| // basisu_transcoder_internal.h - Universal texture format transcoder library. |
| // Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved. |
| // |
| // Important: If compiling with gcc, be sure strict aliasing is disabled: -fno-strict-aliasing |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| #pragma once |
| |
| #ifdef _MSC_VER |
| #pragma warning (disable: 4127) // conditional expression is constant |
| #endif |
| |
| #define BASISD_LIB_VERSION 116 |
| #define BASISD_VERSION_STRING "01.16" |
| |
| #ifdef _DEBUG |
| #define BASISD_BUILD_DEBUG |
| #else |
| #define BASISD_BUILD_RELEASE |
| #endif |
| |
| #include "basisu.h" |
| |
| #define BASISD_znew (z = 36969 * (z & 65535) + (z >> 16)) |
| |
| namespace basisu |
| { |
| extern bool g_debug_printf; |
| } |
| |
| namespace basist |
| { |
| // Low-level formats directly supported by the transcoder (other supported texture formats are combinations of these low-level block formats). |
| // You probably don't care about these enum's unless you are going pretty low-level and calling the transcoder to decode individual slices. |
| enum class block_format |
| { |
| cETC1, // ETC1S RGB |
| cETC2_RGBA, // full ETC2 EAC RGBA8 block |
| cBC1, // DXT1 RGB |
| cBC3, // BC4 block followed by a four color BC1 block |
| cBC4, // DXT5A (alpha block only) |
| cBC5, // two BC4 blocks |
| cPVRTC1_4_RGB, // opaque-only PVRTC1 4bpp |
| cPVRTC1_4_RGBA, // PVRTC1 4bpp RGBA |
| cBC7, // Full BC7 block, any mode |
| cBC7_M5_COLOR, // RGB BC7 mode 5 color (writes an opaque mode 5 block) |
| cBC7_M5_ALPHA, // alpha portion of BC7 mode 5 (cBC7_M5_COLOR output data must have been written to the output buffer first to set the mode/rot fields etc.) |
| cETC2_EAC_A8, // alpha block of ETC2 EAC (first 8 bytes of the 16-bit ETC2 EAC RGBA format) |
| cASTC_4x4, // ASTC 4x4 (either color-only or color+alpha). Note that the transcoder always currently assumes sRGB is not enabled when outputting ASTC |
| // data. If you use a sRGB ASTC format you'll get ~1 LSB of additional error, because of the different way ASTC decoders scale 8-bit endpoints to 16-bits during unpacking. |
| |
| cATC_RGB, |
| cATC_RGBA_INTERPOLATED_ALPHA, |
| cFXT1_RGB, // Opaque-only, has oddball 8x4 pixel block size |
| |
| cPVRTC2_4_RGB, |
| cPVRTC2_4_RGBA, |
| |
| cETC2_EAC_R11, |
| cETC2_EAC_RG11, |
| |
| cIndices, // Used internally: Write 16-bit endpoint and selector indices directly to output (output block must be at least 32-bits) |
| |
| cRGB32, // Writes RGB components to 32bpp output pixels |
| cRGBA32, // Writes RGB255 components to 32bpp output pixels |
| cA32, // Writes alpha component to 32bpp output pixels |
| |
| cRGB565, |
| cBGR565, |
| |
| cRGBA4444_COLOR, |
| cRGBA4444_ALPHA, |
| cRGBA4444_COLOR_OPAQUE, |
| cRGBA4444, |
| |
| cUASTC_4x4, |
| |
| cTotalBlockFormats |
| }; |
| |
| const int COLOR5_PAL0_PREV_HI = 9, COLOR5_PAL0_DELTA_LO = -9, COLOR5_PAL0_DELTA_HI = 31; |
| const int COLOR5_PAL1_PREV_HI = 21, COLOR5_PAL1_DELTA_LO = -21, COLOR5_PAL1_DELTA_HI = 21; |
| const int COLOR5_PAL2_PREV_HI = 31, COLOR5_PAL2_DELTA_LO = -31, COLOR5_PAL2_DELTA_HI = 9; |
| const int COLOR5_PAL_MIN_DELTA_B_RUNLEN = 3, COLOR5_PAL_DELTA_5_RUNLEN_VLC_BITS = 3; |
| |
| const uint32_t ENDPOINT_PRED_TOTAL_SYMBOLS = (4 * 4 * 4 * 4) + 1; |
| const uint32_t ENDPOINT_PRED_REPEAT_LAST_SYMBOL = ENDPOINT_PRED_TOTAL_SYMBOLS - 1; |
| const uint32_t ENDPOINT_PRED_MIN_REPEAT_COUNT = 3; |
| const uint32_t ENDPOINT_PRED_COUNT_VLC_BITS = 4; |
| |
| const uint32_t NUM_ENDPOINT_PREDS = 3;// BASISU_ARRAY_SIZE(g_endpoint_preds); |
| const uint32_t CR_ENDPOINT_PRED_INDEX = NUM_ENDPOINT_PREDS - 1; |
| const uint32_t NO_ENDPOINT_PRED_INDEX = 3;//NUM_ENDPOINT_PREDS; |
| const uint32_t MAX_SELECTOR_HISTORY_BUF_SIZE = 64; |
| const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH = 3; |
| const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_BITS = 6; |
| const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL = (1 << SELECTOR_HISTORY_BUF_RLE_COUNT_BITS); |
| |
| uint16_t crc16(const void *r, size_t size, uint16_t crc); |
| |
| class huffman_decoding_table |
| { |
| friend class bitwise_decoder; |
| |
| public: |
| huffman_decoding_table() |
| { |
| } |
| |
| void clear() |
| { |
| basisu::clear_vector(m_code_sizes); |
| basisu::clear_vector(m_lookup); |
| basisu::clear_vector(m_tree); |
| } |
| |
| bool init(uint32_t total_syms, const uint8_t *pCode_sizes, uint32_t fast_lookup_bits = basisu::cHuffmanFastLookupBits) |
| { |
| if (!total_syms) |
| { |
| clear(); |
| return true; |
| } |
| |
| m_code_sizes.resize(total_syms); |
| memcpy(&m_code_sizes[0], pCode_sizes, total_syms); |
| |
| const uint32_t huffman_fast_lookup_size = 1 << fast_lookup_bits; |
| |
| m_lookup.resize(0); |
| m_lookup.resize(huffman_fast_lookup_size); |
| |
| m_tree.resize(0); |
| m_tree.resize(total_syms * 2); |
| |
| uint32_t syms_using_codesize[basisu::cHuffmanMaxSupportedInternalCodeSize + 1]; |
| basisu::clear_obj(syms_using_codesize); |
| for (uint32_t i = 0; i < total_syms; i++) |
| { |
| if (pCode_sizes[i] > basisu::cHuffmanMaxSupportedInternalCodeSize) |
| return false; |
| syms_using_codesize[pCode_sizes[i]]++; |
| } |
| |
| uint32_t next_code[basisu::cHuffmanMaxSupportedInternalCodeSize + 1]; |
| next_code[0] = next_code[1] = 0; |
| |
| uint32_t used_syms = 0, total = 0; |
| for (uint32_t i = 1; i < basisu::cHuffmanMaxSupportedInternalCodeSize; i++) |
| { |
| used_syms += syms_using_codesize[i]; |
| next_code[i + 1] = (total = ((total + syms_using_codesize[i]) << 1)); |
| } |
| |
| if (((1U << basisu::cHuffmanMaxSupportedInternalCodeSize) != total) && (used_syms != 1U)) |
| return false; |
| |
| for (int tree_next = -1, sym_index = 0; sym_index < (int)total_syms; ++sym_index) |
| { |
| uint32_t rev_code = 0, l, cur_code, code_size = pCode_sizes[sym_index]; |
| if (!code_size) |
| continue; |
| |
| cur_code = next_code[code_size]++; |
| |
| for (l = code_size; l > 0; l--, cur_code >>= 1) |
| rev_code = (rev_code << 1) | (cur_code & 1); |
| |
| if (code_size <= fast_lookup_bits) |
| { |
| uint32_t k = (code_size << 16) | sym_index; |
| while (rev_code < huffman_fast_lookup_size) |
| { |
| if (m_lookup[rev_code] != 0) |
| { |
| // Supplied codesizes can't create a valid prefix code. |
| return false; |
| } |
| |
| m_lookup[rev_code] = k; |
| rev_code += (1 << code_size); |
| } |
| continue; |
| } |
| |
| int tree_cur; |
| if (0 == (tree_cur = m_lookup[rev_code & (huffman_fast_lookup_size - 1)])) |
| { |
| const uint32_t idx = rev_code & (huffman_fast_lookup_size - 1); |
| if (m_lookup[idx] != 0) |
| { |
| // Supplied codesizes can't create a valid prefix code. |
| return false; |
| } |
| |
| m_lookup[idx] = tree_next; |
| tree_cur = tree_next; |
| tree_next -= 2; |
| } |
| |
| if (tree_cur >= 0) |
| { |
| // Supplied codesizes can't create a valid prefix code. |
| return false; |
| } |
| |
| rev_code >>= (fast_lookup_bits - 1); |
| |
| for (int j = code_size; j > ((int)fast_lookup_bits + 1); j--) |
| { |
| tree_cur -= ((rev_code >>= 1) & 1); |
| |
| const int idx = -tree_cur - 1; |
| if (idx < 0) |
| return false; |
| else if (idx >= (int)m_tree.size()) |
| m_tree.resize(idx + 1); |
| |
| if (!m_tree[idx]) |
| { |
| m_tree[idx] = (int16_t)tree_next; |
| tree_cur = tree_next; |
| tree_next -= 2; |
| } |
| else |
| { |
| tree_cur = m_tree[idx]; |
| if (tree_cur >= 0) |
| { |
| // Supplied codesizes can't create a valid prefix code. |
| return false; |
| } |
| } |
| } |
| |
| tree_cur -= ((rev_code >>= 1) & 1); |
| |
| const int idx = -tree_cur - 1; |
| if (idx < 0) |
| return false; |
| else if (idx >= (int)m_tree.size()) |
| m_tree.resize(idx + 1); |
| |
| if (m_tree[idx] != 0) |
| { |
| // Supplied codesizes can't create a valid prefix code. |
| return false; |
| } |
| |
| m_tree[idx] = (int16_t)sym_index; |
| } |
| |
| return true; |
| } |
| |
| const basisu::uint8_vec &get_code_sizes() const { return m_code_sizes; } |
| const basisu::int_vec get_lookup() const { return m_lookup; } |
| const basisu::int16_vec get_tree() const { return m_tree; } |
| |
| bool is_valid() const { return m_code_sizes.size() > 0; } |
| |
| private: |
| basisu::uint8_vec m_code_sizes; |
| basisu::int_vec m_lookup; |
| basisu::int16_vec m_tree; |
| }; |
| |
| class bitwise_decoder |
| { |
| public: |
| bitwise_decoder() : |
| m_buf_size(0), |
| m_pBuf(nullptr), |
| m_pBuf_start(nullptr), |
| m_pBuf_end(nullptr), |
| m_bit_buf(0), |
| m_bit_buf_size(0) |
| { |
| } |
| |
| void clear() |
| { |
| m_buf_size = 0; |
| m_pBuf = nullptr; |
| m_pBuf_start = nullptr; |
| m_pBuf_end = nullptr; |
| m_bit_buf = 0; |
| m_bit_buf_size = 0; |
| } |
| |
| bool init(const uint8_t *pBuf, uint32_t buf_size) |
| { |
| if ((!pBuf) && (buf_size)) |
| return false; |
| |
| m_buf_size = buf_size; |
| m_pBuf = pBuf; |
| m_pBuf_start = pBuf; |
| m_pBuf_end = pBuf + buf_size; |
| m_bit_buf = 0; |
| m_bit_buf_size = 0; |
| return true; |
| } |
| |
| void stop() |
| { |
| } |
| |
| inline uint32_t peek_bits(uint32_t num_bits) |
| { |
| if (!num_bits) |
| return 0; |
| |
| assert(num_bits <= 25); |
| |
| while (m_bit_buf_size < num_bits) |
| { |
| uint32_t c = 0; |
| if (m_pBuf < m_pBuf_end) |
| c = *m_pBuf++; |
| |
| m_bit_buf |= (c << m_bit_buf_size); |
| m_bit_buf_size += 8; |
| assert(m_bit_buf_size <= 32); |
| } |
| |
| return m_bit_buf & ((1 << num_bits) - 1); |
| } |
| |
| void remove_bits(uint32_t num_bits) |
| { |
| assert(m_bit_buf_size >= num_bits); |
| |
| m_bit_buf >>= num_bits; |
| m_bit_buf_size -= num_bits; |
| } |
| |
| uint32_t get_bits(uint32_t num_bits) |
| { |
| if (num_bits > 25) |
| { |
| assert(num_bits <= 32); |
| |
| const uint32_t bits0 = peek_bits(25); |
| m_bit_buf >>= 25; |
| m_bit_buf_size -= 25; |
| num_bits -= 25; |
| |
| const uint32_t bits = peek_bits(num_bits); |
| m_bit_buf >>= num_bits; |
| m_bit_buf_size -= num_bits; |
| |
| return bits0 | (bits << 25); |
| } |
| |
| const uint32_t bits = peek_bits(num_bits); |
| |
| m_bit_buf >>= num_bits; |
| m_bit_buf_size -= num_bits; |
| |
| return bits; |
| } |
| |
| uint32_t decode_truncated_binary(uint32_t n) |
| { |
| assert(n >= 2); |
| |
| const uint32_t k = basisu::floor_log2i(n); |
| const uint32_t u = (1 << (k + 1)) - n; |
| |
| uint32_t result = get_bits(k); |
| |
| if (result >= u) |
| result = ((result << 1) | get_bits(1)) - u; |
| |
| return result; |
| } |
| |
| uint32_t decode_rice(uint32_t m) |
| { |
| assert(m); |
| |
| uint32_t q = 0; |
| for (;;) |
| { |
| uint32_t k = peek_bits(16); |
| |
| uint32_t l = 0; |
| while (k & 1) |
| { |
| l++; |
| k >>= 1; |
| } |
| |
| q += l; |
| |
| remove_bits(l); |
| |
| if (l < 16) |
| break; |
| } |
| |
| return (q << m) + (get_bits(m + 1) >> 1); |
| } |
| |
| inline uint32_t decode_vlc(uint32_t chunk_bits) |
| { |
| assert(chunk_bits); |
| |
| const uint32_t chunk_size = 1 << chunk_bits; |
| const uint32_t chunk_mask = chunk_size - 1; |
| |
| uint32_t v = 0; |
| uint32_t ofs = 0; |
| |
| for ( ; ; ) |
| { |
| uint32_t s = get_bits(chunk_bits + 1); |
| v |= ((s & chunk_mask) << ofs); |
| ofs += chunk_bits; |
| |
| if ((s & chunk_size) == 0) |
| break; |
| |
| if (ofs >= 32) |
| { |
| assert(0); |
| break; |
| } |
| } |
| |
| return v; |
| } |
| |
| inline uint32_t decode_huffman(const huffman_decoding_table &ct, int fast_lookup_bits = basisu::cHuffmanFastLookupBits) |
| { |
| assert(ct.m_code_sizes.size()); |
| |
| const uint32_t huffman_fast_lookup_size = 1 << fast_lookup_bits; |
| |
| while (m_bit_buf_size < 16) |
| { |
| uint32_t c = 0; |
| if (m_pBuf < m_pBuf_end) |
| c = *m_pBuf++; |
| |
| m_bit_buf |= (c << m_bit_buf_size); |
| m_bit_buf_size += 8; |
| assert(m_bit_buf_size <= 32); |
| } |
| |
| int code_len; |
| |
| int sym; |
| if ((sym = ct.m_lookup[m_bit_buf & (huffman_fast_lookup_size - 1)]) >= 0) |
| { |
| code_len = sym >> 16; |
| sym &= 0xFFFF; |
| } |
| else |
| { |
| code_len = fast_lookup_bits; |
| do |
| { |
| sym = ct.m_tree[~sym + ((m_bit_buf >> code_len++) & 1)]; // ~sym = -sym - 1 |
| } while (sym < 0); |
| } |
| |
| m_bit_buf >>= code_len; |
| m_bit_buf_size -= code_len; |
| |
| return sym; |
| } |
| |
| bool read_huffman_table(huffman_decoding_table &ct) |
| { |
| ct.clear(); |
| |
| const uint32_t total_used_syms = get_bits(basisu::cHuffmanMaxSymsLog2); |
| |
| if (!total_used_syms) |
| return true; |
| if (total_used_syms > basisu::cHuffmanMaxSyms) |
| return false; |
| |
| uint8_t code_length_code_sizes[basisu::cHuffmanTotalCodelengthCodes]; |
| basisu::clear_obj(code_length_code_sizes); |
| |
| const uint32_t num_codelength_codes = get_bits(5); |
| if ((num_codelength_codes < 1) || (num_codelength_codes > basisu::cHuffmanTotalCodelengthCodes)) |
| return false; |
| |
| for (uint32_t i = 0; i < num_codelength_codes; i++) |
| code_length_code_sizes[basisu::g_huffman_sorted_codelength_codes[i]] = static_cast<uint8_t>(get_bits(3)); |
| |
| huffman_decoding_table code_length_table; |
| if (!code_length_table.init(basisu::cHuffmanTotalCodelengthCodes, code_length_code_sizes)) |
| return false; |
| |
| if (!code_length_table.is_valid()) |
| return false; |
| |
| basisu::uint8_vec code_sizes(total_used_syms); |
| |
| uint32_t cur = 0; |
| while (cur < total_used_syms) |
| { |
| int c = decode_huffman(code_length_table); |
| |
| if (c <= 16) |
| code_sizes[cur++] = static_cast<uint8_t>(c); |
| else if (c == basisu::cHuffmanSmallZeroRunCode) |
| cur += get_bits(basisu::cHuffmanSmallZeroRunExtraBits) + basisu::cHuffmanSmallZeroRunSizeMin; |
| else if (c == basisu::cHuffmanBigZeroRunCode) |
| cur += get_bits(basisu::cHuffmanBigZeroRunExtraBits) + basisu::cHuffmanBigZeroRunSizeMin; |
| else |
| { |
| if (!cur) |
| return false; |
| |
| uint32_t l; |
| if (c == basisu::cHuffmanSmallRepeatCode) |
| l = get_bits(basisu::cHuffmanSmallRepeatExtraBits) + basisu::cHuffmanSmallRepeatSizeMin; |
| else |
| l = get_bits(basisu::cHuffmanBigRepeatExtraBits) + basisu::cHuffmanBigRepeatSizeMin; |
| |
| const uint8_t prev = code_sizes[cur - 1]; |
| if (prev == 0) |
| return false; |
| do |
| { |
| if (cur >= total_used_syms) |
| return false; |
| code_sizes[cur++] = prev; |
| } while (--l > 0); |
| } |
| } |
| |
| if (cur != total_used_syms) |
| return false; |
| |
| return ct.init(total_used_syms, &code_sizes[0]); |
| } |
| |
| private: |
| uint32_t m_buf_size; |
| const uint8_t *m_pBuf; |
| const uint8_t *m_pBuf_start; |
| const uint8_t *m_pBuf_end; |
| |
| uint32_t m_bit_buf; |
| uint32_t m_bit_buf_size; |
| }; |
| |
| inline uint32_t basisd_rand(uint32_t seed) |
| { |
| if (!seed) |
| seed++; |
| uint32_t z = seed; |
| BASISD_znew; |
| return z; |
| } |
| |
| // Returns random number in [0,limit). Max limit is 0xFFFF. |
| inline uint32_t basisd_urand(uint32_t& seed, uint32_t limit) |
| { |
| seed = basisd_rand(seed); |
| return (((seed ^ (seed >> 16)) & 0xFFFF) * limit) >> 16; |
| } |
| |
| class approx_move_to_front |
| { |
| public: |
| approx_move_to_front(uint32_t n) |
| { |
| init(n); |
| } |
| |
| void init(uint32_t n) |
| { |
| m_values.resize(n); |
| m_rover = n / 2; |
| } |
| |
| const basisu::int_vec& get_values() const { return m_values; } |
| basisu::int_vec& get_values() { return m_values; } |
| |
| uint32_t size() const { return (uint32_t)m_values.size(); } |
| |
| const int& operator[] (uint32_t index) const { return m_values[index]; } |
| int operator[] (uint32_t index) { return m_values[index]; } |
| |
| void add(int new_value) |
| { |
| m_values[m_rover++] = new_value; |
| if (m_rover == m_values.size()) |
| m_rover = (uint32_t)m_values.size() / 2; |
| } |
| |
| void use(uint32_t index) |
| { |
| if (index) |
| { |
| //std::swap(m_values[index / 2], m_values[index]); |
| int x = m_values[index / 2]; |
| int y = m_values[index]; |
| m_values[index / 2] = y; |
| m_values[index] = x; |
| } |
| } |
| |
| // returns -1 if not found |
| int find(int value) const |
| { |
| for (uint32_t i = 0; i < m_values.size(); i++) |
| if (m_values[i] == value) |
| return i; |
| return -1; |
| } |
| |
| void reset() |
| { |
| const uint32_t n = (uint32_t)m_values.size(); |
| |
| m_values.clear(); |
| |
| init(n); |
| } |
| |
| private: |
| basisu::int_vec m_values; |
| uint32_t m_rover; |
| }; |
| |
| struct decoder_etc_block; |
| |
| inline uint8_t clamp255(int32_t i) |
| { |
| return (uint8_t)((i & 0xFFFFFF00U) ? (~(i >> 31)) : i); |
| } |
| |
| enum eNoClamp |
| { |
| cNoClamp = 0 |
| }; |
| |
| struct color32 |
| { |
| union |
| { |
| struct |
| { |
| uint8_t r; |
| uint8_t g; |
| uint8_t b; |
| uint8_t a; |
| }; |
| |
| uint8_t c[4]; |
| |
| uint32_t m; |
| }; |
| |
| color32() { } |
| |
| color32(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { set(vr, vg, vb, va); } |
| color32(eNoClamp unused, uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { (void)unused; set_noclamp_rgba(vr, vg, vb, va); } |
| |
| void set(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { c[0] = static_cast<uint8_t>(vr); c[1] = static_cast<uint8_t>(vg); c[2] = static_cast<uint8_t>(vb); c[3] = static_cast<uint8_t>(va); } |
| |
| void set_noclamp_rgb(uint32_t vr, uint32_t vg, uint32_t vb) { c[0] = static_cast<uint8_t>(vr); c[1] = static_cast<uint8_t>(vg); c[2] = static_cast<uint8_t>(vb); } |
| void set_noclamp_rgba(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { set(vr, vg, vb, va); } |
| |
| void set_clamped(int vr, int vg, int vb, int va) { c[0] = clamp255(vr); c[1] = clamp255(vg); c[2] = clamp255(vb); c[3] = clamp255(va); } |
| |
| uint8_t operator[] (uint32_t idx) const { assert(idx < 4); return c[idx]; } |
| uint8_t &operator[] (uint32_t idx) { assert(idx < 4); return c[idx]; } |
| |
| bool operator== (const color32&rhs) const { return m == rhs.m; } |
| |
| static color32 comp_min(const color32& a, const color32& b) { return color32(cNoClamp, basisu::minimum(a[0], b[0]), basisu::minimum(a[1], b[1]), basisu::minimum(a[2], b[2]), basisu::minimum(a[3], b[3])); } |
| static color32 comp_max(const color32& a, const color32& b) { return color32(cNoClamp, basisu::maximum(a[0], b[0]), basisu::maximum(a[1], b[1]), basisu::maximum(a[2], b[2]), basisu::maximum(a[3], b[3])); } |
| }; |
| |
| struct endpoint |
| { |
| color32 m_color5; |
| uint8_t m_inten5; |
| bool operator== (const endpoint& rhs) const |
| { |
| return (m_color5.r == rhs.m_color5.r) && (m_color5.g == rhs.m_color5.g) && (m_color5.b == rhs.m_color5.b) && (m_inten5 == rhs.m_inten5); |
| } |
| bool operator!= (const endpoint& rhs) const { return !(*this == rhs); } |
| }; |
| |
| struct selector |
| { |
| // Plain selectors (2-bits per value) |
| uint8_t m_selectors[4]; |
| |
| // ETC1 selectors |
| uint8_t m_bytes[4]; |
| |
| uint8_t m_lo_selector, m_hi_selector; |
| uint8_t m_num_unique_selectors; |
| bool operator== (const selector& rhs) const |
| { |
| return (m_selectors[0] == rhs.m_selectors[0]) && |
| (m_selectors[1] == rhs.m_selectors[1]) && |
| (m_selectors[2] == rhs.m_selectors[2]) && |
| (m_selectors[3] == rhs.m_selectors[3]); |
| } |
| bool operator!= (const selector& rhs) const |
| { |
| return !(*this == rhs); |
| } |
| |
| void init_flags() |
| { |
| uint32_t hist[4] = { 0, 0, 0, 0 }; |
| for (uint32_t y = 0; y < 4; y++) |
| { |
| for (uint32_t x = 0; x < 4; x++) |
| { |
| uint32_t s = get_selector(x, y); |
| hist[s]++; |
| } |
| } |
| |
| m_lo_selector = 3; |
| m_hi_selector = 0; |
| m_num_unique_selectors = 0; |
| |
| for (uint32_t i = 0; i < 4; i++) |
| { |
| if (hist[i]) |
| { |
| m_num_unique_selectors++; |
| if (i < m_lo_selector) m_lo_selector = static_cast<uint8_t>(i); |
| if (i > m_hi_selector) m_hi_selector = static_cast<uint8_t>(i); |
| } |
| } |
| } |
| |
| // Returned selector value ranges from 0-3 and is a direct index into g_etc1_inten_tables. |
| inline uint32_t get_selector(uint32_t x, uint32_t y) const |
| { |
| assert((x < 4) && (y < 4)); |
| return (m_selectors[y] >> (x * 2)) & 3; |
| } |
| |
| void set_selector(uint32_t x, uint32_t y, uint32_t val) |
| { |
| static const uint8_t s_selector_index_to_etc1[4] = { 3, 2, 0, 1 }; |
| |
| assert((x | y | val) < 4); |
| |
| m_selectors[y] &= ~(3 << (x * 2)); |
| m_selectors[y] |= (val << (x * 2)); |
| |
| const uint32_t etc1_bit_index = x * 4 + y; |
| |
| uint8_t *p = &m_bytes[3 - (etc1_bit_index >> 3)]; |
| |
| const uint32_t byte_bit_ofs = etc1_bit_index & 7; |
| const uint32_t mask = 1 << byte_bit_ofs; |
| |
| const uint32_t etc1_val = s_selector_index_to_etc1[val]; |
| |
| const uint32_t lsb = etc1_val & 1; |
| const uint32_t msb = etc1_val >> 1; |
| |
| p[0] &= ~mask; |
| p[0] |= (lsb << byte_bit_ofs); |
| |
| p[-2] &= ~mask; |
| p[-2] |= (msb << byte_bit_ofs); |
| } |
| }; |
| |
| bool basis_block_format_is_uncompressed(block_format tex_type); |
| |
| } // namespace basist |
| |
| |
| |