTE_UNUSED(total_blocks);
assert(m_decoded_output_textures[slice_index].get_total_blocks() == total_blocks);
}
} // if (m_params.m_validate_output_data)
return true;
}
bool basis_compressor::write_hdr_debug_images(const char* pBasename, const imagef& orig_hdr_img, uint32_t width, uint32_t height)
{
// Copy image to account for 4x4 block expansion
imagef hdr_img(orig_hdr_img);
hdr_img.resize(width, height);
image srgb_img(width, height);
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
vec4F p(hdr_img(x, y));
p[0] = clamp(p[0], 0.0f, 1.0f);
p[1] = clamp(p[1], 0.0f, 1.0f);
p[2] = clamp(p[2], 0.0f, 1.0f);
int rc = (int)std::round(linear_to_srgb(p[0]) * 255.0f);
int gc = (int)std::round(linear_to_srgb(p[1]) * 255.0f);
int bc = (int)std::round(linear_to_srgb(p[2]) * 255.0f);
srgb_img.set_clipped(x, y, color_rgba(rc, gc, bc, 255));
}
}
{
const std::string filename(string_format("%s_linear_clamped_to_srgb.png", pBasename));
save_png(filename.c_str(), srgb_img);
printf("Wrote .PNG file %s\n", filename.c_str());
}
{
const std::string filename(string_format("%s_compressive_tonemapped.png", pBasename));
image compressive_tonemapped_img;
bool status = tonemap_image_compressive(compressive_tonemapped_img, hdr_img);
if (!status)
{
error_printf("basis_compressor::write_hdr_debug_images: tonemap_image_compressive() failed (invalid half-float input)\n");
}
else
{
save_png(filename.c_str(), compressive_tonemapped_img);
printf("Wrote .PNG file %s\n", filename.c_str());
}
}
image tonemapped_img;
for (int e = -5; e <= 5; e++)
{
const float scale = powf(2.0f, (float)e);
tonemap_image_reinhard(tonemapped_img, hdr_img, scale);
std::string filename(string_format("%s_reinhard_tonemapped_scale_%f.png", pBasename, scale));
save_png(filename.c_str(), tonemapped_img, cImageSaveIgnoreAlpha);
printf("Wrote .PNG file %s\n", filename.c_str());
}
return true;
}
bool basis_compressor::write_output_files_and_compute_stats()
{
debug_printf("basis_compressor::write_output_files_and_compute_stats\n");
const uint8_vec& comp_data = m_params.m_create_ktx2_file ? m_output_ktx2_file : m_basis_file.get_compressed_data();
if (m_params.m_write_output_basis_or_ktx2_files)
{
const std::string& output_filename = m_params.m_out_filename;
if (!write_vec_to_file(output_filename.c_str(), comp_data))
{
error_printf("Failed writing output data to file \"%s\"\n", output_filename.c_str());
return false;
}
if (m_params.m_status_output)
{
printf("Wrote output .basis/.ktx2 file \"%s\"\n", output_filename.c_str());
}
}
size_t comp_size = 0;
if ((m_params.m_compute_stats) && (m_params.m_uastc) && (comp_data.size()))
{
void* pComp_data = tdefl_compress_mem_to_heap(&comp_data[0], comp_data.size(), &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES);
size_t decomp_size = 0;
void* pDecomp_data = tinfl_decompress_mem_to_heap(pComp_data, comp_size, &decomp_size, 0);
if ((decomp_size != comp_data.size()) || (memcmp(pDecomp_data, &comp_data[0], decomp_size) != 0))
{
printf("basis_compressor::create_basis_file_and_transcode:: miniz compression or decompression failed!\n");
return false;
}
mz_free(pComp_data);
mz_free(pDecomp_data);
uint32_t total_texels = 0;
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
total_texels += (m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y) * 16;
m_basis_bits_per_texel = comp_size * 8.0f / total_texels;
debug_printf("Output file size: %u, LZ compressed file size: %u, %3.2f bits/texel\n",
(uint32_t)comp_data.size(),
(uint32_t)comp_size,
m_basis_bits_per_texel);
}
m_stats.resize(m_slice_descs.size());
if (m_params.m_validate_output_data)
{
if (m_params.m_hdr)
{
if (m_params.m_print_stats)
{
printf("ASTC/BC6H half float space error metrics (a piecewise linear approximation of log2 error):\n");
}
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
{
const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
if (m_params.m_compute_stats)
{
image_stats& s = m_stats[slice_index];
if (m_params.m_print_stats)
{
printf("Slice: %u\n", slice_index);
}
image_metrics im;
if (m_params.m_print_stats)
{
printf("\nASTC channels:\n");
for (uint32_t i = 0; i < 3; i++)
{
im.calc_half(m_slice_images_hdr[slice_index], m_decoded_output_textures_astc_hdr_unpacked[slice_index], i, 1, true);
printf("%c: ", "RGB"[i]);
im.print_hp();
}
printf("BC6H channels:\n");
for (uint32_t i = 0; i < 3; i++)
{
im.calc_half(m_slice_images_hdr[slice_index], m_decoded_output_textures_bc6h_hdr_unpacked[slice_index], i, 1, true);
printf("%c: ", "RGB"[i]);
im.print_hp();
}
}
im.calc_half(m_slice_images_hdr[slice_index], m_decoded_output_textures_astc_hdr_unpacked[slice_index], 0, 3, true);
s.m_basis_rgb_avg_psnr = (float)im.m_psnr;
if (m_params.m_print_stats)
{
printf("\nASTC RGB: ");
im.print_hp();
#if 0
// Validation
im.calc_half2(m_slice_images_hdr[slice_index], m_decoded_output_textures_astc_hdr_unpacked[slice_index], 0, 3, true);
printf("\nASTC RGB (Alt): ");
im.print_hp();
#endif
}
im.calc_half(m_slice_images_hdr[slice_index], m_decoded_output_textures_bc6h_hdr_unpacked[slice_index], 0, 3, true);
s.m_basis_rgb_avg_bc6h_psnr = (float)im.m_psnr;
if (m_params.m_print_stats)
{
printf("BC6H RGB: ");
im.print_hp();
printf("\n");
}
}
if (m_params.m_debug_images)
{
std::string out_basename;
if (m_params.m_out_filename.size())
string_get_filename(m_params.m_out_filename.c_str(), out_basename);
else if (m_params.m_source_filenames.size())
string_get_filename(m_params.m_source_filenames[slice_desc.m_source_file_index].c_str(), out_basename);
string_remove_extension(out_basename);
out_basename = "basis_debug_" + out_basename + string_format("_slice_%u", slice_index);
// Write BC6H .DDS file.
{
gpu_image bc6h_tex(m_decoded_output_textures[slice_index]);
bc6h_tex.override_dimensions(slice_desc.m_orig_width, slice_desc.m_orig_height);
std::string filename(out_basename + "_bc6h.dds");
write_compressed_texture_file(filename.c_str(), bc6h_tex, true);
printf("Wrote .DDS file %s\n", filename.c_str());
}
// Write ASTC .KTX/.astc files. ("astcenc -dh input.astc output.exr" to decode the astc file.)
{
gpu_image astc_tex(m_decoded_output_textures_astc_hdr[slice_index]);
astc_tex.override_dimensions(slice_desc.m_orig_width, slice_desc.m_orig_height);
std::string filename1(out_basename + "_astc.astc");
write_astc_file(filename1.c_str(), astc_tex.get_ptr(), 4, 4, slice_desc.m_orig_width, slice_desc.m_orig_height);
printf("Wrote .ASTC file %s\n", filename1.c_str());
std::string filename2(out_basename + "_astc.ktx");
write_compressed_texture_file(filename2.c_str(), astc_tex, true);
printf("Wrote .KTX file %s\n", filename2.c_str());
}
// Write unpacked ASTC image to .EXR
{
imagef astc_img(m_decoded_output_textures_astc_hdr_unpacked[slice_index]);
astc_img.resize(slice_desc.m_orig_width, slice_desc.m_orig_height);
std::string filename(out_basename + "_unpacked_astc.exr");
write_exr(filename.c_str(), astc_img, 3, 0);
printf("Wrote .EXR file %s\n", filename.c_str());
}
// Write unpacked BC6H image to .EXR
{
imagef bc6h_img(m_decoded_output_textures_bc6h_hdr_unpacked[slice_index]);
bc6h_img.resize(slice_desc.m_orig_width, slice_desc.m_orig_height);
std::string filename(out_basename + "_unpacked_bc6h.exr");
write_exr(filename.c_str(), bc6h_img, 3, 0);
printf("Wrote .EXR file %s\n", filename.c_str());
}
// Write tonemapped/srgb images
write_hdr_debug_images((out_basename + "_source").c_str(), m_slice_images_hdr[slice_index], slice_desc.m_orig_width, slice_desc.m_orig_height);
write_hdr_debug_images((out_basename + "_unpacked_astc").c_str(), m_decoded_output_textures_astc_hdr_unpacked[slice_index], slice_desc.m_orig_width, slice_desc.m_orig_height);
write_hdr_debug_images((out_basename + "_unpacked_bc6h").c_str(), m_decoded_output_textures_bc6h_hdr_unpacked[slice_index], slice_desc.m_orig_width, slice_desc.m_orig_height);
}
}
}
else
{
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
{
const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
if (m_params.m_compute_stats)
{
if (m_params.m_print_stats)
printf("Slice: %u\n", slice_index);
image_stats& s = m_stats[slice_index];
image_metrics em;
// ---- .basis stats
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 3);
if (m_params.m_print_stats)
em.print(".basis RGB Avg: ");
s.m_basis_rgb_avg_psnr = (float)em.m_psnr;
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 4);
if (m_params.m_print_stats)
em.print(".basis RGBA Avg: ");
s.m_basis_rgba_avg_psnr = (float)em.m_psnr;
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 1);
if (m_params.m_print_stats)
em.print(".basis R Avg: ");
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 1, 1);
if (m_params.m_print_stats)
em.print(".basis G Avg: ");
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 2, 1);
if (m_params.m_print_stats)
em.print(".basis B Avg: ");
if (m_params.m_uastc)
{
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 3, 1);
if (m_params.m_print_stats)
em.print(".basis A Avg: ");
s.m_basis_a_avg_psnr = (float)em.m_psnr;
}
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 0);
if (m_params.m_print_stats)
em.print(".basis 709 Luma: ");
s.m_basis_luma_709_psnr = static_cast<float>(em.m_psnr);
s.m_basis_luma_709_ssim = static_cast<float>(em.m_ssim);
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 0, true, true);
if (m_params.m_print_stats)
em.print(".basis 601 Luma: ");
s.m_basis_luma_601_psnr = static_cast<float>(em.m_psnr);
if (m_slice_descs.size() == 1)
{
const uint32_t output_size = comp_size ? (uint32_t)comp_size : (uint32_t)comp_data.size();
if (m_params.m_print_stats)
{
debug_printf(".basis RGB PSNR per bit/texel*10000: %3.3f\n", 10000.0f * s.m_basis_rgb_avg_psnr / ((output_size * 8.0f) / (slice_desc.m_orig_width * slice_desc.m_orig_height)));
debug_printf(".basis Luma 709 PSNR per bit/texel*10000: %3.3f\n", 10000.0f * s.m_basis_luma_709_psnr / ((output_size * 8.0f) / (slice_desc.m_orig_width * slice_desc.m_orig_height)));
}
}
if (m_decoded_output_textures_unpacked_bc7[slice_index].get_width())
{
// ---- BC7 stats